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ABSTRACT

Model distillation aims to distill the knowledge of a complex model into a simpler
one. In this paper, we consider an alternative formulation called dataset distillation:
we keep the model fixed and instead attempt to distill the knowledge from a large
training dataset into a small one. The idea is to synthesize a small number of data
points that do not need to come from the correct data distribution, but will, when
given to the learning algorithm as training data, approximate the model trained
on the original data. For example, we show that it is possible to compress 60, 000
MNIST training images into just 10 synthetic distilled images (one per class) and
achieve close to the original performance, given a fixed network initialization. We
evaluate our method in various initialization settings. Experiments on multiple
datasets, MNIST, CIFAR10, PASCAL-VOC, and CUB-200, demonstrate the ad-
vantage of our approach compared to alternative methods. Finally, we include
a real-world application of dataset distillation to the continual learning setting:
we show that storing distilled images as episodic memory of previous tasks can
alleviate forgetting more effectively than real images.

1 INTRODUCTION

Hinton et al. (2015) proposed network distillation as a way to transfer the knowledge from an
ensemble of many separately-trained networks into a single, typically compact network, performing
a type of model compression. In this paper, we are considering a related but orthogonal task: rather
than distilling the model, we propose to distill the dataset. Unlike network distillation, we keep the
model fixed but encapsulate the knowledge of the entire training dataset, which typically contains
thousands to millions of images, into a small number of synthetic training images. We show that we
can go as low as one synthetic image per category, training the same model to reach surprisingly good
performance on these synthetic images. For example, in Figure 1a, we compress 60, 000 training
images of MNIST digit dataset into only 10 synthetic images (one per category), given a fixed network
initialization. Training the standard LENET (LeCun et al., 1998) on these 10 images yields test-time
MNIST recognition performance of 94%, compared to 99% for the original dataset. For networks
with unknown random weights, 100 synthetic images train to 89%. We name our method Dataset
Distillation and these images distilled images.

But why is dataset distillation interesting? First, there is the purely scientific question of how much
data is encoded in a given training set and how compressible it is? Second, we wish to know whether
it is possible to “load up" a given network with an entire dataset-worth of knowledge by a handful of
images. This is in contrast to traditional training that often requires tens of thousands of data samples.
Finally, on the practical side, dataset distillation enables applications that require compressing data
with its task. We demonstrate that under the continual learning setting, storing distilled images as
memory of past task and data can alleviate catastrophic forgetting (McCloskey and Cohen, 1989).

A key question is whether it is even possible to compress a dataset into a small set of synthetic data
samples. For example, is it possible to train an image classification model on synthetic images that
are not on the manifold of natural images? Conventional wisdom would suggest that the answer is no,
as the synthetic training data may not follow the same distribution of the real test data. Yet, in this
work, we show that this is indeed possible.

We present an optimization algorithm for synthesizing a small number of synthetic data samples
not only capturing much of the original training data but also tailored explicitly for fast model
training with only a few data point. To achieve our goal, we first derive the network weights as a
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Figure 1: We distill the knowledge of tens of thousands of images into a few synthetic training images called
distilled images. On MNIST, 100 distilled images can train a standard LENET with a random initialization to
89% test accuracy, compared to 99% when fully trained. On CIFAR10, 100 distilled images can train a network
with a random initialization to 41% test accuracy, compared to 80% when fully trained. In Section 3.6, we show
that these distilled images can efficiently store knowledge of previous tasks for continual learning.

differentiable function of our synthetic training data. Given this connection, instead of optimizing
the network weights for a particular training objective, we optimize the pixel values of our distilled
images. However, this formulation requires access to the initial weights of the network. To relax this
assumption, we develop a method for generating distilled images for randomly initialized networks.
To further boost performance, we propose an iterative version, where the same distilled images are
reused over multiple gradient descent steps so that the knowledge can be fully transferred into the
model. Finally, we study a simple linear model, deriving a lower bound on the size of distilled data
required to achieve the same performance as training on the full dataset.

We demonstrate that a handful of distilled images can be used to train a model with a fixed initialization
to achieve surprisingly high performance. For networks pre-trained on other tasks, our method can
find distilled images for fast model fine-tuning. We test our method on several initialization settings:
fixed initialization, random initialization, fixed pre-trained weights, and random pre-trained weights.
Extensive experiments on four publicly available datasets, MNIST, CIFAR10, PASCAL-VOC, and
CUB-200, show that our approach often outperforms existing methods. Finally, we demonstrate
that for continual learning methods that store limited-size past data samples as episodic memory
(Lopez-Paz and Ranzato, 2017; Kirkpatrick et al., 2017), storing our distilled data instead is much
more effective. Our distilled images contain richer information about the past data and tasks, and we
show experimental evidence on standard continual learning benchmarks. Our code, data, and models
will be available upon publication.

