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Abstract

As the use of AI technology becomes ubiquitous in our day-
to-day lives, the need for AI agents to be either explicable or
provide explanations (when they are not explicable) becomes
important. An array of research work done in the automated
planning community explores a human-robot interaction set-
ting where the robot makes a plan and the human observes it
and is provided with a set of explanations when the robot’s
plan (or behavior) does not align with the human’s expecta-
tion. In this paper, we model a co-habitation scenario and pro-
vide a general overview where the human may either be a su-
pervisor or a teammate. First, we highlight the various models
that come into play in such settings. Second, we pin-point ex-
planation scenarios that arise due to the disparity between the
human and the robot about the understanding of team models.
In settings where the robot is assumed to know more about
the model, explanations are just a one-way communication.
On the contrary, when the human’s model is more accurate
than that of the robot, we show that a two-way interaction
becomes necessary for explanations. Lastly, we discuss how
some of the existing works for the case where the human is
a supervisor can be adapted in some of the settings when the
human is a teammate and talk about a few high-level ideas
that might help in scenarios for which no solutions exist.

There has been a renewed interest in the automated plan-
ning community for generating explanations in human-in-
the-loop planning scenarios when a robot comes up with a
plan that is incomprehensible to the human observer [1]. To
this extent, researchers have shown that explanations can be
viewed as a model reconciliation process that is highly effec-
tive in real-world interactions with humans [2]. In order to
identify key differences between the human’s understanding
of a model and the actual model used by a robot, an array of
work exists that can find a set of explanations in the context
of a given plan [3, 4, 5]. These works primarily differ in the
assumptions they make about the robot’s idea about the hu-
man’s understanding of its model (denoted as ((MR)h)r).

We argue that human-robot teaming scenarios represent a
more general setting and existing works on generating ex-
planations (that do model reconciliation) is merely the tip
of the ice-berg. Based on the role of the human in the team
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setting, we can categorize the interaction between a human
and a robot into two major categories– (1) the human is a su-
pervisor and (2) the human is a fellow teammate capable of
performing actions in the environment. In each setting, we
then talk about scenarios where (1) the robot has a correct
model of the world and good estimates of the human’s mod-
els that is can use to come up with explanations, and (2) the
robot’s model (of the world and/or the human’s models) are
incorrect or imprecise in some way and thus, explanations
generated might be incorrect and thereby, result in the start
of an interaction that helps both the human and robot can up-
date their models. This categorization is captured in Figure
1. We discuss how existing works have tried to address some
of the challenges that arise when the human is a supervisor
and if they can be adapted to settings where the human is
a fellow teammate. Lastly, we discuss, at a relatively high-
level, how we can use different forms of interaction to deal
with cases when assumptions about human’s model are in-
correct or imprecise.

Background
In this section, we formalize the notion of a model that we
will use throughout the paper to highlight the various use
cases for explanations. A model can be represented by the
tupleMφ = 〈Fφ,Aφ, s0,G〉, where F are the fluents that
are used to define the state of the environment,A are the ac-
tions that an agent can perform in the environment, s0 ⊆ F
is the initial state, which are the initial values of the fluents,
G is the goal and φ denotes the agent whose model is being
represented. Note that Fφ are the fluents known to the agent
φ and similarly, Aφ is the set of actions φ can perform.

Every action a ∈ A consists of 〈c(a), pre(a), eff±(a)〉
where, c(a) is the cost associated with executing the ac-
tion a and pre(a), eff±(a) ⊆ F are preconditions and
add/delete effects of a. The transition function δ(s, a), rep-
resents the act of taking an action a in state s, where,
s ⊆ F , and the state satisfies the preconditions for the ac-
tions, i.e. δ(s, a) |=⊥ if s 6|= pre(a). δ(s, a) = s′, where
s′ ⊆ F and s′ = s ∪ eff+(a)/eff−(a). A plan π is a se-
quence of actions 〈a0, a1, a2, ..., an〉. A plan is called valid if
δ(s0, 〈a0, a1, a2, ..., an〉) |= G. Total cost of a plan C(π) =∑
i=0..n c(ai). An optimal plan is π∗ = arg mini C(πi).
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Figure 1: The various scenarios in human-robot teams. The phrase robot knows better indicates that its model about the world
is accurate and its assumptions about the human’s model is close the human’s actual model. In these settings, one way com-
munications suffice. In the setting where we say human knows better, we assume that the robot has an incorrect or incomplete
model about the human’s model. In this case, two-way communication is essential to explain a plan and re-plan if needed.

