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Predicting Locations of High-Risk Plaques
in Coronary Arteries in Patients
Receiving Statin Therapy
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Tomas Kovarnik, and Milan Sonka, Fellow, IEEE

Abstract— Features of high-risk coronary artery plaques
prone to major adverse cardiac events (MACE) were
identified by intravascular ultrasound (IVUS) virtual
histology (VH). These plaque features are: thin-cap
fibroatheroma (TCFA), plaque burden PB > 70%, or minimal
luminal area MLA < 4 mm2. Identification of arterial
locations likely to later develop such high-risk plaques
may help prevent MACE. We report a machine learning
method for prediction of future high-risk coronary plaque
locations and types in patients under statin therapy.
Sixty-one patients with stable angina on statin therapy
underwent baseline and one-year follow-up VH-IVUS non-
culprit vessel examinations followed by quantitative image
analysis. For each segmented and registered VH-IVUS
frame pair (n = 6341), location-specific (~0.5 mm) vascular
features and demographic information at baseline were
identified. Seven independent support vector machine
classifiers with seven different feature subsets were trained
to predict high-risk plaque types one year later. A leave-
one-patient-out cross-validation was used to evaluate
the prediction power of different feature subsets. The
experimental results showed that our machine learning
method predicted future TCFA with correctness of 85.9%,
81.7%, and 77.0% (G-mean) for baseline plaque phenotypes
of TCFA, thick-cap fibroatheroma, and non-fibroatheroma,
respectively. For predicting PB > 70%, correctness was
80.8% for baseline PB > 70% and 85.6% for 50% < PB < 70%.
Accuracy of predicted MLA <4 mm? was 81.6% for baseline
MLA < 4 mm? and 80.2% for 4 mm?2 < MLA < 6 mmZ2.
Location-specific prediction of future high-risk coronary
artery plaques is feasible through machine learning
using focal vascular features and demographic variables.
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Our approach outperforms previously reported results and
shows the importance of local factors on high-risk coronary
artery plaque development.

Index Terms— Atherosclerosis, natural history, coro-
nary artery disease, intravascular ultrasound, prognosis,
machine learning.

|. INTRODUCTION

DENTIFICATION of patients at risk of major adverse

cardiac events (MACE) is challenging but has an enor-
mous medical impact [1], [2]. Trials as PROSPECT [3],
VIVA [4] and ATHEROREMO-IVUS [5] found that high-
risk plaques exhibiting thin-cap fibroatheroma (TCFA), plaque
burden (PB) > 70%, and/or minimal luminal area (MLA)
< 4.0 mm? are predictors of MACE, as determined by
virtual histology intravascular ultrasound (VH-IVUS) [6]-[8].
Although systemic pharmacologic therapies (mostly statins)
contribute to regression of coronary plaques [9], [10]
(“Negative” panel in Fig. 1 (A), (D), (F)), high-risk plaques
(such as TCFA [11], [12]) still remain (“Positive” panel
in Fig. 1 (A), (D), (F)). Additionally, some less-advanced
plaques continue to progress to more advanced high-
risk plaques even under statin therapy (“Positive” panel
in Fig. 1 (B), (C), (E), (G)). These residual and newly-occuring
high-risk plaques remain responsible for MACE in the future.
Early identification of locations, in which high-risk plaques
will likely develop in the future, is highly desirable as it will
enable patient-specific preemptive strategies (such as more
intensive pharmacological treatment in high-risk patients or
attempting focal plaque stabilization [13]) to avert MACE.

Coronary atherosclerosis is a dynamic process during which
focal plaque undergoes progression, regression, or quiescence
in an independent manner [14]. Such a dynamic behavior is
influenced by many systemic factors and by local vascular
factors. Utilizing in vivo vascular imaging tools including
VH-IVUS and angiography, efforts have been undertaken
to enable the prediction of treated or untreated outcomes
of plaques by correlating local vascular factors to plaque
progression and vulnerability [11], [12], [14]-[17]. Only a
very limited number of studies have reported successful pre-
diction of high-risk plaques showing significant correlation
between angiography-IVUS-derived features and TCFA out-
come (healed or remaining) [11], [12]. Clearly, predicting
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Fig. 1. Evolution of high-risk plaques, including progression, regression
and quiescence of: (A), (B), (C) TCFA; (D), (E) PB>70%; (F), (G)
MLA<4mmZ2. Plaque tissue compositions are color-coded by virtual his-
tology: dense calcium [DC] (white), necrotic core [NC] (red), fibrofatty [FF]
(light green), and fibrotic tissue [FT] (dark green). ThCFA: thick-cap
fibroatheroma; nonFA: non-fibroatheroma.

whether, and if so, where high-risk plaques (TCFA, PB>70%,
MLA<4mm?) will remain unchanged or will newly occur
remains very challenging.

In order to learn how to prospectively predict high-risk
plaques, frame-to-frame registration of baseline and follow-
up VH-IVUS pullback data is necessary to facilitate location-
specific quantitative comparisons between the two time points.
Most previous studies assessed plaque progression in the entire
lesions or over long vessel segments [3]—-[5], [11], [12], [14],
in part because accurate frame-to-frame registration of IVUS
pullbacks at two time points was not available [16]. Using
such long coronary segments fails to reflect the focal nature of
clinical events and leads to excessive averaging of focal plaque
morphology/composition indices [17]. Recently, we reported
a highly-automated approach for frame-to-frame registration
of baseline and follow-up IVUS pullback pairs based on
3D graph-based optimization [18]. Validation on 29 IVUS

pullback pairs demonstrated registration performance statis-
tically identical to that of human experts [18], [19]. This
registration method is employed here, enabling focal studies
of coronary atherosclerosis development. Such focal character
of high-risk plaques has not been previously investigated.

Historically, prediction of plaque progression relied on
statistical modeling, such as logistic regression [14], [17],
generating interpretable results but suffering from lower accu-
racy compared to algorithmic models employing large num-
bers of mutually interacting variables [20], [21]. Algorithmic
modeling, or machine learning [20], [22] allows estima-
tion of prediction accuracy via cross-validation. Machine
learning has been effective in coronary plaque component
classification [23], classifying plaque erosion against intact
fibrous plaques [24], and predicting disease recurrence or
survival [21]. We have previously demonstrated a potential
of machine learning for predicting subsequent development of
TCFAs [19], [25]. Therefore, we hypothesized that machine
learning approaches applied to serial studies of multimodality
intravascular imaging data and clinical characteristics from
patients allow prediction of future high-risk plaque locations
and types. Besides TCFA [19], [25], the current study enables
the prediction of PB>70% and MLA<4mm?, provides more
sophisticated methodology including prediction task splitting,
uses new VH-IVUS-based features and brings more compre-
hensive evaluation considering several feature selection and
imbalance learning techniques in a larger number of patients
with more accurate frame-level registration.