2 RELATED WORK

Knowledge distillation. The main inspiration for this paper is network distillation (Hinton et al.,
2015), a widely used technique in ensemble learning (Radosavovic et al., 2018) and model compres-
sion (Ba and Caruana, 2014; Romero et al., 2015; Howard et al., 2017). While network distillation
aims to distill the knowledge of multiple networks into a single model, our goal is to compress
the knowledge of an entire dataset into a few synthetic data. Our method is also related to the
theoretical concept of teaching dimension, which specifies the minimal size of data needed to teach
a target model to a learner (Shinohara and Miyano, 1991; Goldman and Kearns, 1995). However,
methods (Zhu, 2013; 2015) inspired by this concept require the existence of target models, which our
method does not.

Dataset pruning, core-set construction, and instance selection. Another way to distill knowledge
is to summarize the entire dataset by a small subset, either by only using the “valuable” data for
model training (Angelova et al., 2005; Felzenszwalb et al., 2010; Lapedriza et al., 2013) or by only
labeling the “valuable” data via active learning (Cohn et al., 1996; Tong and Koller, 2001). Similarly,
core-set construction (Tsang et al., 2005; Har-Peled and Kushal, 2007; Bachem et al., 2017; Sener
and Savarese, 2018) and instance selection (Olvera-López et al., 2010) methods aim to select a
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subset of the entire training data, such that models trained on the subset will perform as well as the
model trained on the full dataset. For example, solutions to many classical linear learning algorithms,
e.g., Perceptron (Rosenblatt, 1957) and SVMs (Hearst et al., 1998), are weighted sums of subsets
of training examples, which can be viewed as core-sets. However, algorithms constructing these
subsets require many more training examples per category than we do, in part because their “valuable”
images have to be real, whereas our distilled images are exempt from this constraint.

Gradient-based hyperparameter optimization. Our work bears similarity with gradient-based
hyperparameter optimization techniques, which compute the gradient of hyperparameter w.r.t. the
final validation loss by reversing the entire training procedure (Bengio, 2000; Domke, 2012; Maclaurin
et al., 2015; Pedregosa, 2016). We also backpropagate errors through optimization steps. However,
we use only training set data and focus more heavily on learning synthetic training data rather
than tuning hyperparameters. To our knowledge, this direction has only been slightly touched on
previously (Maclaurin et al., 2015). We explore it in greater depth and demonstrate the idea of
dataset distillation in various settings. More crucially, our distilled images work well across random
initialization weights, not possible by prior work.

Understanding datasets. Researchers have presented various approaches for understanding and
visualizing learned models (Zeiler and Fergus, 2014; Zhou et al., 2015; Mahendran and Vedaldi, 2015;
Bau et al., 2017; Koh and Liang, 2017). Unlike these approaches, we are interested in understanding
the intrinsic properties of the training data rather than a specific trained model. Analyzing training
datasets has, in the past, been mainly focused on the investigation of bias in datasets (Ponce et al.,
2006; Torralba and Efros, 2011). For example, Torralba and Efros (2011) proposed to quantify
the “value” of dataset samples using cross-dataset generalization. Our method offers a different
perspective for understanding datasets by distilling full datasets into a few synthetic samples.

3 FORMULATION

Given a model and a dataset, we aim to obtain a new, much-reduced synthetic dataset which performs
almost as well as the original dataset. We first present our main optimization algorithm for training a
network with a fixed initialization with one gradient descent (GD) step (Section 3.1). In Section 3.2,
we derive the resolution to a more challenging case, where initial weights are random rather than
fixed. In Section 3.3, we further study a linear network case to help readers understand both the
properties and limitations of our method. We also discuss the distribution of initial weights with
which our method can work well. In Section 3.4, we extend our approach to reuse the same distilled
images over 2, 000 gradient descent steps and largely improve the performance. Finally, Section 3.5
discusses dataset distillation for different initialization distributions. Finally, in Section 3.6, we show
that our distilled images can be used as effective episodic memory for continual learning tasks.

Consider a training dataset x = {xi}Ni=1, we parameterize our neural network as θ and denote `(xi, θ)
as the loss function that represents the loss of this network on a data point xi. Our task is to find the
minimizer of the empirical error over entire training data:

θ∗ = argmin
θ

1

N

N∑
i=1

`(xi, θ) , argmin
θ

`(x, θ), (1)

where for notation simplicity we overload the `(·) notation so that `(x, θ) represents the average error
of θ over the entire dataset. We make the mild assumption that ` is twice-differentiable, which holds
true for the majority of modern machine learning models and tasks.

