Published as a conference paper at ICLR 2020

ROBUST TRAINING WITH ENSEMBLE CONSENSUS

Jisoo Lee & Sae-Young Chung

Korea Advanced Institute of Science and Technology
Daejeon, South Korea

{jisoolee, schung}@kaist.ac.kr

ABSTRACT

Since deep neural networks are over-parameterized, they can memorize noisy ex-
amples. We address such a memorization issue in the presence of label noise.
From the fact that deep neural networks cannot generalize to neighborhoods of
memorized features, we hypothesize that noisy examples do not consistently in-
cur small losses on the network under a certain perturbation. Based on this, we
propose a novel training method called Learning with Ensemble Consensus (LEC)
that prevents overfitting to noisy examples by removing them based on the con-
sensus of an ensemble of perturbed networks. One of the proposed LECs, LTEC
outperforms the current state-of-the-art methods on noisy MNIST, CIFAR-10, and
CIFAR-100 in an efficient manner.

1 INTRODUCTION

Deep neural networks (DNNs) have shown excellent performance (Krizhevsky et al.,2012;He et al.}
2016) on visual recognition datasets (Deng et al.l |2009). However, it is difficult to obtain high-
quality labeled datasets in practice (Wang et al.,2018a)). Even worse, DNNs might not learn patterns
from the training data in the presence of noisy examples (Zhang et al.,[2016)). Therefore, there is an
increasing demand for robust training methods. In general, DNNs optimized with SGD first learn
patterns relevant to clean examples under label noise (Arpit et al., [2017). Based on this, recent
studies regard examples that incur small losses on the network that does not overfit noisy examples
as clean (Han et al.; |2018}; Shen & Sanghavi, 2019). However, such small-loss examples could be
noisy, especially under a high level of noise. Therefore, sampling trainable examples from a noisy
dataset by relying on small-loss criteria might be impractical.

To address this, we find the method to identify noisy examples among small-loss ones based on well-
known observations: (i) noisy examples are learned via memorization rather than via pattern learning
and (ii) under a certain perturbation, network predictions for memorized features easily fluctuate,
while those for generalized features do not. Based on these two observations, we hypothesize that
out of small-loss examples, training losses of noisy examples would increase by injecting certain
perturbation to network parameters, while those of clean examples would not. This suggests that
examples that consistently incur small losses under multiple perturbations can be regarded as clean.
This idea comes from an artifact of SGD optimization, thereby being applicable to any architecture
optimized with SGD.

In this work, we introduce a method to perturb parameters to distinguish noisy examples from small-
loss examples. We then propose a method to robustly train neural networks under label noise, which
is termed learning with ensemble consensus (LEC). In LEC, the network is initially trained on the
entire training set for a while and then trained on the intersection of small-loss examples of the
ensemble of perturbed networks. We present three LECs with different perturbations and evaluate
their effectiveness on three benchmark datasets with random label noise (Goldberger & Ben-Reuven,
2016;|Ma et al.| 2018)), open-set noise (Wang et al., 2018b), and semantic noise. Our proposed LEC
outperforms existing robust training methods by efficiently removing noisy examples from training
batches.

Published as a conference paper at ICLR 2020

2 RELATED WORK

Generalization of DNNs. Although DNNs are over-parameterized, they have impressive gener-
alization ability (Krizhevsky et al., [2012; He et al.| |2016). Some studies argue that gradient-based
optimization plays an important role in regularizing DNNs (Neyshabur et al., [2014; |[Zhang et al.,
2016). |Arpit et al.| (2017) show that DNNs optimized with gradient-based methods learn patterns
relevant to clean examples in the early stage of training. Since mislabeling reduces the correlation
with other training examples, it is likely that noisy examples are learned via memorization. There-
fore, we analyze the difference between generalized and memorized features to discriminate clean
and noisy examples.

Training DNNs with Noisy datasets. Label noise issues can be addressed by reducing negative
impact of noisy examples. One direction is to train with a modified loss function based on the noise
distribution. Most studies of this direction estimate the noise distribution prior to training as it is not
accessible in general (Sukhbaatar et al.,[2014} /Goldberger & Ben-Reuven, [2016} Patrini et al., 2017}
Hendrycks et al, [2018). Another direction is to train with modified labels using the current model
prediction (Reed et al.| 2014} Ma et al.| 2018). Aside from these directions, recent work suggests a
method of exploiting small-loss examples (Jiang et al., 2017 Han et al., 2018} |Yu et al.,|2019; Shen
& Sanghavi, [2019) based on the generalization ability of DNNs. However, it is still hard to find
clean examples by relying on training losses. This study presents a simple method to overcome such
a problem of small-loss criteria.

3 ROBUST TRAINING WITH ENSEMBLE CONSENSUS

3.1 PROBLEM STATEMENT

Suppose that €% of examples in a dataset D := Dejean U Droisy are noisy. Let Se p ¢ denote the set
of (100-¢)% small-loss examples of the network f parameterized by 6 out of examples in D. Since
it is generally hard to learn only all clean examples especially on the highly corrupted training set, it
is problematic to regard all examples in S¢ p ¢ as being clean. To mitigate this, we suggest a simple
idea: to find noisy examples among examples in S¢ p g.

3.2 LEARNING WITH ENSEMBLE CONSENSUS (LEC)

Since noisy examples are little correlated with other training examples, they are likely to be learned
via memorization. However, DNNs cannot generalize to neighborhoods of the memorized features.
This means that even if training losses of noisy examples are small, they can be easily increased
under a certain perturbation 4, i.e., for (z,y) € Dioisys

(7,y) € Sepo = (2,y) & Sepo+6-

Unlike noisy examples, the network f trained on the entire set D can learn patterns from some
clean examples in the early stage of training. Thus, their training losses are consistently small in the
presence of the perturbation 4, i.e., for (z,y) € Deiean,

(,y) € Sepo = (2,Y) € Sep,o+s-

This suggests that noisy examples can be identified from the inconsistency of losses under certain
perturbation . Based on this, we regard examples in the intersection of (100-€)% small-loss exam-
ples of an ensemble of M networks generated by adding perturbations d1, ds, ..., dps to 6, i.e.,

M
Nin=15e,D,0+6,,

as clean. We call it ensemble consensus filtering because examples are selected via ensemble con-
sensus. With this filtering, we develop a training method termed learning with ensemble consensus
(LEC) described in Algorithms [I{and |2} Both algorithms consist of warming-up and filtering pro-
cesses. The difference between these two lies in the filtering process. During the filtering process
of Algorithm [I} the network is trained on the intersection of (100-€)% small-loss examples of M
networks within a mini batch B. Therefore, the number of examples updated at once is changing.