[I. MATERIALS AND METHODS
A. Study Patients and Protocol

61 patients fulfilling inclusion criteria were selected from a
database of 121 patients with stable angina pectoris enrolled
in one of 2 studies comparing statin therapy for atherosclerosis
progression (HEAVEN [26] and PREDICT (NCT01773512),
Charles University Hospital, Prague, Czech Republic). Patients
were treated with lipid lowering therapy ranging from nor-
mal intensity to high-intensity to cover plaque behavior for
the full range of treatment strategies. The inclusion criteria
were: (1) R-wave gated VH-IVUS image pullback performed
in a native coronary artery with angiographically-determined
maximum stenosis < 50% at baseline with no indication
for either percutaneous coronary intervention (PCI) or coro-
nary artery bypass grafting (CABG), (2) both baseline and
follow-up IVUS-VH pullbacks of good quality, without notice-
able pullback speed discontinuity and/or extended regions of
calcification shadowing preventing wall boundary detection,
at least 30mm long, with at least 25mm of the arterial image
overlap between baseline and follow-up pullbacks. The main
motivation of choosing 25mm was not to lose too many
baseline/follow-up pairs while having a long-enough arterial
segment. Major reason for patient exclusion was missing data,
including loss of follow-up, damaged/unreadable VH data, and
loss of ECG. Additionally, two patients were excluded after
baseline/follow-up registration, since no corresponding vessel
structures could ensure reliable registration. As such, 61 of 121
enrolled patients satisfied the inclusion criteria. The study



ZHANG et al.: PREDICTING LOCATIONS OF HIGH-RISK PLAQUES IN CORONARY ARTERIES 153

TRAINING

u
- layered plaque components
- spatial contexts

Ba
Segmentation Optimal Feature

**** Feature Selection Subset

& Registration

High-risk vs. Not
- TCFA vs. non-TCFA

- PB270% vs. PB<70%

- MLA<4mm? vs. MLA>4mm?

Predictive Classifier
Training

Optimal Feature

Subset

Fig. 2. Prediction of future high-risk plaque locations. Lumen shown in
orange, plaque tissue composition color-coded by VH. Seven separate
classifiers are trained to predict high-risk plaques.

protocol conforms to the ethical guidelines of the Declaration
of Helsinki, was approved by the Institutional Review Board of
Charles University, and all patients provided written informed
consent.

IVUS imaging was performed using the phased-array probe
(Eagle Eye 20MHz 2.9F monorail, Volcano Corporation,
San Diego, CA), IVUS InVision console for the HEAVEN
study and s5 console for the PREDICT study, InVision Gold
software, and motorized pullback at 0.5mm/s (research pull-
back device, model R-100, Volcano Corporation) were used in
all acquisitions. For each patient baseline/follow-up pair, the
same IVUS console was used. After administration of 200ug
of intracoronary nitroglycerin, the IVUS catheter was inserted
into the target vessel beyond a distal fiduciary point and then
pulled back to the aorto-ostial junction. The proximal fiduciary
point was the left main bifurcation in the left coronary artery
and the first branch or a well-defined calcification in the right
coronary artery. Patients underwent repeated angiography with
VH-IVUS of the same coronary artery after 8-14 months
(mean: 12 + 2.1 months).

B. Study Design

The overall design of training and use of the predic-
tive classifier is shown in Fig. 2. Baseline and follow-up
VH-IVUS pullback data are first segmented and mutually
registered. The location-specific (frame-level) features and
systemic/demographic information at baseline undergo feature
selection [27], [28] to form an optimal feature subset. A set of
Support Vector Machine classifiers [SVM] [29], [30] is trained
to predict focal plaque type at follow-up. To predict three high-
risk plaque forms (TCFA, PB>70%, MLA <4mm?) at follow-
up, seven binary classifiers are trained (Fig. 1):
o Three classifiers predict whether focal plaque types
(1) TCFA, (2) thick-cap fibroatheroma [ThCFA], and
(3) non fibroatheroma [nonFA] at baseline transi-
tion to TCFA plaque type or not at follow-up
(Fig. 1 (A), (B), (O));

o Two classifiers predict the follow-up plaque burden
PB>70% or not for local plaques with (4) PB>70% or
(5) 50%<PB <70% at baseline (Fig. 1 (D), (E));

o For plaques with (6) MLA<4mm? or (7) 4mm?<
MLA<6mm? at baseline, two classifiers predict
whether MLA<4mm? or not at follow-up
(Fig. 1 (F), (G)).

In all cases, training and testing sets were disjoint in a leave-
one-patient-out (LOPO) cross-validation manner. Each of the
61 training/validation sessions had a different patient left out
resulting in a complete separation of training and validation
at the patient level and allowing validation on a sufficiently
large set - classification success therefore assessed as average
performance of these 61 independently trained classifiers.

C. Segmentation and Registration of Baseline
and Follow-Up IVUS Pullbacks

Lumen and external elastic membrane (EEM) borders
(surfaces) were automatically segmented in R-wave gated
baseline and follow-up IVUS pullbacks using our fully three-
dimensional graph-search approach followed by a highly
efficient interactive refinement step [31]. The obtained
lumen and EEM surfaces/contours were fed into Volcano’s
off-line VH-IVUS computation software (Volcano Corp.,
San Diego, CA). A geometrically correct fully 3D represen-
tation of the vascular wall surfaces was obtained using our
validated two-plane angiography and IVUS data fusion [32].
This 3D model served as a basis for quantitative morphologic
analysis and quantitative assessment of plaque composition in
every frame of the imaged vessel.

Our validated IVUS pullback registration method estab-
lished one-to-one correspondences of baseline and follow-
up IVUS frame pairs by globally optimizing the registered
B-mode image similarity in a geometrically feasible
manner [18], [19]. To ensure high registration accuracy
for frame-level prediction, we have added a step of semi-
automated editing by expert cardiologist. Evaluation on
383 landmarks on 61 patients demonstrated an average regis-
tration error of 0.45mm=0.78mm. The registration produced
6,341 registered IVUS frame pairs (46 to 191 frame pairs
per patient) with 0.23 to 0.70mm frame-to-frame separation
distances between adjacent frames depending on the heart rate.
Quantitative indices of plaque morphology and composition
were computed in every frame of the registered pullbacks [33]
and all registered frames (locations) including those labeled
as no lesion (plaque burden < 40%) were included in the
prediction experiment.

D. Location-Specific and Patient-Specific
Feature Extraction

Two categories of features including location-specific fea-
tures (m = 236) and systemic information (m = 18) [3],
[14], [34] were extracted to be used for training the predic-
tion classifier (Table I). The location-specific features further
contain four sub-types including basic clinical measurements
(m = 21), first-order descriptors (m = 9), plaque textures
(m = 16), layered plaque components (m = 72), and spatial
contextual features (m = 118). Among them, basic clinical
measurements reflect local vascular disease severity and/or
plaque development [3], [6], [8], [35], others were inspired
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TABLE | Ve
LOCATION-SPECIFIC FEATURES AND SYSTEMIC (e Frame )
INFORMATION USED IN THIS STUDY
//Plaque Burden < 40%?

Basic Clinical ~ Plaque composition: Plaque

Measures phenotype, = DC/NC/FF/FT  [CSA],

(F1-F21) DC/NC/FF/FT [%], max. confluent NC Abutting
NC, max. NC angle, # NC abutting. __—Confluent Necrotic Degree > 30?
Plaque morphology: Lumen/EEM/PM Core>10%? Num. Cf,‘,sec,mve
[CSA], PB, remodeling index, distance Frames > 32
to ostium, mean plaque thickness, std.
plaque thickness, eccentricity.

First-Order Plaque grayscale intensity: mean,

Local Descriptors median, std., max, min, mode.

(F22-F30) Plaque intensity  histogram: first,
median, third quartiles.

Plaque  Textures  Contrast, correlation, energy, homogene-

(F31-F46) ity [0 = 0°, 45°, 90°, 135°].

Layered Plaque = DC/NC/FF/FT [%] in 10%~90% inner

Components & outer rings.

(F47-F118)

Spatial Contextual  Average feature value of one adjacent

Features distal and one adjacent proximal frames.

(F119-F236) Calculate for all FI~F118.