3.1 OPTIMIZING DISTILLED DATA

Standard training usually applies minibatch stochastic gradient descent or its variants. At each step t,
a minibatch of training data xt = {xt,j}nj=1 is sampled to update the current parameters as

θt+1 = θt − η∇θt`(xt, θt),
where η is the learning rate. Such a training process often takes tens of thousands or even millions of
update steps to converge. Instead, we learn a tiny set of synthetic distilled training data x̃ = {x̃i}Mi=1
with M � N and a corresponding learning rate η̃ so that a single GD step such as

θ1 = θ0 − η̃∇θ0`(x̃, θ0) (2)
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Algorithm 1 Dataset Distillation
Input: p(θ0): distribution of initial weights; M : the number of distilled data
Input: α: step size; n: batch size; T : the number of optimization iterations; η̃0: initial value for η̃
1: Initialize x̃ = {x̃i}Mi=1 either fromN (0, I) or from real training images. Initialize η̃ ← η̃0
2: for each training step t = 1 to T do
3: Get a minibatch of real training data xt = {xt,j}nj=1

4: Sample a batch of initial weights θ(j)0 ∼ p(θ0)
5: for each sampled θ(j)0 do
6: Compute updated parameter with GD: θ(j)1 = θ

(j)
0 − η̃∇θ(j)0

`(x̃, θ
(j)
0 )

7: Evaluate the objective function on real training data: L(j) = `(xt, θ
(j)
1 )

8: end for
9: Update x̃← x̃− α∇x̃

∑
j L

(j), and η̃ ← η̃ − α∇η̃
∑
j L

(j)

10: end for
Output: distilled data x̃ and optimized learning rate η̃

using these learned synthetic data x̃ can greatly boost the performance on the real test set. Given an
initial θ0, we obtain these synthetic data x̃ and learning rate η̃ by minimizing the objective below L:

x̃∗, η̃∗ = argmin
x̃,η̃

L(x̃, η̃; θ0)

, argmin
x̃,η̃

`(x, θ1)

= argmin
x̃,η̃

`(x, θ0 − η̃∇θ0`(x̃, θ0)), (3)

where we derive the new weights θ1 as a function of distilled data x̃ and learning rate η̃ using Equa-
tion 2 and then evaluate the new weights over all the real training data x. The loss L(x̃, η̃; θ0) is
differentiable w.r.t. x̃ and η̃, and can thus be optimized using standard gradient-based methods. In
many classification tasks, the data x may contain discrete parts, e.g., class labels in data-label pairs.
For such cases, we fix the discrete parts rather than learn them.

3.2 DISTILLATION FOR RANDOM INITIALIZATIONS

Unfortunately, the above distilled data is optimized for a given initialization, and does not generalize
well to other initializations, as it encodes the information of both the training dataset x and a particular
network initialization θ0. To address this issue, we turn to calculate a small number of distilled data
that can work for networks with random initializations from a specific distribution. We formulate the
optimization problem as follows:

x̃∗, η̃∗ = argmin
x̃,η̃

Eθ0∼p(θ0)L(x̃, η̃; θ0), (4)

where the network initialization θ0 is randomly sampled from a distribution p(θ0). During our
optimization, the distilled data are optimized to work well for randomly initialized networks. In
practice, we observe that the final distilled data generalize well to unseen initializations. In addition,
these distilled images often look quite informative, encoding the discriminative features of each
category (e.g., in Figure 2). Algorithm 1 illustrates our main method.

As the optimization (Equation 4) is highly non-linear and complex, the initialization of x̃ plays a
critical role in the final performance. We experiment with different initialization strategies and observe
that using random real images as initialization often produces better distilled images compared to
random initialization, e.g., N (0, I).

For a compact set distilled data to be properly learned, it turns out having only one GD step is far
from sufficient. Next, we derive a lower bound on the size of distilled data needed for a simple model
with arbitrary initial θ0 in one GD step, and discuss its implications on our algorithm.

3.3 ANALYSIS OF A SIMPLE LINEAR CASE

This section studies our formulation in a simple linear regression problem with quadratic loss. We
derive a lower bound of the size of distilled data needed to achieve the same performance as training

4



Under review as a conference paper at ICLR 2020

on the full dataset for arbitrary initialization with one GD step. Consider a dataset x containing N
data-target pairs {(di, ti)}Ni=1, where di ∈ RD and ti ∈ R, which we represent as two matrices: an
N ×D data matrix d and an N × 1 target matrix t. Given the mean squared error metric and a D× 1
weight matrix θ, we have

`(x, θ) = `((d, t), θ) =
1

2N
‖dθ − t‖2. (5)

We aim to learn M synthetic data-target pairs x̃ = (d̃, t̃), where d̃ is an M ×D matrix, t̃ an M × 1
matrix (M � N ), and η̃ the learning rate, to minimize `(x, θ0 − η̃∇θ0`(x̃, θ0)). The updated weight
matrix after one GD step with these distilled data is

θ1 = θ0 − η̃∇θ0`(x̃, θ0)

= θ0 −
η̃

M
d̃T (d̃θ0 − t̃)

= (I− η̃

M
d̃T d̃)θ0 +

η̃

M
d̃T t̃. (6)

For the quadratic loss, there always exists distilled data x̃ that can achieve the same performance
as training on the full dataset x (i.e., attaining the global minimum) for any initialization θ0. For
example, given any global minimum solution θ∗, we can choose d̃ = N · I and t̃ = N · θ∗. But how
small can the size of the distilled data be? For such models, the global minimum is attained at any θ∗
satisfying dTdθ∗ = dT t. Substituting Equation 6 in the condition above, we have

dTd(I− η̃

M
d̃T d̃)θ0 +

η̃

M
dTdd̃T t̃ = dT t. (7)

Here we make the mild assumption that the feature columns of the data matrix d are independent
(i.e., dTd has full rank). For a x̃ = (d̃, t̃) to satisfy the above equation for any θ0, we must have

I− η̃

M
d̃T d̃ = 0, (8)

which implies that d̃T d̃ has full rank and M ≥ D.

