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ABSTRACT

While neural network models achieve impressive classification accuracy across
different tasks, they can suffer from poor calibration of their probabilistic predic-
tions. A Bayesian perspective has recently suggested that dropout, a regularization
strategy popularly used during training, can be employed to obtain better proba-
bilistic predictions at test time (Gal & Ghahramani, 2016a). However, empirical
results so far have not been encouraging, particularly with convolutional networks.
In this paper, through the lens of ensemble learning, we associate this unsatisfac-
tory performance with the correlation between the models sampled with dropout.
Motivated by this, we explore the use of various structured dropout techniques to
promote model diversity and improve the quality of probabilistic predictions. We
also propose an omnibus dropout strategy that combines various structured dropout
methods. Using the SVHN, CIFAR-10 and CIFAR-100 datasets, we empirically
demonstrate the superior performance of omnibus dropout relative to several widely
used strong baselines in addition to regular dropout. Lastly, we show the merit of
omnibus dropout in a Bayesian active learning application.

1 INTRODUCTION

Deep neural networks (NNs) achieve state-of-the-art classification accuracy in many applications.
However, in real world scenarios like medical diagnosis and autonomous driving, reliable probabilistic
predictions are also crucial and need to be considered in assessing performance. Most modern NNs
are trained with maximum likelihood to produce point estimates that are often over-confident (Guo
et al., 2017). Bayesian techniques can be used with neural networks to obtain well-calibrated predic-
tions (MacKay, 1992; Neal, 2012), yet they suffer from significant computational challenges. Thus,
recent efforts have been devoted to making Bayesian neural networks more efficient (Blundell et al.,
2015; Chen et al., 2014; Wu et al., 2018). Monte Carlo (MC) dropout (Gal & Ghahramani, 2016a), a
cheap approximate inference technique which obtains uncertainty by performing dropout (Srivastava
et al., 2014) at test time, is a popular Bayesian method to obtain uncertainty estimates for NNs.

Despite improvements over deterministic NNs, MC dropout can still produce over-confident predic-
tions (Lakshminarayanan et al., 2017), particularly with convolutional architectures. In this paper,
we propose a simple yet effective solution to this problem. Inspired by the recent success of ex-
plicit ensembles of neural networks obtained using random initializations (Beluch et al., 2018), we
reiterate the original notion of dropout as "an extreme form of model combination with extensive
parameter sharing" (Srivastava et al., 2014), and interpret MC dropout as an ensemble of models.
Borrowing machinery from ensemble learning, we then attribute the poor performance of MC dropout
to its limited model diversity compared to that of explicit ensembles. This perspective reveals how
structured dropout methods (Ghiasi et al., 2018; Tompson et al., 2015) can improve performance by
promoting diversity. While the importance of diversity has been demonstrated by others, prior works
consider explicit ensembles of different models. To the best of our knowledge, this is the first paper
to examine structured dropout as a way to enhance diversity in an ensemble obtained from a single
model. As discussed below, we also propose to combine different structured dropout methods, which
we call omnibus dropout. We empirically verify that omnibus dropout can yield models with superior
performance on the SVHN, CIFAR-10 and CIFAR-100 datasets compared to not only MC dropout,
but also some of the most widely adopted baselines like deep ensembles (Lakshminarayanan et al.,
2017) and temperature scaling (Guo et al., 2017). Furthermore, we demonstrate the merit of better
uncertainty estimates in a Bayesian active learning experiment (Gal et al., 2017b).
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2 RELATED WORK

Dropout was first introduced as a stochastic regularization technique for NNs (Srivastava et al.,
2014). Inspired by the success of dropout, numerous variants have been proposed (Wan et al., 2013;
Goodfellow et al., 2013; Tompson et al., 2015; Huang et al., 2016; Singh et al., 2016; Gastaldi,
2017; Ghiasi et al., 2018). Unlike regular dropout, most of these methods drop parts of the NNs
in a structured manner. For instance, DropBlock (Ghiasi et al., 2018) applies dropout to small
patches of the feature map in convolutional networks, SpatialDrop (Tompson et al., 2015) drops
out entire channels, Stochastic Depth Net (Huang et al., 2016) drops out entire ResNet blocks, and
Swapout (Singh et al., 2016) combines the Stochastic Depth Net with regular dropout. These methods
were proposed to boost test time accuracy. In this paper, we show that these structured dropout
techniques can be successfully applied to obtain better uncertainty estimates as well.

Dropout can be thought of as performing approximate Bayesian inference (Gal & Ghahramani,
2016b) and offer estimates of uncertainty. Many other approximate Bayesian inference techniques
have also been proposed for NNs (Kingma et al., 2015; Louizos & Welling, 2017). However, these
methods can demand a sophisticated implementation, are often harder to scale, and can suffer from
sub-optimal performance (Blier & Ollivier, 2018). Another popular alternative to approximate the
intractable posterior is Markov Chain Monte Carlo (MCMC) (Neal, 2012). More recently, stochastic
gradient versions of MCMC were also proposed to allow scalability (Gong et al., 2019; Ma et al.,
2015; Welling & Teh, 2011). Nevertheless, these methods are often computationally expensive,
and sensitive to the choice of hyper-parameters. A related approach, the SWA-Gaussian (Maddox
et al., 2019) is another technique for Gaussian posterior approximation using the Stochastic Weight
Averaging (SWA) algorithm (Izmailov et al., 2018).