Systemic Demographics Age, gender, weight, BMI, family his- Fig. 3. Automated determination of VH-IVUS plaque phenotypes.
& Biomarkers  tory, smoking history, current smoker,

(F237-F254) hypertension, diabetes, hyperlipidemia,
pervious MI, beta-blockers, ACE in-
hibitors, previous statin treatment, to-
tal cholesterol, LDL cholesterol, HDL

cholesterol, triglycerides.

DC: dense calcium; NC: necrotic core; FF: fibrofatty; FT: fibrotic tissue;
BMI: body mass index; MI: myocardial infarction; ACE: angiotensin-
converting enzyme; LDL: low-density lipoprotein; HDL: high-density
lipoprotein.

by feature descriptors successfully used in computer-aided
diagnosis applications (first-order descriptors, plaque textures)
[36], [37] or incorporated spatial information in circumferen-
tial and axial directions (layered plaque components, spatial
contextual features).

1) Basic Clinical Measurements: Using quantitative assess-
ment of VH tissue types and lesion classification description
[3], phenotypes of all frames were automatically classified into
6 categories (Fig. 3): no lesion [NL], pathological intimal
thickening [PIT], fibrous plaque [FP], fibrocalcific plaque
[FcP], ThCFA, and TCFA, according to the definitions of
American Heart Association’s Committee on Vascular Lesions
[38]. Each phenotype was assigned a vulnerability score in
the range 0-5 (NL score = 0, PIT = 1, FP = 2, FcP = 3,
ThCFA = 4, TCFA score = 5) (Fig. 3) [34]. Confluent
NC>10% and NC abutting the lumen>30° in at least 3
consecutive frames defined the TCFA category same as in the
PROSPECT study [3]. The cross-sectional areas (CSAs) and
percentages of each plaque component (dense calcium [DC],
necrotic core [NC], fibrofatty [FF], and fibrotic tissue [FT])
were determined for each frame. Considering that large NC
component and existence of a thin fibrous cap <65um indicate
instability of plaque [39], three NC- and NC-lumen-related
features were introduced, i.e., percentage of the maximal
confluent NC region, angle and size (number of pixels) of
NC-region abutting the vessel lumen. IVUS-based measure-
ments of CSAs of lumen, EEM, plaque (defined as EEM minus
lumen CSA), plaque burden (plaque divided by EEM CSA),
remodeling index (current frame EEM divided by mean

reference EEM CSA) [35] and distance to current frame
(from the coronary ostium, as derived from the reconstructed
3D vessel model) [32] were obtained for all frame locations.
The mean and standard deviation of plaque thickness (defined
as the distance between lumen and EEM borders at 360 cir-
cumferential wedges centered at the lumen centroid) were
calculated. Eccentricity (defined as the ratio of minimal to
maximal plaque thickness) [35] was determined to quantify
the asymmetric distribution of plaque.

2) First-Order Descriptors: To represent the first-order sta-
tistics of plaque, the grayscale intensity based mean, standard
deviation, median, maximum, minimum, and mode values; and
the intensity histogram based first, median, and third quartiles
in the plaque region were calculated for each IVUS frame.

3) Plaque Textures: To describe the texture distribution of
plaque, the gray level co-occurrence matrix [40] was com-
puted. The 4-color-coded VH map of plaque (DC/NC/FF/FT)
was used as a quantization of gray levels within the plaque,
and four directions (8 = 0°,45° 90°, 135°) were used to
generate 4 VH level co-occurrence matrices (VHLCMs) for
each frame. Note that only VH-pixels from the plaque regions
were included in the construction of texture indices. Second-
order statistical texture features including contrast, correla-
tion, energy, and homogeneity were calculated from each
VHLCMs. Fig. 4 shows examples of extraction of plaque
textures in TCFA.

4) Layered Plaque Components: To enable a more detailed
examination of plaque components, a layered analysis of
different plaque depths in circumferential direction was per-
formed in wall rings with adaptive radii of 10%, 20%, ...,
90% distance between the lumen and EEM borders. Percent-
ages of DC/NC/FF/FT in the 10%~90% inner and outer rings
were calculated, and therefore 72 layered plaque components
features were obtained for each plaque. Fig. 5 shows examples
of analysis of layered plaque components in a remaining TCFA
and a healed TCFA, in which the schema and resulting features
of the 20% adaptive ring are shown.
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Fig. 4.
VHLCMs (second column), plaque textures (third column), and follow-up
VH-IVUS Images (fourth column). (A) TCFA unchanged. (B) TCFA
regresses to PIT. K: contrast, R: correlation, E: Energy, H: homogeneity.

Baseline VH-IVUS images (first column), corresponding
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Fig. 5. Baseline VH-IVUS images (first column), inner (green) and
outer (orange) rings (second column), layered plaque components
(third column), and follow-up VH-IVUS images (fourth column). (A) TCFA
unchanged. (B) TCFA healed (regressed to ThCFA, 20% ring used).
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Fig.6. Spatial context features. A: ThCFA progressed to TCFA. B: ThCFA
regressed to PIT. Bounding box color: red: TCFA, orange: ThCFA,
green: nonFA. Context feature of plaque phenotype is shown in this
example.

5) Spatial Contextual Features: To incorporate spatial con-
text between adjacent locations in axial direction and also to
limit the impact of noise (e.g., potentially inaccurate frame-
to-frame registration), we further extended the above four
feature sets by computing the average values of features in the
adjacent distal and proximal frames, resulting in 118 spatial
contextual features. An example is shown in Fig. 6, where the
spatial context features (e.g., plaque phenotype context) reflect
disease severity in adjacent locations/frames, which poten-
tially indicate future development of plaques (e.g., ThCFA
progression or not). This hypothesis has been validated in a
preliminary fashion by our previous studies of TCFA predic-
tion [19], [25], where the plaque phenotype context shows
superior performance.

E. Feature Selection and Predictive Classification

With the above feature set, feature selection was performed
to increase the predictor performance and provide better

v
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Feature rank
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Fig. 7. Feature selection and predictive model validation.
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understanding of the underlying factors/features that contribute
to development of high-risk plaque. Specifically, features
from the complete feature set (M = 254) were ordered
by a support vector machine recursive feature elimination
(SVM RFE) method according to the discrimination ability
of feature subset [27]. SVM RFE is an application of RFE
using the weight magnitudes of features in SVM [29], [30]
training as the ranking criterion, and is very effective for
discovering/ranking informative features while overfitting is
prevented [27], [36]. In our implementation, each feature was
first preprocessed/normalized by subtracting its minimum and
dividing the result by its maximum minus minimum, then
linear SVMs (parameter C = 1) were trained followed by the
iterative chunk-based elimination approach [27] to produce a
final feature subset of 50 features. Because of the imbalance
in the class labels in our study (e.g., 55 TCFA remained while
353 TCFA healed), a different error costs (DEC) method [41]
was utilized in SVM training, in which the individual class
weights in the SVM model were assigned to be inversely
proportional to the imbalance ratio.