Published as a conference paper at ICLR 2020

We can encourage more stable training with a fixed number of examples to be updated at once as
described in Algorithm [2] During the filtering process of Algorithm [2] we first obtain the intersec-
tion of small-loss examples of M networks within a full batch D at each epoch. We then sample a
subset of batchsize from the intersection and train them at each update like a normal SGD.

Algorithm 1 LEC

Require: noisy dataset D with noise ratio €%, duration of warming-
up T, # of networks used for filtering M, perturbation §
1: Initialize 6 randomly

2: forepocht = 1: T, do » Warming-up process

3: for mini-batch index b = 1 : % do

4: Sample a subset of batchsize 13 from a full batch D

5: 9(—9—(1V9‘T1b| E(w,y)eBb CE(fo(x),y)

6 end for

7: end for

8: forepocht = Ty + 1 : Topg do » Filtering process

9: for mini-batch index b = 1 : % do

10: Sample a subset of batchsize By, from a full batch D

11: form =1: M do

12: Om =0+ 6mbt > Adding perturbation

13: $C~Bb»97n, = (100 — €)% small-loss examples of
fé,, within a mini batch By,

14: end for

15: By = ﬂ,{:{zlseygb’gm > Ensemble consensus

filtering
: 00— aVersr Xiayes, CE(fo(x),)
17: endfor

18: end for

Algorithm 2 LEC-full

Require: noisy dataset D with noise ratio €%, duration of warming-
up T, # of networks used for filtering M, perturbation §

1: Initialize 6 randomly

2: forepocht = 1 : T, do

» Warming-up process

3: for mini-batch index b = 1 : % do

4: Sample a subset of batchsize 13; from a full batch D
5: 00— aVorgT Xayyes, CE(fo(2),v)
6: end for

7: end for

8: forepocht = Ty, + 1 : Tepq do
form =1: M do

» Filtering process

10: O =0+ 0t > Adding perturbation

11: Se, D, 6,y = (100 — €)% small-loss examples of fg,,,
within a full batch D

12: end for

13: 'D; = mﬁlesgwpygnl > Ensemble consensus filtering

’
14: for mini-batch index b = 1 : anthﬁi‘ye do

15: Sample a subset of batchsize Bl’) from D;

16: 9(70704V97‘Blu Z(m,y)EBé CE(fg(l’),y)
17: end for

18: end for

3.3 PERTURBATION TO IDENTIFY NOISY EXAMPLES

Now we aim to find a perturbation ¢ to be injected to discriminate memorized features from gener-
alized ones. We present three LECs with different perturbations in the following. The pseudocodes

can be found in Section[A.1.3

e Network-Ensemble Consensus (LNEC): Inspired by the observation that an ensemble of
networks with the same architecture is correlated during generalization and is decorrelated
during memorization (Morcos et al., [2018)), the perturbation § comes from the difference
between M networks. During the warming-up process, M networks are trained indepen-
dently. During the filtering process, M networks are trained on the intersection of (100-¢)%

small-loss examples of M networks.

o Self-Ensemble Consensus (LSEC): We focus on the relationship between Morcos et al.
(2018)) and [Lakshminarayanan et al.[| (2017): network predictions for memorized features
are uncertain and those for generalized features are certain. Since the uncertainty of predic-
tions also can be captured by multiple stochastic predictions (Gal & Ghahramanil, 2016)),
the perturbation ¢ comes from the difference between M stochastic predictions of a sin-
gle networkﬂ During the filtering process, the network is trained on the intersection of
(100-€)% small-loss examples obtained with M stochastic predictions.

e Temporal-Ensemble Consensus (LTEC): Inspired by the observation that during train-
ing, atypical features are more easily forgetful compared to typical features (Toneva et al.|
2018), the perturbation J comes from the difference between networks at current and
preceding epochs. During the filtering process, the network is trained on the intersection
of (100-€)% small-loss examples at the current epoch t and preceding min(M — 1,¢ — 1)
epochs. We collect (100-€)% small-loss examples at the preceding epochs, rather than
network parameters to reduce memory usage.

'As in|Gal & Ghahramani| (2016), the stochasticity of predictions is caused by stochastic operations such

as dropout (Srivastava et al.,[2014)).

Published as a conference paper at ICLR 2020

4 EXPERIMENTS

In this section, we show (i) the effectiveness of three perturbations at removing noisy examples
from small-loss examples and (ii) the comparison of LEC and other existing methods under various
annotation noises.

4.1 EXPERIMENTAL SETUP

Annotation noise. We study random label noise (Goldberger & Ben-Reuven, 2016; Ma et al.,
2018)), open-set noise (Wang et al., [2018b), and semantic noise. To generate these noises, we use
MNIST (LeCun et al.| [1998)), CIFAR-10/100 (Krizhevsky et al., 2009)) that are commonly used to
assess the robustness. For each benchmark dataset, we only corrupt its training set, while leaving its
test set intact for testing. The details can be found in Section

o Random label noise. Annotation issues can happen in easy images as well as hard im-
ages (Wang et al., [2018a). This is simulated in two ways: sym-c% and asym-c¢%. For
sym-e%, €% of the entire set are randomly mislabeled to one of the other labels and for
asym-e%, each label i of €% of the entire set is changed to ¢ + 1. We study four types:
sym-20% and asym-20% to simulate a low level of noise, and sym-60% and asym-40% to
simulate a high level of noise.

e Open-set noise. In reality, annotated datasets may contain out-of-distribution (OOD) ex-
amples. Asin |Yu et al|(2019), to make OOD examples, images of €% examples randomly
sampled from the original dataset are replaced with images from another dataset, while
labels are left intact. SVHN (Netzer et al.,|2011)) is used to make open-set noise of CIFAR-
100, and ImageNet-32 (Chrabaszcz et al.,[2017) and CIFAR-100 are used to make open-set
noise of CIFAR-10. We study two types: 20% and 40% open-set noise.

e Semantic noise. In general, images with easy patterns are correctly labeled, while images
with ambiguous patterns are obscurely mislabeled. To simulate this, we select the top €%
most uncertain images and then flip their labels to the confusing ones. The uncertainty of
each image is computed by the amount of disagreement between predictions of networks
trained with clean dataset as in |Lakshminarayanan et al. (2017)E] Then, the label of each
image is assigned to the label with the highest value of averaged softmax outputs of the
networks trained with a clean dataset except for its ground-truth label. We study two types:
20% and 40% semantic noise.