Discussion. The analysis above only considers a simple case but suggests that any small number of
distilled data fail to generalize to arbitrary initial θ0. This is intuitively expected as the optimization
target `(x, θ1) = `(x, θ0 − η̃∇θ0`(x̃, θ0)) depends on the local behavior of `(x, ·) around θ0 (e.g.,
gradient magnitude), which can be drastically different across various initializations θ0. The lower
bound M ≥ D is a quite restricting one, considering that real datasets often have thousands to even
hundreds of thousands of dimensions (e.g., images). This analysis motivates us to avoid the limitation
of using one GD step by extending to multiple steps in the next section.

3.4 MULTIPLE GRADIENT DESCENT STEPS

We extend Algorithm 1 to more than one gradient descent steps by changing Line 6 to multiple
sequential GD steps on the same batch of distilled data, i.e., each step i performs

θi+1 = θi − η̃i∇θi`(x̃, θi), (9)

and changing Line 9 to backpropagate through all steps. We do not share the same learning rates
across steps as later steps often require lower learning rates.

Naively computing gradients is memory and computationally intensive. Therefore, we exploit a
recent technique called back-gradient optimization, which allows for significantly faster gradient
calculation in reverse-mode differentiation (Domke, 2012; Maclaurin et al., 2015). Specifically,
back-gradient optimization formulates the necessary second-order terms into efficient Hessian-vector
products (Pearlmutter, 1994), which can be easily calculated with modern automatic differentiation
systems such as PyTorch (Paszke et al., 2017).

3.5 DISTRIBUTION OF INITIAL WEIGHTS

There is freedom in choosing the distribution of initial weights p(θ0). In this work, we explore the
following four practical choices in the experiments:
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(a) MNIST. These distilled images can train unknown
random initializations to 88.51% ± 1.11% test accu-
racy in 2000 GD steps.
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(b) CIFAR10. These distilled images can train un-
known random initializations to 41.23%± 0.88% test
accuracy in 50 GD steps.

Figure 2: Distilled images trained for random initialization a batch of 100 distilled images (ten per class). Only
30 of 100 distilled images are shown here. Please see the appendix for the full result.

• Random initialization: Distribution over random initial weights, e.g., He Initialization (He
et al., 2015) and Xavier Initialization (Glorot and Bengio, 2010) for neural networks.

• Fixed initialization: A particular fixed network initialized by the method above.
• Random pre-trained weights: Distribution over models pre-trained on other tasks or datasets,

e.g., ALEXNET (Krizhevsky et al., 2012) networks trained on ImageNet (Deng et al., 2009).
• Fixed pre-trained weights: A particular fixed network pre-trained on other tasks and datasets.

Distillation with pre-trained weights. Such learned distilled data essentially fine-tune weights
pre-trained on one dataset to perform well for a new dataset, thus bridging the gap between the
two domains. Domain mismatch and dataset bias represent a challenging problem in machine
learning (Torralba and Efros, 2011; Daume III, 2007; Saenko et al., 2010). In this work, we
characterize the domain mismatch via distilled data. In Section 4.1.2, we show that a small number
of distilled images are sufficient to quickly adapt convolutional neural network (CNN) models to new
datasets and tasks.

3.6 APPLICATION TO CONTINUAL LEARNING

To guard against domain shift, several continual learning methods store a subset of training samples
in a small memory buffer, and restrict future updates to maintain reasonable performance on these
stored samples (Rebuffi et al., 2017; Kirkpatrick et al., 2017; Lopez-Paz and Ranzato, 2017; Nguyen
et al., 2018). As our distilled images contain rich information about the past training data and task,
they could naturally serve as a compressed memory of the past.

To test this, we modify a recent continual learning method called Gradient Episodic Memory
(GEM) (Lopez-Paz and Ranzato, 2017). GEM enforces inequality constraints such that the new
model, after being trained on the new data and task, should perform at least as well as the old model
on the previously stored data and tasks. Here, we store our distilled data for each task instead of
randomly drawn training samples as used in GEM. We use the distilled data to construct inequality
constraints, and solve the optimization using quadratic programming, same as in GEM. As shown in
Section 4.2, our method compares favorably against several baselines that rely on real images.

4 EXPERIMENTS

In this section, we report experiments of regular image classifications on MNIST (LeCun, 1998)
and CIFAR10 (Krizhevsky and Hinton, 2009), adaptation from ImageNet (Deng et al., 2009) to
PASCAL-VOC (Everingham et al., 2010) and CUB-200 (Wah et al., 2011), and continual learning on
permuted MNIST and CIFAR100.