After obtaining the 50 best-ranked features, an incremental
leave-one-patient-out (LOPO) cross validation with incremen-
tally increasing numbers of features was repeatedly performed
until all 50 features were considered. During SVM (linear
kernel with C = 1, as in SVM RFE) training, in order to
account for the imbalance problems of our specific tasks,
several different imbalanced data learning approaches [42]
including random undersampling, DEC, synthetic minority
oversampling technique (SMOTE), and SMOTE with different
costs (SDC) were compared and the one that yielded the best
performance was selected. The prediction performance includ-
ing sensitivity (SEN), specificity (SPE), and the area under a
receiver operating characteristic curve (AUC) were calculated
and recorded after testing all n patients. In addition, as is
widely accepted in class imbalance learning literature [42],
G-mean metric (G-mean =+/sensitivity X specificity) was used
to quantify the prediction accuracy. Finally, the feature subset
with the highest AUC was chosen as the final feature set,
and the final prediction rates were obtained. We chose AUC
because it is a good measure of classifier’s average perfor-
mance and is insensitive to data distribution [42, Sec. 4.2].
The feature selection and predictive model validation pro-
cedure is shown in Fig. 7. Note that other combinations
of feature selection (minimal-redundancy-maximal-relevance
[mMRMR] based on mutual information [43]) and classification
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Fig. 8. LOPO cross-validation results (frame-level). (A) TCFA vs. ThCFA vs. nonFA; (B) PB>70% vs. PB<70%; (C) MLA<4mm?2 vs. MLA>4mm?2.
For imbalanced learning, SDC (SMOTE with different costs) and DEC (different error costs) have similar performance. Finally, SDC with
100% oversampling was used in baseline TCFA prediction, and DEC was used in other predictions.

methods (random forests, RF [44]; multilayer perceptron,
MLP [45]) were also examined (section III-D).

The prediction strategy was designed to predict the future
type of plaque for each IVUS frame location. Considering
that a usual TCFA definition requires TCFA-frame presence
in at least 3 consecutive frames, a post-processing step adjusts
the local TCFA type labeling accordingly [25]. To take the
current clinical practice scenario into account, we general-
ize our frame-level prediction to lesion- and patient-levels.
A lesion was defined as at least three consecutive IVUS frames
with PB>40% [3], and lesions were considered separate if
there was >5mm segment with PB <40% between them [12].
A lesion-/patient-level prediction would be labeled as TCFA,
PB>70%, or MLA<4mm? only if at least 3 consecutive
frames in a lesion/patient were predicted to be labeled as
TCFA, PB>70%, or MLA<4mm?>.

I1l. RESULTS
A. Prediction of TCFA vs. Non-TCFA

At baseline, 61 VH-IVUS pullbacks from the 61 enrolled
patients exhibited 408 TCFA, 1068 ThCFA, and 4865 nonFA
locations. At follow-up, 55 (13.5%) TCFAs remained TCFAs,
36 (3.4%) ThCFAs and 33 (0.7%) nonFAs progressed to
TCFAs. During this period, 353 (86.5%) TCFAs healed (trans-
formed to non-TCFA), while 1032 (96.6%) ThCFAs and
4832 (99.3%) nonFAs did not progress to TCFA at follow-up
(Table IT). Note that the numbers of TCFA, ThCFA and nonFA
reported here and also the PB and MLA in the following
sections are per image frame. If per lesion, our assessments
are actually comparable with previously reported values. For
example, at follow-up, our assessment yields 19 TCFA lesions
from 61 patients, comparable with 17 TCFA lesions from
99 patients in Kubo et al.’s study [11].

Our models predict (1) TCFA, (2) ThCFA, and (3) nonFA
plaque types at follow-up with high G-mean values of 85.9%,
81.7%, and 77.0%, respectively (sensitivities and specificities

TABLE Il
PLAQUE PHENOTYPE CHANGES (FRAME-LEVEL)
Follow-up
Baseline TCFA  ThCFA FcP FP PIT NL
TCFA 408 55 148 13 109 71 12
(6%)
ThCFA 1068 36 390 59 205 271 101
(17%)
FcP 140 2 45 32 12 35 14
(2%)
FP 826 4 108 19 314 279 102
(13%)
PIT 2005 17 128 20 719 881 240
(32%)
NL 1894 10 51 18 86 196 1533
(30%)
Total 6341 124 870 161 1445 1739 2002
(2%) (14%) (%)  (23%) (7%) (32%)

Values are n or n (%). Plaque phenotypes were automatically labeled as
given in [34].

TCFA: virtual histology-derived thin-cap fibroatheroma; ThCFA: thick-
cap fibroatheroma; FcP: fibrocalcific plaque; FP: fibrous plaque; PIT:
pathological intimal thickening; NL: No lesion.

ranging from 63.6% to 93.3%, Fig. 8(A)), employing 16, 13,
and 37 optimal-feature-selection sets, respectively (Table III).

B. Prediction of Plaque Burden >70% vs. <70%

There were 206 (3.2%) locations of (PB) >70% at base-
line. The total number of frames with PB>70% at follow-
up decreased to 173 (2.7%): 112 locations (64.7%) with
PB>70% at baseline and 61 frames (35.3%) with PB<70%,
despite lipid-lowering therapy (Table IV). Frames with base-
line PB<50% never progressed to PB>70% at follow-up, so
were not considered in our experiment.

Our models predict the plaque burden -categories
(1) PB>70% and (2) 50%<PB<70% with high correctness
(G-mean) of 80.8% and 85.6%, respectively (sensitivities
and specificities ranging from 77.7% to 85.9%, Fig. 8(B)),
employing 26 and 25 optimal features, respectively (Table III).
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TABLE IlI
FINAL FEATURE SUBSETS IN THE SEVEN PREDICTORS

Task (1): TCFA—TCFA vs. TCFA—nonTCFA (m=16)

LPC/0.2outerDC%“, SYS/BMI, SYS/bl-choltotal, SYS/family-history, SYS/hypertension, SYS/bl-cholldl, PT/contrast135¢,
LPC/0.5innerFF%¢, FOD/modec, LPC/0.1outerDC%*®, PT/energy0, SY S/acinhibitors, LPC/0.3innerNC%, SYS/age, LPC/0.6innerFT%“

SYS/statins,

Task (2): ThCFA—TCFA vs. ThCFA—nonTCFA (m=13)

PT/contrast135, LPC/0.2innerNC%, LPC/0.7innerNC%, PT/correlationd5, LPC/0.60uterNC%¢, LPC/0.2innerDC%°€,
BASIC/phenotype©, FOD/mean, BASIC/DC-CSA, BASIC/#NC-abutting-lumen, SYS/BMI, SY S/statins

LPC/0.3innerDC%*,

Task (3): nonFA—TCFA vs. nonFA—nonTCFA (m=37)

PT/homogeneity0°, PT/homogeneity90¢, PT/homogeneity90, PT/homogeneity45¢, PT/homogeneity45, BASIC/eccentricity, SYS/current-smoker,
BASIC/lumen-CSA, BASIC/NC-CSA, BASIC/PB¢, SYS/bl-tag, PT/homogeneity135°, FOD/max®, FOD/3rdQ¢, BASIC/mean-plaque-thickness,
LPC/0.80outerFT%, SYS/bl-cholldl, SYS/bl-choltotal, BASIC/confluentNC¢, LPC/0.7outerDC%, BASIC/lumen-CSA¢, BASIC/FT-CSA, FOD/1stQ,
BASIC/PB, LPC/0.5innerFT¢, LPC/0.2innerFF¢, BASIC/mean-plaque-thickness®, FOD/3rdQ, FOD/mean®, FOD/median, PT/contrast90¢,
LPC/0.1innerFT%*“, SYS/acinhibitors, LPC/0.5outerFF%, SYS/BMI, FOD/mean, BASIC/max-NC-angle

Task (4): PB>70% —PB>70% vs. PB>70% —PB<70% (m=26)