There are also non-Bayesian techniques to obtain calibrated confidence estimates. For instance,
temperature scaling (Guo et al., 2017) has been empirically shown to be effective in calibrating the
predictions. A related line of work uses an ensemble of several randomly-initialized NNs (Lakshmi-
narayanan et al., 2017). The method, known as deep ensembles, requires training and saving multiple
NNs. It has also been demonstrated that an ensemble of snapshots of the trained model at different
iterations can help obtain better uncertainty estimates (Geifman et al., 2019). Compared to an explicit
ensemble, this approach requires training only one model. Nevertheless, models at different iterations
must all be saved in order to deploy the algorithm, which can be computationally demanding.

3 AN ANALYSIS OF THE PERFORMANCE OF MC DROPOUT

3.1 MC DROPOUT AS ENSEMBLES OF DROPOUT MODELS

Let’s assume a dataset D = (X,Y ) = {(xi, yi)}ni=1, where each (xi, yi) ∈ (X × Y) is i.i.d. We
consider the problem of k-class classification, and let X ⊆ Rd be the input space and Y = {1, · · · , k}
be the label space1. We restrict our attention to NN functions fw(x) : X → Rk, where w = {Wi}Li=1
corresponds to the parameters of a network with L-layers, and Wi corresponds to the weight matrix
in the i-th layer. We define a likelihood model p(y|x,w) = softmax(fw(x)). Maximum likelihood
estimation can be performed to compute point estimates for w.

Recently, Gal & Ghahramani (2016a) proposed a novel viewpoint of dropout as approximate Bayesian
inference (See Appendix A for a brief review). This perspective offers a simple way to marginalize
out model weights at test time to obtain better calibrated predictions, which is called MC dropout:

p(y = c|x,Dtrain) =

∫
p(y = c|x,w)p(w|Dtrain)dw ≈ 1

T

T∑
t=1

p(y|x,w(t)), (1)

where w(t) ∼ q(w|Dtrain) is assumed to be independently drawn layer-wise weight matrices: W (t)
i ∼

Ŵi · diag(Bernoulli(p)), Ŵi is the parameter matrix learned during training, and p is the dropout rate.
In this paper, we view each dropout sample w(t) in Equation 1 corresponding to an individual model
in an ensemble, where MC dropout is performing (approximate Bayesian) ensemble averaging.

1Extension to regression tasks is straightforward but left out of this paper.
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Figure 1: From left to right (1) Accuracy of MC dropout and deep ensemble (2) the relative im-
provements in accuracy of deep ensemble and MC dropout (3) Brier score of MC dropout and deep
ensemble against number of models (4) the relative improvements in in Brier score of deep ensemble
and MC dropout against number of models. Difference grows as number of models increases.

The same analysis applies to structured dropout as well. Mathematically, using structured dropout
in lieu of regular dropout amounts to only a change of the approximate distribution q(w|Dtrain)
in Equation 1, so that we are performing Bayesian variational inference with a different class of
approximate distributions. For instance, in the channel-level dropout, we sample one Bernoulli
random variable for each channel.

3.2 DECOMPOSING THE PERFORMANCE OF ENSEMBLES

First proposed by Krogh & Vedelsby (1995), the error-ambiguity decomposition enables one to
quantify the performance of ensembles with respect to individual models. Let {ht}Tt=1 be an
ensemble of T classifiers, and H(x) =

∑
t ht(x)/T is the ensemble prediction. In classification

problems, ht(x) is often a probability vector such that hit(x) = p(y = i|x,wt). In MC dropout
ht(x) = p(y|x,w(t)). Model ambiguity can be then defined as:

α(ht|x) = ||ht(x)−H(x)||22,
which quantifies the difference between an individual model and the ensemble average.

The Brier score measures both the accuracy and calibration of probabilistic classifications, and is
proportional to mean squared error (MSE), which can be decomposed for an ensemble as:

MSE(H) = Ex[MSE(H|x)] = Ex[MSE(h|x)]− Ex[α(h|x)], (2)

where MSE(ht|x) = ||y − ht(x)||2, y is the one-hot encoded vector of the correct label y,

MSE(h|x) =
1

T

T∑
t

MSE(ht|x), and α(h|x) =
1

T

T∑
t

α(ht|x)

correspond to the average MSE, and ensemble diversity (average ambiguity), respectively. Equation 2
suggests that the more accurate and the more diverse the models, the better performance will be
achieved by the ensemble. We use MSE instead of the negative log likelihood (NLL), another
commonly used measure for quality of uncertainty estimates, due to mathematical convenience. The
two metrics are closely related, and insights obtained from MSE carry over to NLL. In general, MSE
or NLL can be seen as comprehensive measures influenced by both the accuracy and the calibration
of the model. We give a brief discussion in Appendix B on the relationship between these metrics.