Architecture and optimization. Unless otherwise specified, we use a variant of 9-convolutional
layer architecture (Laine & Ailal 2016; Han et al.,[2018). All parameters are trained for 200 epochs
with Adam (Kingma & Bal|2014) with a batch size of 128. The details can be found in Section

Hyperparameter. The proposed LEC involves three hyperparameters: duration of warming-up
T, noise ratio €%, and the number of networks used for filtering M. Unless otherwise specified,
Ty, is set to 10, and M is set to 5 for random label noise and open-set noise, and 10 for semantic
noise. We assume that a noise ratio of €% is given. Further study can be found in Section|[5.2]

Evaluation. We use two metrics: test accuracy and label precision (Han et al. 2018). At the
end of each epoch, test accuracy is measured as the ratio of correctly predicted test examples to
all test examples, and label precision is measured as the ratio of clean examples used for training
to examples used for training. Thus, for both metrics, higher is better. For methods with multiple
networks, the averaged values are reported. We report peak as well as final accuracy because a small
validation set may be available in reality.

For each noise type, every method is run four times with four random seeds, e.g., four runs of
Standard on CIFAR-10 with sym-20%. A noisy dataset is randomly generated and initial network
parameters are randomized for each run of both random label noise and open-set noise. Note that
four noisy datasets generated in four runs are the same for all methods. On the other hand, semantic
noise is generated in a deterministic way. Thus, only initial network parameters are randomized for
each run of semantic noise.

*The uncertainty of image is defined by S0 K L(f(x;0,)|| % SN, f(2;0,)) where f(;0) denotes
softmax output of network parameterized by 6. Here, N is set to 5 as in|Lakshminarayanan et al.|(2017).

Published as a conference paper at ICLR 2020

== Self-training LNEC LSEC LTEC
CIFAR-10, sym-20% CIFAR-10, sym-60% CIFAR-10, asym-20% CIFAR-10, asym-40%
100 100 100 100
L
95] “_w I — 95 90
] 80 ——————— \\NMW \M

90 1 80

851 70

Avg. precision (%)
Avg. precision (%)
Avg. precision (%)
Avg. precision (%)

804 404 804 60
0 50 100 150 200 0 50 100 150 200 [50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 1: Label precision (%) of Self-training and three LECs on CIFAR-10 with random label
noise. We plot the average as a solid line and the standard deviation as a shadow around the line.

Table 1: Average of final/peak test accuracy (%) of Self-training and three LECs on CIFAR-10
with random label noise. The best is highlighted in bold.

Dataset Noise type \ Self-training LNEC LSEC LTEC

CIFAR-10 sym-20% | 84.96/85.02 86.72/86.78 8542/85.63 88.18/88.28
sym-60% | 73.99/7435 79.61/79.64 76.73/76.92 80.38/80.52

asym-20% | 85.02/85.24 86.90/87.11 85.44/85.64 88.86/88.93

asym-40% | 78.84/79.66 84.01/84.48 80.74/81.49 86.36/86.50

CIFAR-10, sym-20% CIFAR-10, sym-60% CIFAR-10, asym-20% CIFAR-10, asym-40%
100 7— 100 100 7— 100
98y 98 98] — — 84
= -] = — |]
g 961 g 9% 3 9% 3 9%
< o4 S 1S < o4
< < c c
S 92 S 92 S 92 S 924/
k] a @ @ I
g 90 g 90 g 9 g 9
5 88 5 88 5 88 5 88
S 86 9 86 S 86 S 86
< 84 < 844 < 84 < 84
82 82 82 82
80 80 80 80

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 2: Label precision (%) of small-loss examples of the current network (in green) and
the intersection of small-loss examples of the current and preceding networks (in red) during
running LTEC on CIFAR-10 with random label noise. We report the precision from epoch 11 when
the filtering process starts.

4.2 EFFECTIVENESS OF LECS AT IDENTIFYING NOISY EXAMPLES

Comparison with Self-training. In Section[3.1} we argue that (100-¢)% small-loss examples may
be corrupted. To show this, we run LEC with M = 1, which is a method of training on (100-¢)%
small-loss examples. Note that this method is similar to the idea of Jiang et al.| (2017); [Shen &
Sanghavi| (2019). We call it Self-training for simplicity. Figure[I|shows the label precision of Self-
training is low especially under the high level of noise, i.e., sym-60%. Compared to Self-training,
three LECs are trained on higher precision data, achieving higher test accuracy as shown in Table[T]
Out of these three, LTEC performs the best in both label precision and test accuracy.