BASIC/PB, SYS/bl-cholldl, BASIC/PB¢, SYS/hypertension, BASIC/NC-CSA€¢, BASIC/confluentNC®, LPC/0.linnerNC%, FOD/1stQ,
BASIC/phenotype©, SYS/current-smoker, BASIC/std-plaque-thickness, BASIC/lumen-CSA, FOD/median®, LPC/0.8outerFF%, LPC/0.2innerFF%°,
SYS/bl-choltotal, SYS/bl-tag, BASIC/eccentricity®, LPC/0.1innerDC%“, FOD/mode, SYS/betablockers, LPC/0.linnerFF%¢, BASIC/std-plaque-
thickness®, BASIC/max-NC-angle®, LPC/0.7outerDC%, LPC/0.90outerDC%*“

Task (5): PB<70% —PB>70% vs. PB<70% —PB<70% (m=25)

BASIC/lumen-CSA€, BASIC/mean-plaque-thickness®, PT/energy135, FOD/std, BASIC/PB, BASIC/eccentricity®, LPC/0.7outerDC%, FOD/3rdQ,
BASIC/RI€, PT/correlation135, PT/energy90, PT/contrast45, PT/homogeneity90¢, PT/contrast45¢, LPC/0.60outerFT%¢, SYS/age, SYS/acinhibitors,
FOD/mode®, BASIC/PB¢, LPC/0.9outerFT%, PT/correlation90¢, LPC/0.9outerFF%¢<, LPC/0.3innerFT%*<, LPC/0.60uterNC%°¢, SY S/statins

Task (6): MLA <4mm? —MLA <4mm? vs. MLA <4mm? —MLA >4mm? (m=27)

BASIC/lumen-CSA€, PT/correlation0¢, SYS/bl-cholhdl, LPC/0.1innerNC%¢, LPC/0.1innerFT%¢, SYS/acinhibitors, BASIC/confluentNC¢,
BASIC/lumen-CSA, LPC/0.50uterFF%, LPC/0.8outerNC%, SYS/hyperlipidemia, SYS/BMI, PT/correlation135¢, FOD/1stQ¢, LPC/0.1innerNC%,
FOD/3rdQ, SYS/bl-cholldl, SYS/betablockers, LPC/0.5innerNC%¢, FOD/mode, LPC/0.2innerDC%*€, LPC/0.4innerDC%¢, LPC/0.5innerFT%¢,
LPC/0.2innerDC%, LPC/0.4innerDC%, LPC/0.9outerNC%, PT/contrast90

Task (7): MLA >4mm? —MLA <4mm? vs. MLA >4mm? —MLA >4mm? (m=18)

PT/energy0, FOD/std, FOD/1stQ, BASIC/lumen-CSA, FOD/min, LPC/0.8outerDC%¢, BASIC/confluentNC®, LPC/0.linnerDC%*®,
LPC/0.4innerDC%*, SYS/hypertension, PT/contrast90, SYS/bl-cholhdl, LPC/0.9outerNC%¢, LPC/0.5innerDC%, BASIC/FF-CSA€, BASIC/PB€,

PT/energy135¢, LPC/0.2innerDC%

Features are denoted in the following notation: category/feature.

BASIC: basic clinical measures; FOD: first-order descriptors; LPC: layered plaque components; PT: plaque textures; SYS: systemic information;

¢: contextual features.

TABLE IV
PLAQUE BURDEN CHANGES (FRAME-LEVEL)

Follow-up
Baseline PB>70% PB<70%
PB>70% 206 (3%) 112 94
50%<PB<70% 2391 (38%) 61 2330
PB<50% 3744 (59%) 0 3744
Total 6341 173 (3%) 6168 (97%)

Values denote number of occurrences and relative frequency (%).
PB: plaque burden.

TABLE V
LUMEN AREA CHANGES (FRAME-LEVEL)

Follow-up
Baseline MLA<4mm? MLA>4mm?
MLA <4mm? 303 (5%) 177 126
4mm2 <MLA<6mm?2 1324 21%) 90 1234
MLA >6mm? 4714 (74%) 0 4714
Total 6341 267 (4%) 6074 (96%)

Values denote number of occurrences and relative frequency (%).
MLA: minimal luminal area.

C. Prediction of MLA<4mm? vs. >4mn?

There were 303 (4.8%) frames with MLA<4mm? at base-
line, decreasing to 267 frames (4.2%) at follow-up: 177 frames
(66.3%) maintained MLA<4mm? and 90 frames (33.7%)
progressed to MLA<4mm? (Table V). Frames with baseline
MLA>6mm? never regressed to MLA <4mm? at follow-up,
so were not considered in our experiment.

Our models predict the lumen area (1) MLA<4mm? and
(2) 4mm?<MLA<6mm? at follow-up with high G-mean
values of 81.6% and 80.2%, respectively (sensitivities and
specificities ranging from 77.0% to 86.4%, Fig. 8(C)), employ-
ing 27 and 18 optimal features, respectively (Table III).

D. Comparison With Other Feature Selection
and Classification Methods

Table VI compares different feature selection and classifica-
tion methods. For imbalanced data learning in mRMR+SVM
and RF, random undersampling and DEC were compared and
the one yielding the best performance was selected. For MLP,
random undersampling was used. The built-in RF feature
selection was utilized in RF classification. The parameters of
MLP and RF are listed in Table VI. We tested other settings
in an earlier preliminary study, but they did not improve per-
formance. Overall, the reported setup SVM recursive feature
elimination + SVM classifier performed best.

E. Visualization of Future High-Risk Plaque Locations

Fig. 9 shows our prediction method determining loca-
tions of future high-risk plaques. The baseline risk-plaque
properties and follow-up predicted risk-plaque properties
(TCFA, PB>70%, and MLA<4mm?) are overlaid on the
baseline VH-IVUS rendering in red, blue, and purple.
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TABLE VI A B c F
COMPARISON OF THREE DIFFERENT FEATURE
SELECTION AND CLASSIFICATION METHODS Plague types
Baseline G-mean  SEN  SPEC AUC #F )
(%) (%) (%) P
SVM RFE+SVM 859 927 79.6 0.87 16
mRMR+SVM 743 764 722 0.77 12
TCFA SVM RFE+MLP  83.1 855 80.7 088 15 e types at, P
mRMR+MLP 719 764 617 075 27 o %
RF 71.9 70.9 85.6 0.82 16 TCFA B>70% [ MLA<4mm? Non-high-risk
SVM RFE+SVM  81.7 91.7 728 0.84 13 Virtual 2
mRMR+SVM 663 583 754 077 14 higtolaey at e
ThCFA SVM RFE+MLP 79.6 833 76.0 0.85 17 -
mRMR+MLP 75.4 88.9 64.0 0.82 20 Plaque types
RF 680 583 7192 077 7 Prodicit i
SVM RFE+SVM 770 63.6 933 092 37 types at follow up
mRMR+SVM 787 758 818 087 12 True plague types
nonFA SVM RFE+MLP 83.7 970 723 0.87 12 Virtual
mRMR+MLP 819 909 739 088 6 “%3}?&8% St
RF 787 758 81.7 089 7
SVM RFE+SVM  80.8 77.7 84.0 0.88 26
mRMR+SVM 703 750 660 0.81 16 Fig. 9. Future high-risk plaque locations. Upper panel: Baseline
PB>70% SVM RFE+MLP 748 741 755 083 10 VH-IVUS pullback with high-risk plaque risk locations (first row), pre-
mRMR+MLP 724 795 660 082 12 dicted follow-up high-risk plaque locations (second row), and ground-
RF 789 771 808 087 9 truth at follow-up (third row). TCFA in red; PB>70% blue; MLA<4mm?2
SVM RFE+SVM 856 853 859 093 25 purple. Lower panel: Cross-sectional VH-IVUS frames at the six locations
mRMR+SVM 76.0 705 820 087 37 marked in the upper panel. A: TCFA healed, PB>70% unchanged,
PB<70% SVM RFE+MLP 824 885 767 089 22 and new MLA§4mm2 occurred. B: TCFA healed. C: TCFA healed.
EEM}“MLP ;gé ;gi g?g 823 2130 D: PB>70% and MLA§4mm2 unchanged. E: PB>70% unchanged while
SVM RFETSVM 81:6 86:4 77:0 0:86 77 ?o?lvc\)lvy-ltggtmmz present. F: No high-risk plaque with plaque rupture at
mRMR+SVM 735 757 714 081 17 :
MLA§4mm2 SVM RFE+MLP 779 814 746 0.86 8
MRMR+MLP 763 757 770 081 21 TABLE VII
RF 760 774 746 083 11 HIGH-RISK PLAQUE PREDICTION RESULTS IN
SVM RFE+SVM  80.1 833 770 086 18 LESION- AND PATIENT-LEVEL
mRMR+SVM 714 778 656 0.78 3
MLA>4mm2 SVM RFE+MLP 746 744 748 083 17 #TP/P #TN/N  G-mean SEN SPEC
mRMR+MLP 724 722 726 077 2 (%) (%) (%)
RF 733 700 768 080 20 Lesion-level
SVM RFE+SVM  81.8 83.0 814 0.88 23 TCFA 17/19 33/69 32.9 395 76.8
mRMR+MLP 752 794 717  0.82 14 =
RF 759 721 801 084 11 Patient-level
TCFA 17/19 29/42 78.6 89.5 69.0
mRMR (minimal-redundancy-maximal-relevance): based on mutual infor- PB>70% 17/17 20/44 S1.2 100.0 65.0
mation. MLA<4mm? 20/21 30/40 84.5 95.2 75.0