Baselines. For each experiment, in addition to baselines specific to the setting, we generally compare
our method against baselines trained with data derived or selected from real training images:

• Random real images: We randomly sample the same number of real images per category.
• Optimized real images: We sample different sets of random real images as above, and choose

the top 20% best performing sets.
• k-means++: We apply k-means++ (Arthur and Vassilvitskii, 2007) clustering to each category,

and extract the cluster centroids.
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Figure 3: Distillation performance with varying numbers of GD steps and a fixed number of distilled images.

Ours Baselines

Fixed init. Random init.
Used as training data in CNN Used in KNN classification

Random real Optimized real k-means++ Average real Random real k-means++
MNIST 94.4 88.5± 1.1 82.8± 1.8 83.8± 2.1 86.7± 1.4 77.7± 2.7 71.5± 2.1 92.4± 0.2

CIFAR10 45.2 41.2± 0.9 24.8± 1.5 24.9± 1.4 26.7± 1.8 22.8± 0.8 18.8± 1.3 29.4± 0.4

Table 1: Comparison between our method and various baselines. All methods use ten images per category (100
in total), except for the average real images baseline, which reuses the same images in different GD steps. For
MNIST, our method uses 2000 GD steps, and baselines use the best among #steps ∈ {1, 100, 500, 1000, 2000}.
For CIFAR10, our method uses 50 GD steps, and baselines use the best among #steps ∈ {1, 5, 10, 20, 500}. In
addition, we include a K-nearest neighbors (KNN) baseline, and report best results among all combinations of
distance metric ∈ {l1, l2} and one or three neighbors.

• Average real images: We compute the average image for each category.

Please see the appendix for more details about training and baselines, and additional results.

4.1 DATASET DISTILLATION

We first present experimental results on training classifiers either from scratch or adapting from
pre-trained weights. For MNIST, the distilled images are trained with LENET (LeCun et al., 1998),
which achieves about 99% test accuracy if conventionally trained. For CIFAR10, we use a network
architecture (Krizhevsky, 2012) that achieves around 80% test accuracy if conventionally trained. For
ImageNet adaptations, we use an ALEXNET (Krizhevsky et al., 2012). We use 2000 GD steps for
MNIST and 50 GD steps for CIFAR10. For random initializations and random pre-trained weights,
we report means and standard deviations over 200 held-out models, unless otherwise stated.

For baselines, we perform each evaluation on 200 held-out models using all possible combinations
of learning rate ∈ {distilled learning rates η̃∗, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1} and several choices
of numbers of training GD steps (see table captions for details), and report results with the best
performing combination.

4.1.1 DISTILLATION WITH WEIGHTS SAMPLED FRO NETWORK INITIALIZATION

Fixed initialization. With access to initial network weights, distilled images can directly train a fixed
network to reach high performance. Experiment results show that just 10 distilled images (one per
class) can boost the performance of a LENET with an initial accuracy 8.25% to a final accuracy of
93.82% on MNIST in 2000 GD steps. Using 100 distilled images (ten per class) can raise the final
accuracy can be raised to 94.41%, as shown in the first column of Table 1. Similarly, 100 distilled
images can train a network with an initial accuracy 10.75% to test accuracy of 45.15% on CIFAR10
in 50 GD steps.

Random initialization. Figure 2 distilled images trained with randomly sampled initializations using
Xavier Initialization (Glorot and Bengio, 2010). While the resulting average test accuracy from these
images are not as high as those for fixed initialization, these distilled images crucially do not require
a specific initial point, and thus could potentially generalize to a much wider range of starting points.
In Section 4.2 below, we present preliminary results of achieving nontrivial gains from applying such
distilled images to classifier networks during a continual learning training process.
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Ours
w/ fixed

pre-trained

Ours
w/ random
pre-trained

Random real Optimized real k-means++ Average real
Few-shot
adaptation

Motiian et al. (2017)
No adaptation Train on full

target dataset

M→ U 97.9 95.4± 1.8 94.9± 0.8 95.2± 0.7 94.8± 0.7 93.9± 0.8 96.7± 0.5 90.4± 3.0 97.3± 0.3

U →M 93.2 92.7± 1.4 87.1± 2.9 87.6± 2.1 88.0± 2.2 78.4± 5.0 89.2± 2.4 67.5± 3.9 98.6± 0.5

S →M 96.2 85.2± 4.7 84.6± 2.1 85.2± 1.2 86.5± 1.2 74.9± 2.6 74.0± 1.5 51.6± 2.8 98.6± 0.5

Table 2: Adapting models among MNIST (M), USPS (U), and SVHN (S) using 100 distilled images. Our
method outperforms few-shot domain adaptation (Motiian et al., 2017) and other baselines in most settings. Due
to computation limitations, the 100 distilled images are split into 10 minibatches applied in 10 sequential GD
steps, and the entire set of 100 distilled images is iterated through 3 times (30 GD steps in total). For baselines,
we train the model using the same number of images with {1, 3, 5} times and report the best result.