Noisy examples are removed through ensemble consensus filtering. In LTEC, at every batch
update, we first obtain (100-€)% small-loss examples of the current network and then train on the
intersection of small-loss examples of the current and preceding networks. We plot label precisions
of small-loss examples of the current network (in green) and the intersection (in red) during running
LTEC on CIFAR-10 with random noise in Figure 2] We observe that label precision of the inter-
section is always higher, indicating that noisy examples are removed through ensemble consensus
filtering.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

Competing methods. The competing methods include a regular training method: Standard, a
method of training with corrected labels: D2L (Ma et al.| 2018)), a method of training with modified
loss function based on the noise distribution: Forward (Patrini et al.l [2017), and a method of ex-
ploiting small-loss examples: Co-feaching (Han et al.,|2018). We tune all the methods individually
as described in Section[A.T.4]

Published as a conference paper at ICLR 2020

= Standard D2L Forward === Co-teaching LTEC LTEC-full
MNIST, sym-20% MNIST, sym-60% MNIST, asym-20% MNIST, asym-40%
100.0 100§ 100 1
e OO U s o g oo U R R o s == v s J oo S e
g 9751 | R 904 z 9 0l
g g g £ 904
> > > 9571 > \
g o0 g oo \
5 5 5 \ 5 8oq 1\
3 2 704 3 3 |
® 925 { & & 90 W ® |
S | S 601 s \ V“WWW o 704\
> > \ > (! >
< < \ M(i < " PRI
0 5‘0 160 1%0 200 0 5‘0 1(50 1‘50 200 0 Sb 160 léO 200 0 5‘0 160 1%0 200
Epoch Epoch Epoch Epoch
CIFAR-10, sym-20% CIFAR-10, sym-60% CIFAR-10, asym-20% CIFAR-10, asym-40%
90 80 90
_ NN oo e ey I P o e T
g0l g 1f LS i ————
= e e R ;so—,x O >
g0 WA g gy
3 3 \ 360 3
® 60 8 40 1 \yomarmepessiaih | 3 g
g 2 250 2404
< 50 < 501 < <
40
0 5‘0 160 1%0 200 0 5‘0 160 1‘50 200) Sb 160 léO 200 0 S‘O 160 15‘0 200
Epoch Epoch Epoch Epoch
CIFAR-100, sym-20% CIFAR-100, sym-60% CIFAR-100, asym-20% CIFAR-100, asym-40%
60 60 50
B e ey N oS L by
gsoif 1 21 g% g
4 oA S < / 5 a0l z
(L 304/, a0 g f
g Sodl Semmmmmm) § 9] g 201
g20 4 ‘ 220 g
< < 104 < < 104
10 10
0 50 100 150 200 0 50 100 150 200 4 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 3: Test accuracy (%) of different algorithms on MNIST/CIFAR with random label noise.

== Co-teaching LTEC LTEC-full
MNIST, sym-20% MNIST, sym-60% MNIST, asym-20% MNIST, asym-40%
100 100 { 100 100 {
g o \: TT—— 5., \ﬁgo,\
s § 801 s 5
S 90 S S 90 S 80]
4 L 4 2
a 5 40 5 a
g 85 - 2 85 9 704
< H < <
80 40 80 60
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch
CIFAR-10, sym-20% CIFAR-10, sym-60% 100 CIFAR-10, asym-20% CIFAR-10, asym-40%
100
g o x‘ g T | £ 90
= = 80 = \‘”\H = \M
S S S kel
2 90 2 2 90 2 80
4 o o L
& 560 5 5
9 85 9 9 85 970
< K < E
80 40 80 60
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch
CIFAR-100, sym-20% CIFAR-100, sym-60% 05 CIFAR-100, asym-20% CIFAR-100, asym-40%
S g 1 3 <81
gos kﬁ P Y e U R B % <
§ s s § 759
@ 90 @ 70 2 ~—] ®
I 9 [870
5 & 60 g5 &]
85 o I3 % 6]
H 501 g $es
K K < K
80 40 4 80 60
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 4: Label precision (%) of different algorithms on MNIST/CIFAR with random label noise.

Results on MNIST/CIFAR with random label noise. The overall results can be found in Fig-
ures[3|and [} and Table[2} We plot the average as a solid line and the standard deviation as a shadow
around the line. Figure [3|states that the test accuracy of D2L increases at the low level of label noise
as training progresses, but it does not increase at the high level of label noise. This is because D2L
puts large weights on given labels in the early stage of training even under the high level of noise.
Forward shows its strength only in limited scenarios such as MNIST. Co-teaching does not work
well on CIFAR-100 with asym-40%, indicating that its cross-training scheme is vulnerable to small-
loss examples of a low label precision (see Figure). Unlike Co-teaching, our methods attempt to
remove noisy examples in small-loss examples. Thus, on CIFAR-100 with asym-40% noise, both
LTEC and LTEC-full surpass Co-teaching by a wide margin of about 6% and 5%, respectively.

6

Published as a conference paper at ICLR 2020

Table 2: Average of final/peak test accuracy (%) of different algorithms on MNIST/CIFAR with
random label noise. The best is highlighted in bold.

Dataset Noise type ‘ Standard D2L Forward Co-teaching LTEC LTEC-full
MNIST sym-20% | 95.21/99.36 98.38/99.35 96.88/99.29 97.84/99.24 99.52/99.58 99.58/99.64
sym-60% | 55.88/98.50 59.40/98.37 64.03/98.26 91.52/98.53 99.16/99.25 99.38,/99.44
asym-20% | 89.74/99.32 92.88/99.41 97.71/99.52 96.11/99.40 99.49/99.59 99.61/99.66
asym-40% | 65.13/96.58 66.44/96.99 95.76/99.51 91.10/98.81 98.47/99.32 99.40/99.48
CIFAR-10 sym-20% | 79.50/80.74 84.60/84.68 80.29/80.91 85.46/85.52 88.18/88.28 88.16/88.31
sym-60% | 41.91/65.06 44.10/65.26 44.38/61.89 75.01/75.19 80.38/80.52 79.13/79.26
asym-20% | 79.24/81.39 84.27/84.40 79.89/82.08 85.24/85.44 88.86/88.93 89.04/89.14
asym-40% | 57.50/68.77 60.63/67.46 58.53/67.19 79.53/80.19 86.36/86.50 84.56/84.69
CIFAR-100 sym-20% | 50.28/50.89 55.47/55.58 50.01/50.58 57.87/57.94 59.73/59.82 59.91/59.98
sym-60% | 20.79/34.26 23.72/34.89 21.78/34.01 43.36/43.68 46.24/46.43 45.77/45.89
asym-20% | 52.40/52.42 57.31/57.53 52.44/52.56 55.88/55.91 58.72/58.86 58.05/58.16
asym-40% | 37.64/37.66 40.12/40.37 36.95/37.61 40.99/41.01 47.70/47.82 45.49/45.55

Table 3: Average of final/peak test accuracy (%) of different algorithms on CIFAR with open-set

noise. The best is highlighted in bold.