MLP (multilayer perceptron): 1 hidden layer with the number of neurons
= (# features + # classes) / 2, epochs = 500, and learning rate = 0.01.
RF (random forests): 100 trees with the size of features for node splitting

= /# features.

F. Lesion- and Patient-Level Prediction

At follow-up, there were 19 TCFA, 18 PB>70%, and 22
MLA <4mm? lesions. The corresponding per-patient numbers
were 19, 17, and 21. We obtained G-mean values for lesion-
level correctness of 82.9%, 83.8%, and 90.0% for prediction
of future TCFA, PB>70%, and MLA<4mmZ, respectively
(Table VII). The corresponding G-mean for patient-level
prediction correctness were 78.6%, 81.2%, and 84.5%, respec-
tively (Table VII).

IV. DISCUSSION

This work represents a novel pilot effort to develop a
high-risk-plaque prediction approach with substantial clinical
relevance. Our predictive models represent the first and — to
the best of our knowledge — the only highly automated method
to predict future locations of high-risk MACE-causing plaque

TP: true positive; P: positive samples; TN: true negative; N: negative
samples.

properties (TCFA, PB>70%, MLA§4mm2) [3] with quanti-
tatively assessed prediction performance. The only step that
requires user interaction is the IVUS segmentation refinement,
which only requires 6 minutes of expert time on average
(note that the registration step would not be needed in clinical
setting once the predictive models are trained). Location-
specific prediction of the development and healing of high
risk plaques expands on our previous effort to predict healing
or development of TCFA alone [19], [25], yielding a more
accurate prediction model.

A. Comparison With Other Studies,
Advantage of Our Approach

Our study predicts future MACE-related plaques phenotypes
(TCFA, PB>70%, MLA<4mm?2) with high sensitivity and
specificity, unlike previous studies [11], [12], [14], [16], [17],
which focused on relationships between baseline predictors
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and plaque progression/regression. The proposed approach
achieved a more precise and frame-location-specific prediction
(~0.5mm) compared to the segment level (=®3mm) [14] or
lesion level (=10mm) [11], [12] locational accuracy. There-
fore, our approach avoids analysis of heterogeneous changes
of plaque phenotypes [11], [12], and excessive averaging over
longer distances while using a larger patient cohort (n = 61)
compared to past studies with typically enrolled about
20 patients [16], [17]. Although nearly half of the enrolled
patients were excluded in our study, most of the exclusion
criteria (e.g., loss or unreadable follow-up data, co-registration
problem) do not detract from the applicability of our method
since only the baseline data will be needed for the prediction
purpose in the clinical setting. Information context from the
immediately adjacent frames is contributing to our prediction
model. As a justification of the use of this spatial context,
our frame-level model with spatial context generalizes well
on lesion- and patient-level prediction tasks (Table VII). Our
work also provides an insight into local and systemic factors
combined that influence plaque behavior over time. Finally,
our method is general, as it can predict three different plaque-
type characteristics by employing the same machine learning
approach for all of these three tasks (DEC performs better
than other imbalance learning techniques in almost all tasks,
except for task 1 with a G-mean=285.1%, slightly lower
than SDC with a G-mean=_85.9%). This characteristic makes
our approach easily extendible to other plaque development
prediction tasks, such as prediction of longitudinal remodeling
patterns or — once larger datasets become available — pre-
diction of cardiovascular events. Equally important, while we
have developed and evaluated our predictive models using data
from patients with stable angina, our strategy is not limited to
this patient group.

Previous research on TCFA prediction by our group treated
the prediction of whether existing TCFA will remain, heal, or
whether a new TCFA plaque will occur a single task [19], [25].
Such a strategy results in a nearly perfect accuracy for pre-
dicting that TCFA remains but a very low predictive accuracy
for locations with healed TCFA. This is because the majority
of future TCFAs originate from remaining TCFAs but only
a small number of future non-TCFA are coming from healed
TCFAs. With such imbalanced data, the classifier tends to learn
a decision boundary close to the healed TCFAs (classifies
most of the healed TCFAs as remaining TCFAs). Actually,
accurate prediction of TCFA healing might be more important
than TCFA remaining since the identification of high-risk
individuals that would benefit from a pharmaceutical treatment
is desired. Our new strategy splits the single task into multi-
ple sub-tasks, which help balance the positive and negative
samples and therefore yield a more accurate prediction.

The proposed learning method mainly relies on SVM.
Besides its strong theoretical foundations [29] and effi-
ciency in implementation, SVM is especially fit for our
specific imbalanced data learning problems for the following
reasons: (1) It builds the decision function based only on
those instances that are close to the “borderline” (i.e., support
vectors), thus naturally avoiding the influence of the large
number of majority instances. (2) There are well-established

imbalanced data learning approaches for SVM, i.e., the DEC
and SDC are demonstrated to be more theoretically-correct
and practically-effective [42] than undersampling, which was
used in our previous study [19], [25]. (3) The SVM RFE
based feature selection approach has built-in regularization
mechanism that prevent overfitting in its selection of feature
subsets [27]. Our experiments demonstrated that by incorpo-
rating DEC into the SVM RFE based feature selection process,
the selected optimal feature sets performed best in all the seven
prediction tasks in comparison with other two feature-selection
approaches (mRMR and RF, Table VI).

B. Factors Leading to Development of High-Risk Plaques

Feature selection (Table III) showed that different optimal
feature sets are suitable for different prediction tasks. For
each prediction task, about 23 features were selected for each
predictor and these features varied across the classification
tasks. While we started with a large number (254) of features
on 6341 images, the features were subjected to a feature selec-
tion step identifying the most discriminative feature subset
for each given task. Feature selection resulted in a dramatic
feature-set size reduction that preceded each training process.
Consequently, the predictive classifiers always utilized a rel-
atively small set of features (23 on average) thus minimizing
the risk of overfitting. Similar ratio between images and
features can be found in [36] when using SVM in medical
imaging: 3443 CT images using 5-50 features.