Additionally, we define (M)φ as an approximation oper-
ator that represents the understanding of a modelM by an
agent φ. For e.g., (MH)r is the robot’s approximation of the
human’s model. Note that (Mφ)φ = Mφ, i.e. approxima-
tion of an agent’s own model by themselves is their model.

Human-In-the-Loop Planning (HILP) In [6], the au-
thors highlight the challenges that arise in automated plan-
ning when the human is no longer just a part of the envi-
ronment but is interacting (in various ways) with the auto-
mated agent. Generating explicable or transparent behav-
ior becomes a key goal for effective collaboration. When
generating such behavior becomes expensive, the robot may
choose to generate explanations that can help the human un-
derstand the plan at hand and/or correct it if the human re-
alizes it is not. Particularly, the human can either be (1) a
supervisor that observes and comments on the robot’s plan
or (2) a fellow teammate that also executes actions in the
world alongside the robot. To understand the technicalities
that arise in these scenarios, we use the approximation oper-
ator to highlight the six models that come into play in human
robot settings. First, we highlight the three models that are
sufficient to talk about the setting in which the human is a
supervisor and heavily used in previous works [3, 5].

- MR – mental model of the robot.

- (MH)r – robot’s approximation of the human’s model.

- ((MR)h)r – robot’s approximation of the human’s ap-
proximation or the robot’s model.

In this setting, a plan π = 〈a0, a1, a2, ... an〉 is made by
the robot and observed by the human supervisor and an ex-
planation E = 〈∆R, π〉 that is a set of model differences

∆R given by R to H which ensures that the plan π is valid
and/or optimal in ((MR)h)r. Second, we highlight the three
other models that come into play when the human is a fellow
teammate–

- MH – mental model of the human.

- (MR)h – human’s approximation of the robot’s model.

- ((MH)r)h – human’s approximation of the robot’s ap-
proximation of the human’s model.

In this case, the plan π for the joint team is given by
π = 〈aR0 , aH1 , aH2 , ... aRn 〉, where the superscript denotes the
agent who needs to perform the action. In this example, a0
and an are to be performed by the robot and a1 and a2 are
to be performed by the human. Explanations here are repre-
sented by E = 〈∆R,∆H〉 with the difference that ∆R and
∆H may comprise of model updates that relate to the under-
standing about the human’s task model and the interactions
between the human’s and the robot’s task model (maybe at
some level of abstraction such as human will provide some
resource that the robot needs or vice-versa) as opposed to
just the robot’s task model. We now look at the various use
cases that arise in human-robot team settings.

Use Cases
We present four use-cases based on the categorization shown
in Fig. 1. We use an Urban Search and Rescue (USAR) sce-
nario [7] to showcase specific examples for each use-case. In
this human-robot team, we have a single human and a sin-
gle robot agent tasked with the duty of finding and reporting
locations of injured humans in a building that is on fire (re-
fer figure 2). We will now categorize based on whether the



Figure 2: Urban Search and Rescue scenario with 8 rooms.
Room 6 and Room 8 are on fire.

human is a supervisor or a fellow teammate that executes
search and rescue operations alongside the robot.

Human Supervisor
In this setting, the human acts as the supervisor to whom the
robot is accountable and the robot’s goal is to check all the
rooms and report the exact locations of injured humans in
the building. We further divide this case into two sub-cases
based on who knows more about the domain (Fig. 1).

Robot knows better In this case, the robot has (1) an ac-
curate model of the domain, i.e.MR is correct and the hu-
man’s model (in the robot’s mind), i.e. ((MR)h)r might be
updated to explain a plan that was made usingMR.
� Use case – Human has a map of the building and was ex-
pecting a plan in which the robot visits room 8 after visiting
room 7. Unknown to them, due to fire in the building, a wall
has fallen leaving room 7 inaccessible and the robot is aware
of this. Thus, the robot comes up with a plan to search room
8 first and then use a door between room 8 and room 7 to
check room 7. This plan is confusing for the supervisor and
thus, there is a need to provide an explanation describing
this change, which updates ((MR)h)r saying that entry to
room 7 via the corridor is blocked. Note that, in this case, an
explicable plan [8] might not be executable in the real world
and thus, one has to resort to explanations.
� Challenges – There are two important challenges in this
scenario (1) obtaining the model ((MR)h)r that is a good
approximation of (MR)h and (2) finding explanations that
reconcile MR and ((MR)h)r in an efficient manner (in
terms of reducing communication cost, while ensuring that
the given plan is valid and/or optimal to the human).