Target dataset Ours Random real Optimized real Average real Fine-tune on full
target dataset

PASCAL-VOC 70.75 19.41± 3.73 23.82± 3.66 9.94 75.57± 0.18

CUB-200 38.76 7.11± 0.66 7.23± 0.78 2.88 41.21± 0.51

Table 3: Adapting an ALEXNET pre-trained on ImageNet to PASCAL-VOC and CUB-200. We use one distilled
image per category, repeatedly applied via three GD steps. Our method significantly outperforms the baselines.
For baselines, we train the model with {1, 3, 5} GD steps and report the best. Results are over 10 runs.

Multiple gradient descent steps. Section 3.3 has shown theoretical limitations of using only one
step in a simple linear case. In Figure 3, we empirically verify for deep networks that using multiple
steps drastically outperforms the single step method, given the same number of distilled images.
Table 1 summarizes the results of our method and all baselines. Our method with both fixed and
random initializations outperforms all the baselines on CIFAR10 and most of the baselines on MNIST.

4.1.2 DISTILLATION WITH PRE-TRAINED INITIAL WEIGHTS

Next, we show the extended setting of our algorithm discussed in Section 3.5, where the weights are
not randomly initialized but pre-trained on a particular dataset. In this section, for random initial
weights, we train the distilled images on 2000 pre-trained models and evaluate them on 200 unseen
models.

Fixed and random pre-trained weights on digits. As shown in Section 3.5, we can optimize
distilled images to quickly fine-tune pre-trained models on a new dataset. Table 2 shows that our
method is more effective than various baselines on adaptation between three digits datasets: MNIST,
USPS (Hull, 1994), and SVHN (Netzer et al., 2011). We also compare our method against a state-
of-the-art few-shot domain adaptation method (Motiian et al., 2017). Although our method uses the
entire training set to compute the distilled images, both methods use the same number of images
to distill the knowledge of target dataset. Prior work (Motiian et al., 2017) is outperformed by our
method with fixed pre-trained weights on all the tasks, and by our method with random pre-trained
weights on two of the three tasks. This result shows that our distilled images effectively compress the
information of target datasets.

Fixed pre-trained ALEXNET to PASCAL-VOC and CUB-200. In Table 3, we adapt a widely used
ALEXNET model pre-trained on ImageNet to image classification on PASCAL-VOC and CUB-200
datasets. Given only one distilled image per category, our method outperforms various baselines
significantly. Our method is on par with fine-tuning on the full datasets with thousands of images.

4.2 APPLICATION TO CONTINUAL LEARNING

We modify Gradient Episodic Memory (GEM) (Lopez-Paz and Ranzato, 2017) to store distilled data
for each task rather than real training images. Experiments in Lopez-Paz and Ranzato (2017) use
large memory buffers, up to 25% of the training set. Instead, we focus on a more realistic scenario
where the buffer is rather small (≤ 1% of the training set). Following the experiment settings and
architecture choices from Lopez-Paz and Ranzato (2017), we consider two continual learning tasks:
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Permuted MNIST CIFAR100

Memory size per task = 10

iCaRL (Rebuffi et al., 2017) – 42.4

GEM (Lopez-Paz and Ranzato, 2017) 67.4 43.8

GEM + Ours 75.6 52.8

Memory size per task = 40

iCaRL – 45.8

GEM 75.3 51.6

Memory size per task = 50

iCaRL – 46.9

GEM 75.8 52.4

No memory buffer EWC (Kirkpatrick et al., 2017) 63.5 45.6

Table 4: Continual learning results. Distilled images are trained with random Xavier Initialization distribution.
For permuted MNIST, they are trained with 2000 GD steps. For CIFAR100, they are trained for 200 GD steps.

• Permuted MNIST: 20 classification tasks each formed by using a different permutation to
arrange pixels from MNIST images. Each task contains 1, 000 training images. The classifier
used has 2 hidden layers each with 100 neurons.

• CIFAR100: 20 classification tasks formed by splitting the 100 classes into 20 equal subsets
of 5 classes. Each task contains 2, 500 training images. The classifier used is RESNET18 (He
et al., 2016).

Table 4 shows that using distilled data drastically improves final overall accuracy on all tasks,
and reduces buffer size by up to 5× compared to the original GEM that uses real images. We
only report the basic iCaRL (Rebuffi et al., 2017) setting on CIFAR100 because it requires similar
input distributions across all tasks, and it is unclear how to properly inject distilled images into its
specialized examplar selection procedure.

The appendix details the hyper-parameters tested for each continual learning algorithm.

5 DISCUSSION AND LIMITATIONS

In this paper, we have presented dataset distillation for compressing the knowledge of entire training
data into a few synthetic training images. We demonstrate how to train a network to reach surprisingly
good performance with only a small number of distilled images. Finally, the distilled images can
efficiently store the memory of previous tasks in the continual learning setting.

Many challenges remain for knowledge distillation of data. Although our method generalizes well to
random initializations, it is still limited to a particular network architecture. Since loss surfaces for
different architectures might be drastically different, a more flexible method of applying the distilled
data may overcome this difficulty. Another limitation is the increasing computation and memory
requirements for finding the distilled data as the number of images and steps increases. To compress
large-scale datasets such as ImageNet, we may need first-order gradient approximations to make the
optimization computationally feasible.