Dataset + Open-set Noise type ‘ Standard D2L Forward Co-teaching LTEC LTEC-full
CIFAR-10 + CIFAR-100 20% | 86.74/86.83 89.42/89.49 86.87/86.96 88.58/88.61 88.69/88.82 89.07/89.11
40% | 82.64/82.71 85.32/85.41 82.57/82.68 86.18/86.22 86.37/86.41 86.26/86.33
CIFAR-10 + ImageNet-32 20% | 88.27/88.36 90.60/90.64 88.24/88.29 88.99/89.06 89.15/89.24 89.34/89.42
40% | 85.90/85.99 87.91/87.95 85.84/85.99 86.99/87.03 86.63/86.78 87.00/87.12
CIFAR-100 + SVHN 20% | 59.08/59.19 62.89/62.98 58.99/59.08 60.69/60.75 61.65/61.78 61.87/61.98
40% | 53.32/53.35 56.30/56.38 53.18/53.30 56.45/56.52 56.95/57.18 57.77/57.90

Table 4: Average of final/peak test accuracy (%) of different algorithms on CIFAR with semantic
noise. The best is highlighted in bold.

Dataset Noise type \ Standard D2L Forward Co-teaching LTEC LTEC-full

CIFAR-10 20% | 81.29/81.36 83.96/83.99 81.10/81.23 83.53/83.56 84.48/84.66 84.48/84.58
40% | 71.64/74.36 7472/74.94 71.38/73.47 76.61/76.89 75.52/76.52 76.57/78.06

CIFAR-100 20% | 56.88/56.96 60.23/60.40 56.60/56.74 58.45/58.50 58.75/58.78 58.73/58.80
40% | 49.56/49.69 53.04/53.19 49.57/49.69 52.96/52.98 52.58/52.78 53.15/54.18

Results on CIFAR with open-set noise. The overall results can be found in Table [3] All the
methods including LTEC and LTEC-full perform well under open-set noise. We speculate that this
is due to a low correlation between open-set noisy examples. This is supported by the results on
CIFAR-10, i.e., all the methods perform better on ImageNet-32 noise than on CIFAR-100 noise, as
ImageNet-32 has more classes than CIFAR-100. Similar to poorly annotated examples, it is hard
for deep networks to learn patterns relevant to out-of-distribution examples during the warming-
up process. Therefore, those examples can be removed from training batches through ensemble
consensus filtering.

Results on CIFAR with semantic noise. The overall results can be found in Table @l The se-
mantically generated noisy examples are highly correlated with each other, making it difficult to
filter out those examples through ensemble consensus. We use 10 as the value of M for semantic
noise because ensemble consensus with a bigger M is more conservative. On CIFAR with semantic
noise, LTEC and LTEC-full perform comparably or best, compared to the other methods. Of the
two, LTEC-full performs better on 40% semantic noise due to its training stability.

5 DISCUSSION

5.1 HARD-TO-CLASSIFY BUT CLEAN EXAMPLES

It is hard to learn all clean examples during the warming-up process. Therefore, clean examples
with large losses may be excluded from training batches during the filtering process. However, we
expect that the number of clean examples used for training would increase gradually as training

Published as a conference paper at ICLR 2020

LTEC LTEC-full

CIFAR-10, sym-20% CIFAR-10, sym-60% CIFAR-10, asym-20% CIFAR-10, asym-40%
100.0 100 100 { 100

97.5 920
901]

95.0 80
70

92.5 801

Avg. recall (%)

60
90.0

Avg. recall (%)
Avg. recall (%)
Avg. recall (%)

87.5
40

0 50 100 150 200 [50 100 150 200 [50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure 5: Recall (%) of LTEC and LTEC-full on CIFAR-10 with random label noise. We plot the
average as a solid line and the standard deviation as a shadow around the line.

Table 5: Average of final/peak test accuracy (%) of LTEC with varying the number of networks
used for filtering M. The best is highlighted in bold.

Dataset Noise type | LTEC
| M=1 M =3 M=5 M=7 M=9 M =

CIFAR-10 sym-20% | 84.96/85.02 87.68/87.78 88.18/88.28 88.63/88.77 88.79/88.87 86.57/86.62
sym-60% | 73.99/7435 79.73/79.80 80.38/80.52 80.39/80.45 80.28/80.39 71.63/71.86

asym-20% | 85.02/85.24 87.85/88.15 88.86/88.93 88.96/89.07 88.99/89.11 85.55/85.59

asym-40% | 78.84/79.66 85.44/85.59 86.36/86.50 86.78/86.82 86.59/86.63 77.30/77.40

Table 6: Average of final/peak test accuracy (%) of Co-teaching and LTEC with estimates of noise
ratio (simulated). The best is highlighted in bold.

Dataset Noise type \ under-estimated (0.9¢) correctly estimated (€) over-estimated (1.1¢€)
‘ Co-teaching LTEC Co-teaching LTEC Co-teaching LTEC
CIFAR-10 sym-20% | 84.51/84.58 87.93/88.08 85.46/85.52 88.18/88.28 86.40/86.45 88.72/88.75
sym-60% | 70.47/73.11 77.98/78.22 75.01/75.19 80.38/80.52 79.15/79.17 79.34/79.45

asym-20% | 84.61/84.73 88.15/88.39 85.24/85.44 88.86/88.93 86.41/86.57 89.04/89.22
asym-40% | 76.14/77.41 84.42/84.52 79.53/80.19 86.36/86.50 82.19/82.63 86.93/86.96

proceeds since LEC allows the network to learn from patterns clean examples without overfitting.
To confirm this, we measure recall defined by the ratio of clean examples used for training to all
clean examples at the end of each epoch during running LTEC and LTEC-full. As expected, recalls
of both LTEC and LTEC-full sharply increase in the first 50 epochs as described in Figure [5] Pre-
training (Hendrycks et al., |2019) prior to the filtering process may help to prevent the removal of
clean examples from training batches.