There has been some work in this scenario where the au-
thors in [3], performed model space search starting from
((MR)h)r, assuming it to be available and a good approx-
imation of (MR)h), and then finding the model where the
robot’s plan is optimal by doing single predicate changes to
the model. In [9] authors assumed that ((MR)h)r belongs
to a set of models and use an annotated PDDL [10] to repre-
sent it efficiently. They assume that (MR)h is a part of this
set. In [4] authors assumed that humans model is at a differ-
ent level of abstraction and can be efficiently represented by
dropping certain precondition and effects of actions.

Most of these works make the assumption that the robot
will convince the human that this is the best plan to do by
giving a set of model changes (which is the explanation).

This assumption falls flat when the human actual model of
the robot (MR)h is different from ((MR)h)r, the model
the robot used to come up with explanations. In such cases,
the human may reject some of the explanations and ask the
robot to update its model. This brings us to the next use case.

Human knows better When the human has a more accu-
rate model of the the environment and the robot is unaware
of it, the reconciliation process needs to happen in the other
direction, i.e. the human with (MR)h) can provide respnses
to the robot that update both ((MR)h)r andMR.
� Use case – Continuing with the USAR example, let’s as-
sume human has the information about the fallen wall block-
ing room 7 whereas, the robot is not aware of it. In this
case, the robot will come up with a plan to visit room 7 af-
ter room 6 and the human, via some form of interaction,
will have to ensure that the robot’s task model MR is up-
dated. This might need the human to provide model changes
that makes the robot’s plan (πMR ) infeasible in the current
model ((MR)h)r, which in turn updates MR. Finally, the
robot might need to make another plan, leading to a classic
case of replanning even before the execution phase starts.
� Challenges – The primary challenge here is to perform
model reconciliation without the source model, i.e. to recon-
cile ((MR)h)r and (MR)h. Since making the assumption
(MR)h = ((MR)h)r is often a strong one, the robot can in-
teract with the human to improve its estimate of the human’s
model, i.e make ((MR)h)r closer to (MR)h.

Note that the robot cannot ask a human to simply enumer-
ate (MR)h and thus, will have to use interactions to update
((MR)h)r. In [11], authors provide explanations generated
using model differences betweenMR and ((MR)h)r, show
them to a human and let them accept or reject explanations.
If an explanation is rejected, they use it as a signal to update
((MR)h)r and thereby,MR. This results in the robot finally
having to change the original plan it came up with. Another
approach to pre-compute and thereby speed up the ∆R and
∆H generated via this iterative process would be to have
conditional plans where if an explanation is not accepted by
the human, a different plan is selected. Lastly, an approach
like probing may also help when the robot asks questions–
either directly or by coming up with a set of planning prob-
lems and plans & explanations corresponding to the actions
that are likely to be used in actual settings.

Human Teammate
In this scenario, human, rather than acting as a supervisor, is
a team member that can execute plan actions in the environ-
ment. Thus, it can provide support to the robot in the search
and rescue tasks by checking some rooms. As explained ear-
lier, in this setting the teammates can have their own team
models, i.e. understanding about their and their teammate’s
capabilities. The robot, with computational power on its
side, uses its team model to come up with a joint plan. Note
that in the joint plan setting, there is an extra complication
because the robot first needs to understand which models it
needs to reconcile. In case the robot’s part of the joint plan is
inexplicable to the teammate, it must provide explanations
that reconcile MR and ((MR)h)r. On the other hand, if



the inexplicability arises because the human is not sure why
some of his actions are in the joint plan, it might have to
provide explanations that reconcile (MH)r andMH .

Robot knows better In this scenario, as before, the robot
has the accurate model of its own (MR) and the human’s ca-
pabilities (i.e. (MH)r is more accurate than (MH)). Thus,
explanations generated by the robot reconcile ((MR)h)r to
MR andMH to (MH)r.
� Use case – Let’s assume that robot knows that (1) there is
fire in room 6 and (2) the human teammate cannot search a
room that is on fire. Thus, it creates a plan in which the robot
is supposed to check room 3, 5, 6 and 7 while human is sup-
posed to check 1, 2, 4 and 8. The human teammate might not
understand that why the joint plan does not involve check-
ing consecutive room numbers. Robot needs to explain that
there is fire in room 6, it has capability to look inside rooms
on fire (reconciling ((MR)h)r and MR) and the human’s
lack of fire suit will not allow them to investigate a room
that is on fire (reconcilingMH to (MH)r).
� Challenges – As explained earlier, first, the robot needs
to figure out which models is to be reconciled. In the worst
case, as shown above, it might have to reconcile both for the
current joint plan to make sense to the human. Secondly, in
case the robot needs to reconcileMH to (MH)r, then it has
to interact with the human as opposed to assuming (MH)r
is an accurate representation ofMH (in contrast to previous
work that assume (MR)h = ((MR)h)r).