There are 162 features involved in all the seven predic-
tors. Out of these 162 features, 9.3% reflect basic clinical
measures, 8.6% first-order descriptors, 11.7% layered plaque
components, 7.4% plaque textures, 42.6% spatial contexts,
and 20.4% systemic/demographic information. The spatial
context of plaque characteristics in adjacent IVUS-frame loca-
tions indicates that the cumulative plaque-risk severity derived
from adjacent locations at baseline potentially determines
the development of future high-risk plaques in that location.
We also observed that local vascular factors must be com-
bined with systemic risk factors. On average, the prediction
G-mean values obtained by our method with local factors only
and systemic factors only are 73.2% and 68.8%, respectively.
Combining local and systemic factors improves the G-mean-
assessed performance to 81.8%. For example, half of the
optimal features to predict whether TCFA will remain or heal
come from systemic risk factors, including BMI, baseline
total/LDL cholesterol, family history, hypertension, statins
during baseline, ACE inhibitors, and age (Table III).

Kubo et al. [11] and Zhao et al. [12] found distance from
ostium to lesion and lumen/vessel/plaque CSA predictive at
the lesion/segment level to predict whether TCFA will remain
or heal. Interestingly, none of these features were identified
as important in our image-frame-based optimal feature set.
By training an SVM classifier that was based on these four
features only, the reached G-mean correctness was only 17.5%
compared to 85.9% achieved using our method. There may be
several reasons for this observation. First, Kubo et al. [11]
and Zhao et al. [12] included patients with acute myocardial
infarction while no such patients were enrolled in our study.
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Second, their lesion-level analysis over-averaged vessel fea-
tures and plaque phenotypes, therefore, the derived significant
features were not discriminative in our local-image-frame-level
prediction. In addition, Kubo ef al. [11] found no difference
between baseline VH-IVUS plaque components for TCFA
phenotypes that remained or healed at follow-up. In agreement
with their findings, our optimal feature set did not include any
traditional VH plaque components either. However, our five
layered-plaque component features contributed substantially,
demonstrating the prediction value of tissue components dis-
tributed at different plaque depths.

When predicting changes in PB and MLA, Stone et al. [14]
identified endothelial shear stress (ESS), MLA, PB, distance
from ostium, and vessel remodeling as useful indices. While
ESS was not included in our study, our feature-selection-
based predictors employ all of these features except ostial
distance. By training SVM classifiers based on the Stone-
identified features (except ESS), the G-mean values were
60.6%, 77.7%, 57.8%, and 68.7% for our tasks (4), (5), (6),
and (7), respectively. In comparison, our G-mean values were
unquestionably higher at 80.8%, 85.6%, 81.6%, and 80.1%,
respectively.

To demonstrate the effects of the newly designed
VH-IVUS-based features (F22-F236, Table 1), we compared
the performance of our method with that of using only
basic clinical measures and demographics & biomarkers
(F1-F21, F237-F254, Table I). The G-mean values were:
75.0%, 80.5%, 85.9%, 76.0%, 82.0%, 72.9%, and 69.6%, from
task (1) to task (7), respectively, or 77.4% on average. Adding
the newly-designed features improves the average G-mean to
81.8%. These results clearly show that our feature-selection-
based, algorithmically-designed features help improve predic-
tive accuracy in this difficult plaque-risk prediction task.

C. Limitations

Limited resolution of VH-IVUS does not allow direct
measurement of thin fibrous caps (<65um), and recent
study questions the accuracy of the histological correlation
of VH-IVUS characterization [46]. Nevertheless, we have
clearly demonstrated that VH-IVUS-derived local plaque fea-
tures combined with patient-specific systemic/demographic
information can predict future high-risk plaques (VH-TCFA,
PB>70%, MLA<4mm?) that may be later responsible for
MACE [3]-[5]. Although our analysis uses nearly three-fold
larger number of patients than other similar studies, the study
size remains a limiting factor. Moreover, due to the lack of
clinical follow-up, we are unable to directly assess MACE
prediction. While our methodology utilizes one of the most
advanced and accurate intravascular image co-registration
approaches [18], it is still possible that co-registration
may not be perfect. Having added the expert-approval of
co-registration to the analysis sequence for each pullback
minimized this limitation. In addition, our prediction model
is based on relatively short-term follow-up (approximately
one year) in lesions of moderate severity with all patients
receiving high intensity statin agents. Furthermore, our current
framework is not predicting MACE-associated quantitative

indices as continuous variables, this remains a task for future
work. Note however that our approach provides a continu-
ous probability value of location-specific plaques future risk.
Finally, our model reached a promising accuracy in pre-
diction of future MACE indices and location-specific risk-
plaque properties under LOPO evaluation only (a popular
error estimation procedure when sample size is small); K-fold
cross-validation and bootstrap method may be considered in
future work.

V. CONCLUSION

Our machine-learning approach demonstrated that location-
specific prediction of future plaque phenotypes related to
MACE is feasible, thus improving risk stratification in
patients with established coronary artery disease. The newly
designed IVUS-VH-based features improve the prediction
accuracy compared to only-employing clinical measures. The
useful features mainly describe local vascular characteris-
tics in spatial context (42.6%) and systemic/demographic
information (20.4%). The SVM-based feature selection and
imbalanced-data learning approaches predict high-risk plaque
locations better than the previously clinical predictors and
underline the importance of local factors on development of
high-risk plaques.

ACKNOWLEDGMENT

The material and software-enabling support from Volcano
Corporation is gratefully acknowledged.

REFERENCES

[1] J. Sanz and Z. A. Fayad, “Imaging of atherosclerotic cardiovascular
disease,” Nature, vol. 451, no. 7181, pp. 953-957, 2008.

[2] L.-K. Jang, P. W. Serruys, J. C. Kovacic, J. Narula, and Z. A. Fayad,
“Imaging plaques to predict and better manage patients with acute
coronary events,” Circulat. Res., vol. 114, no. 12, pp. 1904-1917, 2014.

[3] G. W. Stone et al., “A prospective natural-history study of coronary
atherosclerosis,” New England J. Med., vol. 364, no. 3, pp. 226-235,
2011.

[4] P. A. Calvert et al., “Association between IVUS findings and adverse
outcomes in patients with coronary artery disease,” JACC, Cardiovas-
cular Imag., vol. 4, no. 8, pp. 894-901, 2011.

[5] J. M. Cheng et al., “In vivo detection of high-risk coronary plaques
by radiofrequency intravascular ultrasound and cardiovascular outcome:
Results of the ATHEROREMO-IVUS study,” Eur. Heart J., vol. 35,
no. 10, pp. 639-647, 2014.

[6] G. S. Mintz et al., “American college of cardiology clinical expert
consensus document on standards for acquisition, measurement and
reporting of intravascular ultrasound studies IVUS,” J. Amer. College
Cardiol., vol. 37, no. 5, pp. 1478-1492, 2001.

[7]1 A. Nair, M. P. Margolis, B. D. Kuban, and D. G. Vince, “Automated
coronary plaque characterisation with intravascular ultrasound backscat-
ter: Ex vivo validation,” Eurolntervention, vol. 3, no. 1, pp. 113-120,
2007.