Nonetheless, we are encouraged by the findings in this paper on the possibilities of training large
models with a few distilled data, leading to potential applications such as accelerating network
evaluation in neural architecture search (Zoph and Le, 2017). We believe that the ideas developed in
this work might give new insights into the quantity and type of data that deep networks are able to
process, and hopefully inspire others to think along this direction.

9



Under review as a conference paper at ICLR 2020

REFERENCES

A. Angelova, Y. Abu-Mostafam, and P. Perona. Pruning training sets for learning of object categories. In CVPR,
2005.

D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms, 2007.

J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.

O. Bachem, M. Lucic, and A. Krause. Practical coreset constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017.

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection: Quantifying interpretability of deep
visual representations. In CVPR, 2017.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):1889–1900, 2000.

D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. Journal of artificial
intelligence research, 4:129–145, 1996.

H. Daume III. Frustratingly easy domain adaptation. In ACL, 2007.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, 2009.

J. Domke. Generic methods for optimization-based modeling. In Artificial Intelligence and Statistics, pages
318–326, 2012.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc)
challenge. IJCV, 88(2):303–338, 2010.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively
trained part-based models. PAMI, 32(9):1627–1645, 2010.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In
International conference on artificial intelligence and statistics, 2010.

S. A. Goldman and M. J. Kearns. On the complexity of teaching. Journal of Computer and System Sciences, 50
(1):20–31, 1995.

S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete & Computational
Geometry, 37(1):3–19, 2007.

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In ICCV, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016.

M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines. IEEE Intelligent
Systems and their applications, 13(4):18–28, 1998.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS Deep Learning and
Representation Learning Workshop, 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. In CVPR, 2017.

J. J. Hull. A database for handwritten text recognition research. PAMI, 16(5):550–554, 1994.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. In ICLR, 2015.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,
A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. PNAS, 114(13):
3521–3526, 2017.

P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In ICML, 2017.

10



Under review as a conference paper at ICLR 2020

A. Krizhevsky. cuda-convnet: High-performance c++/cuda implementation of convolutional neural networks.
https://github.com/akrizhevsky/cuda-convnet2, 2012.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks.
In NIPS, 2012.

A. Lapedriza, H. Pirsiavash, Z. Bylinskii, and A. Torralba. Are all training examples equally valuable? arXiv
preprint arXiv:1311.6510, 2013.

Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In NIPS, 2017.

D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization through reversible
learning. In ICML, 2015.

A. Mahendran and A. Vedaldi. Understanding deep image representations by inverting them. In CVPR, 2015.

M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation, volume 24, pages 109–165. 1989.

S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. Few-shot adversarial domain adaptation. In NIPS, 2017.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop, 2011.

C. V. Nguyen, Y. Li, T. D. Bui, and R. E. Turner. Variational continual learning. In ICLR, 2018.

J. A. Olvera-López, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler. A review of instance selection
methods. Artificial Intelligence Review, 34(2):133–143, 2010.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in pytorch. In ICLR Workshop, 2017.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160, 1994.

F. Pedregosa. Hyperparameter optimization with approximate gradient. In ICML, 2016.

J. Ponce, T. L. Berg, M. Everingham, D. A. Forsyth, M. Hebert, S. Lazebnik, M. Marszalek, C. Schmid, B. C.
Russell, A. Torralba, et al. Dataset issues in object recognition. In Toward category-level object recognition.
2006.

I. Radosavovic, P. Dollár, R. Girshick, G. Gkioxari, and K. He. Data distillation: Towards omni-supervised
learning. In CVPR, 2018.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and representation
learning. In CVPR, 2017.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for thin deep nets. In
ICLR, 2015.

F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell Aeronautical
Laboratory, 1957.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010.

O. Sener and S. Savarese. Active learning for convolutional neural networks: A core-set approach. In ICLR,
2018.

A. Shinohara and S. Miyano. Teachability in computational learning. New Generation Computing, 8(4):337–347,
1991.

S. Tong and D. Koller. Support vector machine active learning with applications to text classification. JMLR, 2
(Nov):45–66, 2001.

11



Under review as a conference paper at ICLR 2020

A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR. IEEE, 2011.

I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast svm training on very large data sets.
JMLR, 6(Apr):363–392, 2005.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset.
Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Y. Wu and K. He. Group normalization. In ECCV, 2018.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object detectors emerge in deep scene cnns. In
ICLR, 2015.

X. Zhu. Machine teaching for bayesian learners in the exponential family. In NIPS, 2013.

X. Zhu. Machine teaching: An inverse problem to machine learning and an approach toward optimal education.
In AAAI, 2015.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. In ICLR, 2017.