3.3 PERFORMANCE OF MC DROPOUT AND MODEL DIVERSITY

The discussion of the previous section provides us with a potential recipe to enhance MC dropout.
To illustrate the importance of diversity, we conduct an experiment using ResNet-50 on CIFAR-10
to compare MC dropout with an explicit ensemble of five NNs (details can be found in Section 4).
As we see from Figure 1, individual models in deep ensemble, on average, perform better than the
ones in MC dropout, likely because of the reduced effective capacity of the latter. Furthermore, the
performance of the ensembles improve with more models. Yet the improvement is larger for deep
ensemble, mainly because of increased ensemble diversity, since we know from Equation 2 that the
decrease in the Brier score in this analysis is attributable to the increase in ensemble diversity, as the
average MSE does not change with the number of models.

The lack of diversity among MC dropout models is largely because neighboring pixel features are
often correlated in convolutional layers. Thus, even with dropout, similar information propagates
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through the network in every iteration. Although we can encourage model diversity naively by
increasing dropout rates, this can lead to reduced MSE of individual models, thereby hampering
ensemble performance, as can be seen from Eq. 2. This is because higher dropout rates would lead to
smaller effective model capacities given a fixed total number of model parameters.

3.4 OMNIBUS DROPOUT

While model diversity can be promoted via explicit ensembles, they demand much more computational
resources during training, which can be prohibitively expensive. Though typically more number of
samples is needed for dropout based methods at test time, unlike deep ensembles, dropout uncertainty
can be obtained sequentially, which has a lower memory requirement. Moreover, the number of
samples needed can potentially be optimized with an adaptive sampling scheme (Inoue, 2019).

In order to enhance diversity in an ensemble obtained from a single model, we examine the use
of structured dropout, which drops information from contiguous regions of feature maps so that
more divergent information is propagated to subsequent layers during training at each iteration. This
enhancement in diversity of predictions can in turn lead to better performance. Specifically, we
compare dropout at the patch-level which randomly drops out small patches of feature maps (Ghiasi
et al., 2018), the channel-level which drops out entire channels of feature maps at random (Tompson
et al., 2015), and layer-level which drops out entire layers of CNNs at random (Huang et al., 2016).
We denote these as dropBlock, dropChannel and dropLayer respectively. We identify the test-time
sampling of models trained with the aforementioned structured dropout methods as MC dropBlock,
MC dropChannel, MC dropLayer.

As we empirically observe below, similar to increasing the dropout rate, the increased diversity of
structured dropouts can come at the cost of reduced performance of individual models. Moreover,
given considerable choices of dropout strategies available, it can be hard to pick the best one. There-
fore, we propose a novel omnibus dropout strategy, which merely combines all the aforementioned
methods. The implementation of omnibus dropout involves the sequential execution of the nested
group of dropout methods: regular dropLayer, dropChannel, dropBlock and regular dropout. In our
experiments, we use a constant dropout rate for all the dropout methods. Empirically we find this
simple choice to mostly work well. As our results show, omnibus dropout yields good performance
by promoting model diversity without hampering the performance of individual models.

4 EXPERIMENTS

We empirically evaluate the performance of MC dropBlock, MC dropChannel, MC dropLayer and
MC omnibus-dropout, and compare them to MC dropout, deep ensembles and temperature scaling2.
Unless otherwise stated, the following experimental setup applies to all of our experiments.

Model. Layer-level dropout requires skip connections so that there is still information flow through
the network after dropping out an entire layer. Some of the examples include the FractalNet (Larsson
et al., 2017) and the ResNet (He et al., 2016a). We use the PreAct-Resnet (He et al., 2016b) for all
our experiments. We refer to the preAct-ResNet trained without dropout as a deterministic model.
MC dropout, MC dropBlock and MC dropChannel models are implemented through inserting the
corresponding dropout layers with a constant p before each convolutional layer. A block size of 3× 3
is used for MC dropBlock. We follow Ghiasi et al. (2018) to match up the effective dropout rate
of MC dropBlock to the desired dropout rate p. MC dropLayer is implemented through randomly
dropping out entire ResNet blocks at a constant rate p. We empirically observe that, dropping out
downsampling ResNet blocks during testing is harmful to the quality of uncertainty estimates. This is
in agreement with experiments of Veit et al. (2016)3. Hence, downsampling blocks are only dropped
out during training. MC omnibus-dropout is implemented by including all types of aforementioned
dropouts, each with the same dropout rate. For a full Bayesian treatment, we also insert a dropout
layer before the fully connected layer at the end of the NNs. For all our experiments, the dropout rate
of this layer is set to be 0.1. To ensure a fair comparison, this layer was included for the “deterministic”
models. For all models with dropout of all types, we sample 30 times at test-time for Monte Carlo
estimation. We implement deep ensembles by training five NNs with random initializations. Although

2See Appendix C for results on explicit dropout ensembles.
3In their experiments, ResNet blocks are only dropped out during testing, but not training.
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Figure 2: Interrater Agreement (IA) of models with different types of dropout with 0.1 dropout rate
on the SVHN, CIFAR-10 and -100 datasets. The lower the IA, the more diverse the predictions of
the models. Y-axis indicates different methods. MC dropout produces models with much larger IA,
hence less model diversity, than structured dropout techniques in most of the cases.

used for training deep ensembles in the original paper, we find that adversarial training hampers both
calibration and classification performance significantly, and thus do not incorporate it in our training.