5.2 ABLATION STUDY

The number of networks used for filtering. During the filtering process of LEC, we use only
the intersection of small-loss examples of M perturbed networks for training. This means that the
number of examples used for training highly depends on M. To understand the effect of M, we run
LTEC with varying M on CIFAR-10 with random label noise. In particular, the range of M is {1, 3,
5,7,9, cc}. Table E] shows that a larger M is not always lead to better performance. This is because
too many examples may be removed from training batches as M increases. Indeed, the total number
of examples used for training is critical for the robustness as claimed in [Rolnick et al. (2017); [Li
et al.|(2017)).

Noise ratio. In reality, only a poorly estimated noise ratio may be accessible. To study the effect
of poor noise estimates, we run LTEC on CIFAR-10 with random label noise using a bit lower
and higher values than the actual noise ratio as in |Han et al.| (2018). We also run Co-teaching that
requires the noise ratio for comparison. The overall results can be found in Table [6] Since it is
generally difficult to learn all clean examples, training on small-loss examples selected using the
over-estimated ratio (i.e., 1.1¢€) is often helpful in both Co-teaching and LTEC. In contrast, small-
loss examples selected using the under-estimated ratio may be highly corrupted. In this case, LTEC
is robust to the estimation error of noise ratio, while Co-teaching is not. Such robustness of LTEC
against noise estimation error comes from ensemble consensus filtering.

Published as a conference paper at ICLR 2020

Table 7: Average of final/peak test accuracy (%) of Standard and LTEC with ResNet. The best is
highlighted in bold.

Dataset Noise Type ‘ Standard (ResNet) LTEC (ResNet)
CIFAR-10 sym-20% 81.31/85.30 89.01,/89.12
sym-60% 61.94/72.80 81.46,/81.66
asym-20% 81.93/87.32 88.90,/89.04
asym-40% 62.76/77.10 86.62/86.85

Applicability to different architecture. The key idea of LEC is rooted in the difference between
generalizaton and memorization, i.e., the ways of learning clean examples and noisy examples in
the early SGD optimization (Arpit et al 2017). Therefore, we expect that LEC would be appli-
cable to any architecture optimized with SGD. To support this, we run Standard and LTEC with
ResNet-20 (He et al., 2016). The architecture is optimized based on Chollet et al.| (2015)), achieving
the final test accuracy of 90.67% on clean CIFAR-10. Here, T, is set to 30 for the optimization
details. Table[7]shows LTEC (ResNet) beats Standard (ResNet) in both peak and final accuracies, as
expected.

6 CONCLUSION

This work presents the method of generating and using the ensemble for robust training. We explore
three simple perturbation methods to generate the ensemble and then develop the way of identifying
noisy examples through ensemble consensus on small-loss examples. Along with growing attention
to the use of small-loss examples for robust training, we expect that our ensemble method will be
useful for such training methods.

ACKNOWLEDGMENTS

We thank Changho Suh, Jinwoo Shin, Su-Young Lee, Minguk Jang, and anonymous reviewers for
their great suggestions. This work was supported by the ICT R&D program of MSIP/IITP. [2016-
0-00563, Research on Adaptive Machine Learning Technology Development for Intelligent Au-
tonomous Digital Companion]

REFERENCES

Mahdieh Abbasi, Arezoo Rajabi, Azadeh Sadat Mozafari, Rakesh B Bobba, and Christian Gagné.
Controlling over-generalization and its effect on adversarial examples generation and detection.
arXiv preprint arXiv:1808.08282, 2018.

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer
look at memorization in deep networks. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 233-242. JMLR. org, 2017.

Frangois Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050-1059,
2016.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. 2016.

https://github.com/fchollet/keras

Published as a conference paper at ICLR 2020

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In
Advances in neural information processing systems, pp. 8527-8537, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770778, 2016.

Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using trusted data to train
deep networks on labels corrupted by severe noise. In Advances in neural information processing
systems, pp. 10456-10465, 2018.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. arXiv preprint arXiv:1901.09960, 2019.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels. arXiv preprint
arXiv:1712.05055, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097-1105,
2012.

David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan
Maharaj, Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don’t learn via mem-
orization. 2017.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems, pp. 6402-6413, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision database: Visual
learning and understanding from web data. arXiv preprint arXiv:1708.02862, 2017.

Xingjun Ma, Yisen Wang, Michael E Houle, Shuo Zhou, Sarah M Erfani, Shu-Tao Xia, Sudan-
thi Wijewickrema, and James Bailey. Dimensionality-driven learning with noisy labels. arXiv
preprint arXiv:1806.02612, 2018.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems, pp.
5727-5736, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614,2014.

Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Realis-
tic evaluation of deep semi-supervised learning algorithms. In Advances in Neural Information
Processing Systems, pp. 3235-3246, 2018.

10

Published as a conference paper at ICLR 2020

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making
deep neural networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944-1952, 2017.

Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596, 2014.

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694, 2017.

Yanyao Shen and Sujay Sanghavi. Learning with bad training data via iterative trimmed loss mini-
mization. In International Conference on Machine Learning, pp. 5739-5748, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929-1958, 2014.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. Training
convolutional networks with noisy labels. arXiv preprint arXiv: 1406.2080, 2014.

Christian Szegedy, Sergey loffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In Thirty-First AAAI Confer-
ence on Artificial Intelligence, 2017.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J Gordon. An empirical study of example forgetting during deep neural network
learning. arXiv preprint arXiv:1812.05159, 2018.

Fei Wang, Liren Chen, Cheng Li, Shiyao Huang, Yanjie Chen, Chen Qian, and Chen Change Loy.
The devil of face recognition is in the noise. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 765-780, 2018a.

Yisen Wang, Weiyang Liu, Xingjun Ma, James Bailey, Hongyuan Zha, Le Song, and Shu-Tao Xia.
Iterative learning with open-set noisy labels. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8688—-8696, 2018b.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W Tsang, and Masashi Sugiyama. How does
disagreement benefit co-teaching? arXiv preprint arXiv:1901.04215, 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 ANNOTATION NOISES

o Random label noise: For sym-¢%, €% of the entire set are randomly mislabeled to one of
the other labels and for asym-e%, each label i of €% of the entire set is changed to ¢ + 1.
The corruption matrices of sym-e% and asym-e% are described in Figures and
respectively.

e Open-set noise: For ¢% open-set noise, images of €% examples randomly sampled from
the original dataset are replaced with images from external sources, while labels are left
intact. For CIFAR-10 with open-set noise, we sample images from 75 classes of CIFAR-
100 (Abbasi et al.l [2018]) and 748 classes of ImageNet (Oliver et al., 2018) to avoid sam-
pling similar images with CIFAR-10.

e Semantic noise: For semantic noise, we choose uncertain images and then mislabel them
ambiguously. In Figure [A2] we see that clean examples have simple and easy images,
while noisy examples have not. Also, its corruption matrix (see Figure describes the
similarity between classes, e.g., cat and dog, car and truck, etc.