Human knows better In this scenario, the human team-
mate has the accurate model of the task and thus, in this
case, the plan based on 〈MR)h,MH〉 is valid and optimal
and the plan the robot comes up with is therefore, inexpli-
cable. Here the reconciliation can also be of two types– (1)
(MH)r toMH and (2)MR to (MR)h.
� Use case – In the previous scenario if we assume that hu-
man knows about the fire in room 6, then he will make the
plan to go room 1, 2, 4 and 8 where as the robot would make
the plan to visit room 1-4 by the robot and 5-8 by the human.
Since human knows about fire in the room it can explain to
the robot that room 6 can’t be accessed by him, thus, leading
to replanning scenarios to understand the model differences.
� Challenges – This scenario has three main challenges of
which one is novel and two others have been discussed pre-
viously. First, the human’s model MH may be unknown
and therefore, an accurate approximation of it in the robot’s
mind, i.e. (MH)r might not be available. Thus, the best
thing to do for the robot would be to agree about achiev-
ing some goals/landmarks (or making other commitments
about resources etc.) that it respects and expects the human
to do the rest. A notion of net-benefit planning [12] may be
useful is such settings. Second, determining which models
to reconcile is a challenge similar to what was discussed in
the previous case. Third, the idea of interaction in which the
human teammate can come up with alternative foils and/or
choose to not accept a particular explanation might trigger a
conversation that updates the robot’s set of models.

Although we discuss various ways to do model reconcil-
iation, the idea of interaction based explanations seems to

pop-up in many places. We thus, discuss this idea in a little
more detain in the next section.

Interaction-Based Model Reconciliation
Our central problem is to reconcile – (1) (MR)h withMR

and (2) (MH)r with MH using the plans constructed by
each teammate. The conversation has to be driven by the idea
to reconcile models which may be annotated [10] or have
some kind of abstractions like goal (through commitments
and failures) [12] or action for reconciliation. Working on
the more general problem of reconciling for joint plans, we
will be able to effectively handle the human-as-a-supervisor
scenario. We now present two different strategies for inter-
action that has not been discussed in earlier works i.e. to
present foils or to probe for the model differences.

Foil-Based Interaction Imagine the conversation be-
tween Robot (R) and Human (H):

R: How about the plan I go left and check
rooms 1-4 and you check rooms 5-8.
H: But you need to check rooms 3, 6, 7 & 8.
R: Why do you want me to check rooms 6, 7 & 8?
H: Room 6 and room 8 are on fire and I can’t
search it. 7 might have caught fire too!

In this scenario, the human provides an alternative plan to
the robot. On seeing this, the robot asks the human about the
actions that the robot wanted the human to do. The human
gives explanations that help the robot reconcile (MH)r to
MH (human can’t search rooms that are on fire) and also
update the task modelMR (if adjoining rooms are on fire, a
room might catch fire).

Probing On the other hand, imagine:

R: How about the plan I go left and check
rooms 1-4 and you check rooms 5-8.
H: Nope. That doesn’t work.
R: Would you be fine if I check room 6, 7 & 8?
H: Ya. That works.
R: Did you say no to the first plan because
room 6 and room 8 are on fire?
H: Yes.

In this case, the robot inferred from the human’s disagree-
ment of the first plan that for some reason that the human
does not want to search some of the rooms from 5-8. It sug-
gested an alternative plan that if the human agrees to will
help it easily verify its hypothesis that the human’s search
action has a precondition that the room is not on fire, thereby
updating (MH)r.

Planning and Execution Phases The difference between
planning and execution phase is about knowing the common
plan π as well as the goals which the team has agreed on
in the execution phase. The conversation between the team-
mates would be driven to find the actions that are effected
by a failing precondition or effect in the environment. We
looked at the conversation strategies that can be followed
for explanations through model reconciliation, we believe
that conversation in both phases will be driven by different
parts of the model to reconcile.
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