Datasets. We conduct experiments using the SVHN (Netzer et al., 2011), CIFAR-10 and CIFAR-
100 (Krizhevsky, 2009) datasets with standard train/test-set split. Validation sets of 10000 and
5000 samples are used for SVHN and the CIFARs. To examine the performance of the proposed
methods with models of different depth, we use the 18-, 50- and 101-layer PreAct-ResNet for SVHN,
CIFAR-10 and CIFAR-100.

Training. We perform preprocessing and data augmentation using per-pixel mean subtraction,
horizontal random flip and 32× 32 random crops after padding with 4 pixels on each side. We used
stochastic gradient descent (SGD) with 0.9 momentum, a weight decay of 10−4 and learning rate of
0.01, and divided it by 10 after 125 and 190 epochs (250 in total) for SVHN and CIFAR-10, and after
250 and 375 (500 in total) for CIFAR-100.

Evaluation. All the results are computed on the test set using the model at the optimal epoch based
on validation accuracy. We use the Brier score, negative log-likelihood (NLL), expected calibration
error (ECE), and Classification accuracy to evaluate performance (see Appendix B for definitions).
Following Naeini et al. (2015), we partition predictions into 20 equally spaced bins and take a
weighted average of the bins’ accuracy and confidence difference to estimate ECE. To visualize
calibration performance, we also plot the reliability diagrams (Maddox et al., 2019), which are plots
of the difference between accuracy and confidence against confidence. The closer the curve to the
X-axis, the more calibrated the model predictions are.

4.1 ENSEMBLE DIVERSITY

We first investigate model diversity achieved with dropout. For a fair comparison, we fix the dropout
rate for all methods to 0.1 so that all models have the same effective number of parameters. There
are numerous measures that quantify diversity of model ensembles (Zhou, 2012). We use Interrater
Agreement (IA) Kuncheva & Whitaker (2003), defined as:

κ = 1−
1
T

∑n
k=1 ρ(xk)(T − ρ(xk))

n(T − 1)p̄(1− p̄)
, (3)

where T is the number of individual classifiers, n is the number of test samples, ρ(xk) is the number
of models that classify the k-th sample correctly, and p̄ is average classification accuracy across
classifiers. When all classifiers perfectly agree on the test set κ = 1, and smaller values indicate
more diverse predictions. Figure 2 summarizes IA for sampled models trained on different datasets
with different dropout methods. We also compare the results with deep ensemble. The number of
models used to compute IA, T , is fixed to five for all approaches. In general, IA for MC dropout is
much higher than structured dropout techniques. On the other hand, structured dropout can yield
ensembles that are as diverse as the computationally expensive method of deep ensemble, confirming
our expectation that dropping out correlated information can produce sampled models with more
ambiguity. Note that the large IA for MC dropLayer on SVHN is likely caused by a relatively small
model used for that problem - an 18-layer ResNet. Lastly, note that while MC omnibus-dropout yields
models much more diverse than MC dropout, it is often not the most diverse one either.

The moderate diversity of MC omnibus-dropout, we believe, is the key to its effectiveness. To better
understand its behavior, we study the performance metrics as a function of number of sampled models

5



Under review as a conference paper at ICLR 2020

0 5 10 15 20 25 30
Number of Models in the Ensemble

0.008

0.009

0.010

0.011

0.012

0.013

0.014

0.015

Br
ie

r S
co

re

dropout
dropBlock
dropChannel
dropLayer
dropOmnibus

0 5 10 15 20 25 30
Number of Models in the Ensemble

0.91

0.92

0.93

0.94

Ac
cu

ra
cy

dropout
dropBlock
dropChannel
dropLayer
dropOmnibus

Figure 3: Test Brier score (left) and accuracy (right) against number of models for ensemble prediction
at test time on CIFAR-10. This corresponds to the number of different MC dropout instantiations at
test time of the same model. The Model trained with omnibus dropout achieves the best in terms of
accuracy and Brier score.

in the ensemble. Figure 3 shows the Brier score (left) and accuracy (right) against number of models
for the CIFAR-10 dataset (Similar results observed for SVHN and CIFAR-100. See Appendix C).
Firstly, as seen from Figure 3 (left), while the performance of individual models sampled from MC
dropout is one of the best, the gain in Brier score with a larger number of test-time MC samples
is much smaller compared to structured dropout techniques. On the other hand, though a larger
diversity indeed leads to much sharper improvements as number of sampled models increases, the
Brier scores (hence MSE) of individual models sampled from MC dropBlock, MC dropChannel and
MC dropLayer are much larger than that of MC dropout, suggesting a trade-off between diversity
and the performance of individual sample models. MC omnibus-dropout which enjoys the benefits
from both structured and regular dropouts, is able to not only achieve good performance on one
sampled model (with a Brier score close to MC dropout), but also good model diversity as evident by
a significantly larger decrease in Brier score as number of models increases. Similar observations can
be made from the accuracy plot of Figure 3 (right).