11

Published as a conference paper at ICLR 2020

symmetic random noise symmetrc randomnoise___ —_ somanticnose

i i e i o 330 T e o ik

(a) Random-sym (b) Random-asym

(c) Semantic

Figure Al: Corruption matrices of CIFAR-10 with random label noise and semantic noise.

cat bird deer deer truck car deer deer horse deer

L EFLT R

deer bird plane bird cat bird bird bird frog
-

T e

Figure A2: Clean examples (top) and noisy examples (bottom) randomly sampled from CIFAR-
10 with 20% semantic noise. We observe that noisy examples contain atypical features and are
semantically mislabeled.

A.1.2 ARCHITECTURE AND OPTIMIZATION DETAILS

The 9-convolutional layer architecture used in this study can be found in Table [AT] The network
is optimized with Adam (Kingma & Bal 2014) with a batchsize of 128 for 200 epochs. The initial
learning rate « is set to 0.1. The learning rate is linearly annealed to zero during the last 120
epochs for MNIST and CIFAR-10, and during the last 100 epochs for CIFAR-100. The momentum
parameters (5 and [are set to 0.9 and 0.999, respectively. [; is linearly annealed to 0.1 during
the last 120 epochs for MNIST and CIFAR-10, and during the last 100 epochs for CIFAR-100. The
images of CIFAR are divided by 255 and are whitened with ZCA. Additional regularizations such
as data augmentation are not applied. The results on clean MNIST, CIFAR-10, and CIFAR-100 can
be found in Table[A2]

Table Al: 9-conv layer architecture.

Input image

Gaussian noise (o =0.15)

3 x 3 conv, 128, padding = ‘same’
batch norm, LReLU («x = 0.01)
3 X 3 conv, 128, padding = ‘same’
batch norm, LReLU (a = 0.01)

3 X 3 conv, 128, padding = ‘same’
batch norm, LReLU («x = 0.01)

2 x 2 maxpooling, padding = ‘same’

dropout (drop rate = 0.25)

3 X 3 conv, 256, padding = ‘same’
batch norm, LReLU (a = 0.01)
3 x 3 conv, 256, padding = ‘same’
batch norm, LReLU (ax = 0.01)

3 X 3 conv, 256, padding = ‘same’
batch norm, LReLU (ax = 0.01)

2 X 2 maxpooling, padding = ‘same’

dropout (drop rate = 0.25)

3 x 3 conv, 512, padding = ‘valid’
batch norm, LReLU (a = 0.01)
3 X 3 conv, 256, padding = ‘valid’
batch norm, LReLU (a = 0.01)
3 X 3 conv, 128, padding = ‘valid’
batch norm, LReLU («x = 0.01)

global average pooling
fc (128 — # of classes)

Table A2: Avg (£ stddev) of final test accuracy
of a regular training on clean MNIST, CIFAR-10,
and CIFAR-100.

Dataset MNIST CIFAR-10 CIFAR-100
Test accuracy ~ 99.60+£0.02 90.59+0.15 64.38+£0.20

12

Published as a conference paper at ICLR 2020

A.1.3 PSEUDOCODES FOR LECs

We present three LECs with different perturbations in Section [3.3] The pseudocodes for LNEC,
LSEC, LTEC, and LTEC-full are described in the following. In LTEC-full, we obtain small-loss
examples utilized for filtering from the second epoch to encourage its stability.

Algorithm A1 LNEC
Require: noisy dataset D with noise ratio €%, duration of warming-up 7’,,, The number of networks used for filtering M
1: Initialize 61, @2, ..., 6 s randomly
2: forepocht =1 : T, do » Warming-up process
3 for mini-batch index b =1 : balc’%
4 Sample a subset of batchsize 13; from a full batch D
5: for network index m = 1 : M do
6: Om < O0m —aVyg,, ﬁ Z(I,y)ggb CE(fo,,(x),v)
7 end for
8 end for
9: end for
10: for epocht =Ty 4+ 1: Tepqg do » Filtering process
11: for mini-batchindex b = 1 : 2L do
12: Sample a subset of batchsize 3} from a full batch D
13: for network index m = 1 : M do
14: Se,By,00m = (100 — €)% small-loss examples of fg,,, within By,
15: end for
16: By = ﬂ%=185,5b,9m > Network-ensemble consensus filtering
17: for network index m = 1 : M do
18: O < O, 7o‘v9mrﬁz(m,y)65b/ CE(fgm(I),y)
19: end for
20: end for
21: end for
Algorithm A2 LSEC

Require: noisy dataset D with noise ratio €%, duration of warming-up 7°,,, The number of networks used for filtering M

1: Initialize 6 randomly
2: forepocht =1 : T, do » Warming-up process
3: for mini-batch index b =1 : balc’fs‘ize do
4: Sample a subset of batchsize By, from a full batch D
5: 040~ aVogy X eyes, CE(o(x),)
6: end for
7: end for
8: forepocht = Ty + 1 : Teppg do » Filtering process
9: for mini-batch index b =1 : balc’%
10: Sample a subset of batchsize 13; from a full batch D
11: for forward pass index m = 1 : M do
12: 6, = 6 + 4, Where d,,, comes from the stochasticity of network architecture
13: Se,By,0m = (100 — €)% small-loss examples of fg,,, within By,
14: end for
15: By = nﬁlese,gb,gm > Self-ensemble consensus filtering
16: 9<—0—aV9|T1,‘ E(Ly)egb/CE(fg(w),y)
17: end for
18: end for

13

Published as a conference paper at ICLR 2020

Algorithm A3 LTEC

Require: noisy dataset D with noise ratio €%, duration of warming-up 7,,, The number of networks used for filtering M
1: Initialize 6 randomly
2: forepocht = 1: Tepq do