12



Under review as a conference paper at ICLR 2020

S-1 EXPERIMENT DETAILS

In our experiments, we disable dropout layers in the networks due to the randomness and compu-
tational cost they introduce in distillation. Moreover, we initialize the distilled learning rates with
a constant between 0.001 and 0.02 depending on the task, and use the Adam solver (Kingma and
Ba, 2015) with a learning rate of 0.001. For random initialization and random pre-trained weights,
we sample 4 to 16 initial weights in each optimization step. We run all the experiments on NVIDIA
1080 Ti, 2080 Ti, Titan Xp, and V100 GPUs. We use one GPU for fixed initial weights and up to four
GPUs for random initial weights. Each training typically takes 1 to 6 hours.

Below we describe the details of our baselines using real training images.

• Random real images: We randomly sample the same number of real images per category. We
evaluate the performance over 10 randomly sampled sets.

• Optimized real images: We sample 50 sets of real images using the procedure above, pick
10 sets that achieve the best performance on 20 held-out models and 1024 randomly chosen
training images, and evaluate the performance of these 10 sets.

• k-means++: For each category, we use k-means++ (Arthur and Vassilvitskii, 2007) clustering
to extract the same number of cluster centroids as the number of distilled images in our method.
We evaluate the method over 10 runs.
• Average real images: We compute the average image of all the images in each category, which

is repeated to match the same total number of images. We evaluate the model only once because
average images are deterministic.

To enforce our optimized learning rate to be positive, we apply softplus to a scalar trained pa-
rameter. For continual learning experiment on CIFAR10 dataset, to compare with GEM (Lopez-Paz
and Ranzato, 2017), we replace the Batch normalization (Wu and He, 2018) with Group normaliza-
tion (Ioffe and Szegedy, 2015) in RESNET18 (He et al., 2016), as it is difficult to run back-gradient
optimization through batch norm running statistics. For a fair comparison, we use the same architec-
ture for our method and other baselines.

For dataset distillation experiments with pre-trained initial weights, distilled images are initialized
with N (0, 1) at the beginning of training. For other experiments, distilled images are initialized with
random real samples, unless otherwise stated.

S-1.1 CONTINUAL LEARNING EXPERIMENT DETAILS

For the compared continual learning methods, we report the best report from the following combina-
tions of hyper-parameters:

• GEM:
– γ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
– learning rate = 0.1.

• iCARL:
– regularization ∈ {0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1.0}.
– learning rate = 0.1.

S-2 ADDITIONAL EXPERIMENTS RESULTS

• Figures 4 and 5 show distilled images trained for random initializations on MNIST and CI-
FAR10.

• Figures 6, 7, and 8 show distilled images trained for adapting random pre-trained models on
digits datasets including MNIST, USPS, and SVHN.
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0 1 2 3 4 5 6 7 8 9

Figure 4: Dataset distillation for random initializations on MNIST. This batch of 100 distilled images are
repeatedly applied in 2000 GD steps.. These images train average test accuracy to 88.51%± 1.11%.
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Plane Car Bird Cat Deer Dog Monkey Horse Ship Truck

Figure 5: Dataset distillation for random initializations on CIFAR10. This batch of 100 distilled images are
repeatedly applied in 50 GD steps. These images train average test accuracy to 41.23%± 0.88%.
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Step: 6
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Step: 8
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Step: 9
LRs: 0.1236,
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Figure 6: Dataset distillation for adapting random pretrained models from USPS to MNIST. 100 distilled images
are split into 10 GD steps, shown as 10 rows here. Top row is the earliest GD step, and bottom row is the last.
The 10 steps are iterated over three times to finish adaptation, leading to a total of 30 GD steps. These images
train average test accuracy on 200 held out models from 67.54%± 3.91% to 92.74%± 1.38%.

16



Under review as a conference paper at ICLR 2020

Step: 0
LRs: 0.0038,

0.0027, 0.0063

0 1 2 3 4 5 6 7 8 9

Step: 1
LRs: 0.0035,

0.0044, 0.0030

Step: 2
LRs: 0.0039,

0.0040, 0.0047

Step: 3
LRs: 0.0035,

0.0034, 0.0026

Step: 4
LRs: 0.0029,

0.0040, 0.0050

Step: 5
LRs: 0.0022,

0.0032, 0.0027

Step: 6
LRs: 0.0031,

0.0039, 0.0019

Step: 7
LRs: 0.0005,

0.0005, 0.0024

Step: 8
LRs: 0.0008,

0.0005, 0.0018

Step: 9
LRs: 0.0018,
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Figure 7: Dataset distillation for adapting random pretrained models from MNIST to USPS. 100 distilled images
are split into 10 GD steps, shown as 10 rows here. Top row is the earliest GD step, and bottom row is the last.
The 10 steps are iterated over three times to finish adaptation, leading to a total of 30 GD steps. These images
train average test accuracy on 200 held out models from 90.43%± 2.97% to 95.38%± 1.81%.
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Figure 8: Dataset distillation for adapting random pretrained models from SVHN to MNIST. 100 distilled
images are split into 10 GD steps, shown as 10 rows here. Top row is the earliest GD step, and bottom row is
the last. The 10 steps are iterated over three times to finish adaptation, leading to a total of 30 GD steps. These
images train average test accuracy on 200 held out models from 51.64%± 2.77% to 85.21%± 4.73%.
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