4.2 PERFORMANCE EVALUATION

Table 1 summarizes the performance metrics produced by various models. To ensure a fair comparison,
we treat the dropout rate as a hyper-parameter and conduct a linear grid search with 0.05 interval
for optimal dropout rate based on NLL. The optimal dropout rates are shown in the table next
to methods. Standard deviations are obtained on five models with random initializations for all
dropout models, and bootstrapping the test sets for deep ensembles. As seen from Table 1 and
Figure 4, all forms of structured dropout models offer better uncertainty estimates than MC dropout
in general. Overall, MC omnibus-dropout and deep ensembles are the best performing models.
Remarkably, MC omnibus-dropout achieves even better uncertainty estimates on SVHN and CIFAR-
10 and very comparable ones on CIFAR-100 compared to deep ensembles which requires five times
more computational resource to train. Moreover, we also perform experiments with five explicit
ensembles of models trained together with all types of dropout for a fair comparison, and most of
the dropout models outperform deep ensembles trianed without dropout. Again, omnibus dropout is
consistently one of the best methods (See Appendix C). Lastly, as evident from moderately increased
classification accuracy over deterministic temperature scaling models, all types of dropout methods
can be incorporated into architectures for uncertainty estimates with no accuracy penalty.

We believe the relatively good performance of MC dropout on SVHN compared to CIFARs is because
the former task is easier so that the model can still predict accurately at an aggressive dropout rate of
0.35 at which even regular dropout can produce acceptably diverse sampled models. In contrast, as
observed in our experiments, while using larger dropout rates for the more difficult CIFAR datasets
can lead to more calibrated predictions, accuracy and NLL suffer due to drop in MSE of individual
models (see Appendix C). Lastly, we believe the results for MC dropBlock can be improved by
optimizing the choice of block size. A pre-fixed block size of 3× 3 can be too small for the upstream
convolutional layers where the size of feature maps are much larger than the block size, and too
large for the last few downstream layers where the feature maps are comparable to the block size, as
supported by sharp increases in NLL after the optimal dropout rate.
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Table 1: Results on benchmark datasets comparing accuracy and uncertainty estimates produced
by different types of methods. The top-2 performing results for each metric are bold-faced. MC
omnibus-dropout is consistently one of the best methods, outperforming even deep ensembles, which
requires five times more computational resources, in many cases. The numbers in bracket next to
dropout methods corresponds to the optimal drop_rate found by grid search using the NLL metric.

Datasets Methods Accuracy ↑ NLL ↓ Brier ↓ (×10−3) ECE ↓ (×10−2)

SVHN

Temp Scaling 95.7± 0.1 0.163± 0.002 6.62± 0.10 0.995± 0.160
Deep Ensemble 96.6± 0.1 0.179± 0.009 5.39± 0.16 1.08± 0.08
Dropout (0.35) 96.7± 0.1 0.128± 0.001 5.11± 0.06 0.934± 0.045

DropBlock (0.1) 96.8± 0.1 0.133± 0.002 5.19± 0.07 1.26± 0.14
DropChannel (0.2) 96.7± 0.1 0.130± 0.001 5.15± 0.06 0.799± 0.032
DropLayer (0.25) 96.3± 0.1 0.144± 0.002 5.69± 0.05 0.846± 0.250

Omnibus dropout (0.15) 96.9± 0.1 0.127± 0.001 4.97± 0.09 1.15± 0.06

CIFAR10

Temp Scaling 93.9± 0.1 0.189± 0.002 9.06± 0.08 0.905± 0.114
Deep Ensemble 95.2± 0.2 0.181± 0.009 7.40± 0.28 1.40± 0.16
Dropout (0.2) 93.1± 0.1 0.224± 0.003 10.2± 0.1 1.64± 0.07

DropBlock (0.1) 93.4± 0.1 0.203± 0.003 9.89± 0.10 0.743± 0.116
DropChannel (0.15) 93.7± 0.1 0.193± 0.002 9.34± 0.9 0.812± 0.104

DropLayer (0.1) 94.0± 0.2 0.206± 0.001 9.09± 0.17 0.941± 0.068
Omnibus dropout (0.1) 94.4± 0.1 0.173± 0.001 8.38± 0.10 0.607± 0.078

CIFAR100

Temp Scaling 74.5± 0.3 1.00± 0.01 3.57± 0.04 4.02± 0.62
Deep Ensemble 77.9± 0.4 0.922± 0.019 3.12± 0.05 5.10± 0.33
Dropout (0.2) 74.1± 0.4 1.18± 0.01 3.71± 0.05 9.18± 0.23

DropBlock (0.15) 73.7± 0.5 1.04± 0.02 3.66± 0.05 4.46± 0.97
DropChannel (0.15) 74.9± 0.5 0.996± 0.02 3.46± 0.04 3.17± 0.11

DropLayer (0.25) 75.7± 0.2 1.01± 0.01 3.42± 0.03 2.90± 0.24
Omnibus dropout (0.25) 75.3± 0.2 0.929± 0.005 3.40± 0.02 1.65± 0.21

0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Co
nf

id
en

ce
 - 

Ac
cu

ra
cy

SVHN
deterministic
tempScaling
dropout
dropBlock
dropChannel
dropLayer
dropOmnibus
Deep Ensemble

0.5 0.6 0.7 0.8 0.9 1.0
Confidence

0.05

0.00

0.05

0.10

0.15

0.20

CIFAR-10

0.2 0.4 0.6 0.8 1.0
Confidence

0.1

0.0

0.1

0.2

0.3

0.4
CIFAR-100

Figure 4: Reliability diagrams of predictions produced by difference models.