Pr=2
4: for mini-batch index b = 1 : %
5: Sample a subset of batchsize 13; from a full batch D
6: Sgygb,e := (100 — €)% small-loss examples of fo within B3,
7: P FPtUSe,Bb,Q
8: if t <T,, + 1 then » Warming-up process
9 0+ 0~ aVorgy X eyes, CEfo(2)v)
10: else » Filtering process
11: if t = 1 then
12: Bb/ :S‘»wBbrg
13: else if ¢t < M then
14: Bl,/=7>1 ﬂ'Pzﬂ...ﬂPtflﬁSEﬁb,e
15: else
16: By = Pi(m—-1) NV Pe_(m—2) N ... N Pi—1 N Se By 0 > Temporal-ensemble consensus filtering
17: end if
18: 0eafavgﬁ Z(m,y)eBb’ CE(fo(x),y)
19: end if
20: end for
21: end for

Algorithm A4 LTEC-full

Require: noisy dataset D with noise ratio €%, duration of warming-up T,,, The number of networks used for filtering M
1: Initialize @ randomly
|D|

2: for mini-batch index b = 1 : ——+— do

batchsize

3: Sample a subset of batchsize 3, from a full batch D
4. 0eafav9—‘51b‘ 2(3573})6517 CE(fo(z),y)
5: end for
6: forepocht = 2 : Tt q do
7: Py := (100 — €)% small-loss examples of fg within D > Small-loss examples are computed from the 2nd epoch
8: ift <Ty + 1 then » Warming-up process
9: for mini-batch index b = 1 : % do
10: Sample a subset of batchsize By, from a full batch D
11: 0(—9—(1V9‘B—1b‘ Z(z,y)eﬁb CE(fo(x),y)
12: end for
13: else » Filtering process
14: if t <M + 1 then
15: D, =P2NPsN...NPe_1 NPy
16: else
17: D, = Piom—1) N Pe—(m—2) N .. NP1 NPy > Temporal-ensemble consensus filtering
18: end if ,
. . . A
19: for mini-batch index b = 1 : pt— do
20: Sample a subset of batchsize Bg from D;
21: OeﬂfaVHﬁ Z(m,y)EBb’ CE(fo(z),y)
22: end for
23: end if
24: end for

A.1.4 COMPETING METHODS

The competing methods include a regular training method: Standard, a method of training with
corrected labels: D2L (Ma et al. [2018), a method of training with modified loss function based
on the noise distribution: Forward (Patrini et al [2017), and a method of exploiting small-loss
examples: Co-teaching (Han et al.,|2018). We tune all the methods individually as follows:

e Standard : The network is trained using the cross-entropy loss.

e D2L: The input vector of a fully connected layer in the architecture is used to measure the
LID estimates. The parameter involved with identifying the turning point, window size W
is set to 12. The network is trained using original labels until the turning point is found and
then trained using the bootstrapping target with adaptively tunable mixing coefficient.

e Forward: Prior to training, the corruption matrix C' where Cj; = P(y = i|yrue = Jj) is es-
timated based on the 97th percentile of probabilities for each class on MNIST and CIFAR-

14

Published as a conference paper at ICLR 2020

10, and the 100¢h percentile of probabilities for each class on CIFAR-100 as in [Hendrycks
et al.[(2018)). The network is then trained using the corrected labels for 200 epochs.

e Co-teaching: Two networks are employed. At every update, they select their small-loss
examples within a minibatch and then provide them to each other. The ratio of selected
examples based on training losses is linearly annealed from 100% to (100-€)% over the
first 10 epochs.

A.2 COMPLEXITY ANALYSIS

We compute space complexity as the number of network parameters and computational complexity
as the number of forward and backward passes. Here we assume that early stopping is not used and
the noise ratio of €% is given. Note that the computational complexity of each method depends on
its hyperparameter values, e.g., the duration of the warming-up process T, and the noise ratio €%.
The analysis is reported in Table [A3] Our proposed LTEC is the most efficient because it can be
implemented with a single network based on Section [A.T.3]and only a subset of the entire training
set is updated after the warming-up process.

Table A3: Complexity analysis: M indicates the number of networks for filtering in LECs.

Complexity Standard Self-training ~ Co-teaching LNEC LSEC LTEC/LTEC-full

Space complexity
of network parameters m m 2m Mm m m

Computational complexity
of forward passes n n 2n Mn Mn n
of backward passes n <n <2n < Mn <n <n

A.3 ADDITIONAL RESULTS
A.3.1 RESULTS OF LTEC WITH M = oo

Figure shows that ensemble consensus filtering with too large M removes clean examples from
training batches in the early stage of the filtering process. Unlike LTEC with M = 5, the recall
of LTEC with M = oo does not increase as training proceeds, suggesting that its generalization
performance is not enhanced. This shows that a larger M does not always lead to better performance.
We expect that pre-training (Hendrycks et al.|[2019)) prior to the filtering process helps to reduce the
number of clean examples removed by ensemble consensus filtering regardless of M.

LTEC (M=5) LTEC-full (M=5) LTEC (M=) LTEC-full (M=)

CIFAR-10, sym-20% CIFAR-10, sym-60% CIFAR-10, asym-20% CIFAR-10, asym-40%
100 100 100 100

95
80 * 80
90

85 60

60

Avg. recall (%)
Avg. recall (%)
Avg. recall (%)
®
8
Avg. recall (%)

80 40

20
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epoch Epoch Epoch Epoch

Figure A3: Recall (%) of LTECs with varying M on CIFAR-10 with random label noise.

15

	Introduction
	Related Work
	Robust training with Ensemble Consensus
	Problem statement
	Learning with Ensemble Consensus (LEC)
	Perturbation to identify noisy examples

	Experiments
	Experimental setup
	Effectiveness of LECs at identifying noisy examples
	Comparison with state-of-the-art methods

	Discussion
	Hard-to-classify but clean examples
	Ablation study

	Conclusion
	Appendix
	Implementation details
	Annotation noises
	Architecture and optimization details
	Pseudocodes for LECs
	Competing methods

	Complexity analysis
	Additional results
	Results of LTEC with M =