[8] H. M. Garcia-Garcia et al., “Tissue characterisation using intravas-
cular radiofrequency data analysis: Recommendations for acquisition,
analysis, interpretation and reporting,” Eurolntervention, vol. 5, no. 2,
pp. 177-189, 2009.

[9] S. J. Nicholls et al., “Effect of two intensive statin regimens on

progression of coronary disease,” New England J. Med., vol. 365, no. 22,

pp. 2078-2087, 2011.

M. Banach et al., “Impact of statin therapy on coronary plaque com-

position: A systematic review and meta-analysis of virtual histology

intravascular ultrasound studies,” BMC Med., vol. 13, no. 1, p. 229,

2015.

[10]



ZHANG et al.: PREDICTING LOCATIONS OF HIGH-RISK PLAQUES IN CORONARY ARTERIES

161

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

T. Kubo et al., “The dynamic nature of coronary artery lesion mor-
phology assessed by serial virtual histology intravascular ultrasound
tissue characterization,” J. Amer. College Cardiol., vol. 55, no. 15,
pp. 1590-1597, 2010.

Z. Zhao et al., “Dynamic nature of nonculprit coronary artery lesion
morphology in STEMI: A serial IVUS analysis from the horizons-ami
trial,” JACC, Cardiovascular Imag., vol. 6, no. 1, pp. 86-95, 2013.

P. D. Adamson, M. R. Dweck, and D. E. Newby, “The vulnerable
atherosclerotic plaque: In vivo identification and potential therapeutic
avenues,” Heart, vol. 101, no. 21, pp. 1755-1766, 2015.

P. H. Stone et al., “Prediction of progression of coronary artery disease
and clinical outcomes using vascular profiling of endothelial shear
stress and arterial plaque characteristics: The PREDICTION study,”
Circulation, vol. 126, no. 2, pp. 172-181, 2012.

Y. S. Chatzizisis et al., “Prediction of the localization of high-risk
coronary atherosclerotic plaques on the basis of low endothelial shear
stress,” Circulation, vol. 117, no. 8, pp. 993-1002, 2008.

H. Samady e al., “Coronary artery wall shear stress is associated
with progression and transformation of atherosclerotic plaque and arte-
rial remodeling in patients with coronary artery disease,” Circulation,
vol. 124, no. 7, pp. 779-788, 2011.

M. T. Corban et al., “Combination of plaque burden, wall shear stress,
and plaque phenotype has incremental value for prediction of coronary
atherosclerotic plaque progression and vulnerability,” Atherosclerosis,
vol. 232, no. 2, pp. 271-276, 2014.

L. Zhang et al., “Simultaneous registration of location and orientation
in intravascular ultrasound pullbacks pairs via 3D graph-based opti-
mization,” IEEE Trans. Med. Imag., vol. 34, no. 12, pp. 2550-2561,
Dec. 2015.

L. Zhang, A. Wahle, Z. Chen, J. Lopez, T. Kovarnik, and M. Sonka,
“Prospective prediction of thin-cap fibroatheromas from baseline virtual
histology intravascular ultrasound data,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent, 2015, pp. 603—610.

L. Breiman, “Statistical modeling: The two cultures (with comments and
a rejoinder by the author),” Stat. Sci., vol. 16, no. 3, pp. 199-231, 2001.
E. Z. Gorodeski et al., “Use of hundreds of electrocardiographic
biomarkers for prediction of mortality in postmenopausal women,”
Circulat., Cardiovascular Qual. Outcomes, vol. 4, no. 5, pp. 521-532,
2011.

M. L Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen,
and D. G. Vince, “Coronary plaque classification with intravascular
ultrasound radiofrequency data analysis,” Circulation, vol. 106, no. 17,
pp. 2200-2206, 2002.

Z. Wang et al., “Computer-aided image analysis algorithm to enhance
in vivo diagnosis of plaque erosion by intravascular optical coher-
ence tomography,” Circulat., Cardiovascular Imag., vol. 7, no. 5,
pp. 805-810, 2014.

L. Zhang, A. Wahle, Z. Chen, J. Lopez, T. Kovarnik, and M. Sonka,
“Location-specific prediction of vulnerable plaque using IVUS, virtual
histology, and spatial context,” in Proc. IEEE 13th Int. Symp. Biomed.
Imag. (ISBI), Apr. 2016, pp. 1354-1358.

T. Kovarnik et al., “Virtual histology evaluation of atherosclerosis
regression during atorvastatin and ezetimibe administration,” Circulat. J.,
vol. 76, no. 1, pp. 176183, 2012.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Mach. Learn.,
vol. 46, nos. 1-3, pp. 389422, 2002.

(28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[40]

I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 27-1-27-27, 2011.

S. Sun, M. Sonka, and R. R. Beichel, “Graph-based IVUS segmentation
with efficient computer-aided refinement,” IEEE Trans. Med. Imag.,
vol. 32, no. 8, pp. 1536-1549, Aug. 2013.

A. Wahle, G. P. M. Prause, S. C. DeJong, and M. Sonka, “Geometrically
correct 3-D reconstruction of intravascular ultrasound images by fusion
with biplane angiography-methods and validation,” IEEE Trans. Med.
Imag., vol. 18, no. 8, pp. 686—-699, Aug. 1999.

A. Wahle et al., “Plaque development, vessel curvature, and wall
shear stress in coronary arteries assessed by X-ray angiography
and intravascular ultrasound,” Med. Image Anal., vol. 10, no. 4,
pp. 615-631, 2006.

T. Kovarnik et al., “Pathologic intimal thickening plaque phenotype:
Not as innocent as previously thought. A serial 3D intravascular ultra-
sound virtual histology study,” (English Edition) Rev. Espariola Cardiol.
vol. 70, no. 1, pp. 25-33, 2017.

A. Maehara et al., “Morphologic and angiographic features of coronary
plaque rupture detected by intravascular ultrasound,” J. Amer. College
Cardiol., vol. 40, no. 5, pp. 904-910, 2002.

D. Y. Chong et al., “Robustness-driven feature selection in classification
of fibrotic interstitial lung disease patterns in computed tomography
using 3D texture features,” IEEE Trans. Med. Imag., vol. 35, no. 1,
pp. 144-157, Jan. 2016.

T. Torheim et al., “Classification of dynamic contrast enhanced MR
images of cervical cancers using texture analysis and support vector
machines,” IEEE Trans. Med. Imag., vol. 33, no. 8, pp. 1648-1656,
Aug. 2014.

H. C. Stary, “Natural history and histological classification of atheroscle-
rotic lesions,” Arteriosclerosis, Thrombosis, Vascular Biol., vol. 20,
no. 5, pp. 1177-1178, 2000.

R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, “Pathology
of the vulnerable plaque,” J. Amer. College Cardiol., vol. 47, no. 8,
pp. C13-C18, 2006.

R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 3,
no. 6, pp. 610-621, Nov. 1973.

R. Akbani, S. Kwek, and N. Japkowicz, “Applying support vector
machines to imbalanced datasets,” in Proc. Eur. Conf. Mach. Learn.,
2004, pp. 39-50.

H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.

H. Peng, F. Long, and C. Ding, “Feature selection based on mutual
information criteria of max-dependency, max-relevance, and min-
redundancy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8,
pp. 1226-1238, Aug. 2005.

L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

T. Thim et al., “Unreliable assessment of necrotic core by virtual histol-
ogy intravascular ultrasound in porcine coronary artery diseaseclinical
perspective,” Circulat. Cardiovascular Imag., vol. 3, no. 4, pp. 384-391,
2010.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