4.3 BAYESIAN ACTIVE LEARNING

To further demonstrate the merit of omnibus dropout, we consider the downstream task of Bayesian
active learning on CIFAR-10. Active learning involves first training on a small amount of labeled
data. Then, an acquisition function based on the outputs of models is used to select a small subset of
unlabeled data so that an oracle can provide labels for these queried data. Samples that a model is
the least confident about are usually selected for labeling, in order to maximize the information gain.
The model is then retrained with the additional labeled data that is provided. The above process can
be repeated until a desired accuracy is achieved or the labeling resources are exhausted.

In our experiment, we train models with structured dropout at different scales using the identical
setup as described in the beginning of this section, except that only 2000 training samples are used
initially. To match up model capacity, the dropout rate is set to 0.1 for all methods. We also compare
again a deterministic model. After the first iteration, we acquire 1000 samples from a pool of
"unlabeled" data, and combine the acquired samples with the original set of labeled images to retrain
the models. Following Gal et al. (2017b), we consider three acquisition functions: Max Entropy,
H[y|x,Dtrain] = −

∑
c p(y = c|x,Dtrain) log p(y = c|x,Dtrain), the BALD metric (Bayesian

Active Learning by Disagreement), I[y,w|x,Dtrain] = H[y|x,Dtrain]−Ep(w|Dtrain)[H[y|x,w]], and
the Variation Ratios metric, variation-ratio[x] = 1−maxy p(y,x,Dtrain). We repeat the acquisition
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Figure 5: Left: Test accuracy against number of training samples for models with different methods of
dropout and Variation Ratios as the acquisition function on CIFAR-10. Right: Relative improvements
in test accuracy over that of the first iteration with different methods of dropout.

process eight times so that in the last iteration, the training set contains 10000 images. To mimic
a real world scenario in which number of labeled samples is small, we do not use a validation set,
and the accuracies reported for this experiment correspond to the last-epoch accuracies. We repeat
experiments five times for consistency.

Figure 5 shows the test accuracy against number of training samples for different models. In general,
MC omnibus-dropout yields the best performance by far. Interestingly, MC omnibus-dropout is able
to outperform all other methods consistently by a significant margin after the first iteration when all
samples are randomly selected. In addition, it can be seen that, after the first iteration when all 2000
training images are randomly selected, the test accuracy using MC dropout is on par with that of
other structured dropout methods. However, as more labeled data are added, the relative increase in
accuracy is more significant for models using structured dropout compared to that of using regular
dropout. This suggests that the uncertainty estimates obtained with structured dropout are more
useful for assessing "what the model doesn’t know", thereby allowing for the selection of samples to
be labeled in a way that better helps improve performance. Note also that the comparative gain in
accuracy by MC omnibus-dropout during the later stages of the learning process is not as large. We
suspect this can be caused by the saturation effect on test accuracy.

5 CONCLUSION AND FUTURE WORK

We reinterpret MC dropout as ensemble averaging strategy, and attribute its poor performance in
convolutional neural networks to a lack of diversity of sampled models using the error-ambiguity
decomposition of the Brier score (or MSE), a widely used performance metric that captures both
accuracy and calibration of probabilistic outputs. As we demonstrate empirically, omnibus dropout,
which is simple-to-implement and computationally efficient, strikes the right balance between model
diversity among sampled models while retaining reasonable performance of individuals models,
thereby consistently improving the quality of the ensemble’s prediction.

We are interested in further exploring several directions. Firstly, we have only considered uniform
individual dropout rates within the omnibus dropout strategy. Learning the optimal dropout rates for
each type of dropout, possibly by building on the the work of (Gal et al., 2017a), can potentially further
improve the performance of omnibus dropout. Moreover, we used a constant dropout rate in our
experiments, even though one can vary dropout rates across NNs (Huang et al., 2016) or incorporate
dropout rate scheduling (Ghiasi et al., 2018). How this impacts the quality of the probabilistic
predictions is an open question. Lastly, we have only explored structured dropout in the context
of CNNs, with application to computer vision tasks. We believe this idea can be extended beyond
CNNs.
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APPENDIX A: BRIEF REVIEW OF DROPOUT AS BAYESIAN APPROXIMATION

Let us assume a dataset D = (X,Y ) = {(xi, yi)}ni=1, where each (xi, yi) ∈ (X × Y) is i.i.d. In
this paper, we consider the problem of k-class classification, and let X ⊆ Rd be the feature space and
Y = {1, · · · , k} be the label space. A classifier is a function that maps input feature space to the label
space f : X → Rc. We restrict our attention to functions that can be implemented as a DNN, and
denote it by fw(x), where w = {Wi}Li=1 corresponds to the parameters of a network with L-layers,
and Wi corresponds to the weight matrix in the i-th layer. We define a likelihood model p(y|x,w) =
softmax(fw(x)). It is common practice to perform maximum likelihood to compute point estimates
for w. Uncertainty estimates can be obtained through Bayesian DNNs by first assuming a prior
distribution on the weights, p(w). A common choice is the zero mean Gaussian N (0, I). Bayes
Theorem can then be used to obtain the posterior p(w|X,Y ) = p(Y |X,w)p(X)/p(Y |X), with
which inference can be carried out:

p(y = c|x,Dtrain) =

∫
p(y = c|x,w)p(w|Dtrain)dw. (4)

The marginal distribution p(Y |X), and thus p(w|X,Y ) are often intractable. Variational inference
uses a tractable family of distributions qθ(w) paramaterized by θ to approximate the true posterior
p(w|X,Y ), by minimizing the Kullback-Leibler divergence KL(qθ(w)|p(w|X,Y )), which is
equivalent to optimizing a bound on the true objective Graves (2011). To interpret dropout as a
variational inference strategy Gal & Ghahramani (2016a), the approximate distribution is defined as:

Wi = Θi · diag(zi,j)
Ki
j=1, (5)

zi,j ∼ Bernoulli(pi) for i = 1, · · · , L, j = i, · · · ,Ki−1, (6)

where θ = {Θi}Li=1 are variational parameters to be optimized and {pi}Li=1 are user-defined hyper-
parameters that correspond to layerwise dropout rates. Minimizing the KL-divergence is mathemati-
cally equivalent to maximizing the following objective:

LV I(θ) =

n∑
i=1

∫
qθ(w) log p(yi|xi,w)dw − KL(qθ(w)|p(w)). (7)

Using Monte Carlo integration with one sample wi ∼ qθ(w) for each training datum (x, y) to
approximate the integral in the above equation, and optimizing over mini-batches of size m, the
approximated objective becomes:

L̂V I(θ) =
n

m

m∑
i=1

log p(yi|xi,wi)− KL(qθ(w)|p(w)). (8)

As shown in Gal & Ghahramani (2016a), there is a direct correspondence between optimizing the
above objective and regular dropout training for DNNs. Furthermore, uncertainty estimates can
be obtained through marginalizing and performing Monte Carlo integration over the approximate
distribution qθ(w). This corresponds to dropout at test time:

p(y = c|x,Dtrain) ≈
∫
p(y = c|x,w)qθ(w)dw ≈ 1

T

T∑
t=1

p(y|x,wt), (9)

where wt ∼ qθ(w) are dropout samples from the NN. This is referred to as the MC dropout.

APPENDIX B: RELATIONSHIP BETWEEN DIFFERENT PERFORMANCE METRICS

Brier score, negative log-likelihood (NLL) and the expected calibration error (ECE) are three of the
most commonly used metrics for evaluating the quality of uncertainty estimates. In this section, we
discuss the relationship between them.

As we noted in Section 3, the Brier score is equal to the normalized MSE in the context of classification.
Recall, the ECE is defined as:

ECE(H) = Ex[(Ey[y|H(x)]−H(x))2], (10)
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Figure 6: Test Brier score (left) and accuracy (right) against number of models for ensemble prediction
at test time on SVHN and CIFAR-100. This corresponds to the number of different MC dropout
instantiations at test time of the same model. The Model trained with omnibus dropout achieves the
best in terms of accuracy and Brier score.

which measures the expected difference between the true class probability and the confidence of the
model (Kuleshov & Liang, 2015). In addition to the error-ambiguity decomposition that we have
discussed, MSE can also be decomposed as:

MSE(H) = Ex[(y −H(x))2] (11)

= Ex[(y − Ey[y|H(x)])2] + ECE(H) (12)
= Varx[y]− Varx[Ey[y|H(x)]] + +ECE(H), (13)

where Ey[y|H(x)] corresponds to the true probability of y = 1 conditioned on H(x).
Varx[Ey[y|H(x)]] measures the variation of the true class probabilities across the level-sets of
the ensemble model H Kuleshov & Liang (2015). Thus for this metric, the numeric values of H(x)
are not important. It is minimized if H(x) is a constant and maximized when H(x) = f(y), for any
bijective function f . One can therefore view Varx[Ey[y|H(x)]] as a weak metric of accuracy that is
not sensitive to calibration. Note Varx[y] does not depend on the models. Brier score thus can be
seen as a metric that is influenced by both the accuracy and the ECE of the models. Similarly, NLL
is a metric closely related Brier score on a log scale. Consequently, sometimes better uncertainty
estimates in terms of NLL or Brier score can lead to slight drops in accuracy, as the reduction in
calibration error outweighs increase in classification error. This phenomenon is indeed observed
in practice as well. Figure 7 shows the plot of both NLL and accuracy against dropout rates for
all dropout methods considered in the paper. For instance, it can be seen that while increasing the
dropout rate for the MC dropout model on CIFAR-100 dataset from 0.1 to 0.2 leads to a reduction in
NLL, there is also quite a significant dropout in classification accuracy. Similar trends can be seen
for MC dropChannel on CIFAR-10 as well. Nevertheless, the trade-off is not always present. To
exemplify, increasing dropout rate of MC dropout on the SVHN dataset also leads to an increase
in accuracy as well. In conclusion, when tuning for the optimal dropout rate in practice, it can be
beneficial to look at different metrics for a holistic consideration.

APPENDIX C: ADDITIONAL RESULTS

Supplementary Results on Diversity of Dropout Models. In Figure 6, we show plots of Brier
score and accuracy against number of models used for prediction on SVHN and CIFAR-100 datasets.
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Table 2: Results comparing accuracy and uncertainty estimates obtained using a single model when
drop_rate = 0.1 for all models. The top-2 performing results for each metric is bold-faced. MC
omnibus-dropout is the best method in general.

Datasets Methods Accuracy ↑ NLL ↓ Brier ↓ (×10−3) ECE ↓ (×10−2)

SVHN

Temp Scaling 95.7± 0.1 0.163± 0.002 6.62± 0.10 0.995± 0.160
Dropout 96.4± 0.1 0.179± 0.004 5.68± 0.07 1.34± 0.10

DropBlock 96.8± 0.1 0.133± 0.002 5.19± 0.07 1.26± 0.14
DropChannel 96.5± 0.1 0.148± 0.002 5.41± 0.04 0.663± 0.050

DropLayer 96.2± 0.1 0.154± 0.002 5.94± 0.10 1.13± 0.10
Omnibus dropout 96.8± 0.1 0.133± 0.003 5.07± 0.07 0.616± 0.077

CIFAR10

Temp Scaling 93.9± 0.1 0.189± 0.002 9.06± 0.08 0.905± 0.114
Dropout 93.8± 0.1 0.226± 0.008 9.44± 0.10 2.30± 0.09

DropBlock 93.4± 0.1 0.203± 0.003 9.89± 0.10 0.743± 0.116
DropChannel 93.7± 0.1 0.196± 0.006 9.20± 0.136 0.970± 0.171

DropLayer 94.0± 0.2 0.206± 0.001 9.09± 0.17 0.941± 0.068
Omnibus dropout 94.4± 0.1 0.173± 0.001 8.38± 0.10 0.607± 0.078

CIFAR100

Temp Scaling 74.5± 0.3 1.00± 0.01 3.57± 0.04 4.02± 0.62
Dropout 74.8± 0.4 1.21± 0.01 3.71± 0.05 11.1± 0.4

DropBlock 75.6± 0.2 1.04± 0.01 3.46± 0.02 6.98± 0.19
DropChannel 75.3± 0.2 1.02± 0.01 3.43± 0.03 5.57± 0.08

DropLayer 75.8± 0.3 1.04± 0.02 3.46± 0.04 7.42± 0.32
Omnibus dropout 76.3± 0.1 1.00± 0.01 3.37± 0.02 7.11± 0.20

Table 3: Results showing accuracy and uncertainty estimates produced by different types of explicit
ensembles when drop_rate = 0.1 for all models. five models are used for each ensemble. We
generate 6 sampled models from each dropout models during evaluation (30 samples in total). The
top-2 performing results for each metric is bold-faced.

Datasets Methods Accuracy ↑ NLL ↓ Brier ↓ (×10−3) ECE ↓ (×10−2)

SVHN

Deep Ensemble 96.6± 0.1 0.179± 0.009 5.39± 0.16 1.08± 0.08
Dropout 97.0± 0.1 0.141± 0.006 4.82± 0.15 0.736± 0.077

DropBlock 97.2± 0.1 0.125± 0.004 4.79± 0.13 1.86± 0.09
DropChannel 97.0± 0.1 0.129± 0.004 4.82± 0.14 0.949± 0.082

DropLayer 96.8± 0.1 0.132± 0.005 4.91± 0.14 0.575± 0.077
Omnibus dropout 97.2± 0.1 0.122± 0.004 4.61± 0.13 1.05± 0.07

CIFAR10

Deep Ensemble 95.2± 0.2 0.181± 0.009 7.40± 0.28 1.40± 0.16
Dropout 94.4± 0.2 0.176± 0.008 8.17± 0.29 1.04± 0.16

DropBlock 94.0± 0.2 0.185± 0.006 9.12± 0.28 1.51± 0.18
DropChannel 94.3± 0.2 0.174± 0.007 8.35± 0.29 0.900± 0.152

DropLayer 94.8± 0.2 0.173± 0.006 7.88± 0.26 2.04± 0.17
Omnibus dropout 94.8± 0.2 0.160± 0.006 7.82± 0.27 0.953± 0.156

CIFAR100

Deep Ensemble 78.0± 0.4 0.923± 0.020 3.12± 0.05 5.12± 0.34
Dropout 77.5± 0.4 0.931± 0.020 3.18± 0.05 4.51± 0.32

DropBlock 77.3± 0.4 0.909± 0.019 3.17± 0.06 3.23± 0.31
DropChannel 77.1± 0.4 0.871± 0.017 3.13± 0.04 2.24± 0.28

DropLayer 78.1± 0.4 0.855± 0.017 3.05± 0.04 2.14± 0.28
Omnibus dropout 78.0± 0.4 0.863± 0.017 3.08± 0.05 3.27± 0.29
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As discussed in Section 4.1, patterns similar to the plots obtained on the CIFAR-10 dataset in Figure 3
are also observed consistently here. The only exception is to the MC dropLayer model on the SVHN
dataset, which obtains better performance on individual model but much smaller improvements in
both Brier score and test accuracy compared to the other the other dropout methods. We would like
to highlight out that the seemingly contradictory results is likely caused by the shallow network used,
an 18-layer ResNet. As no down-sampling layers are dropped out for layer dropout, the effective
number of ResNet blocks that can be dropped is very small, leading to a much smaller dropout rate
compared to ther other methods. This is not an issue with deeper models in which the number of
downsampling blocks are much more than that of non-downsampling ones.
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Figure 7: Plots of test time NLL (left) and accuracy (right) against dropout rate for models trained
with different types of dropout on the SVHN, CIFAR-10 and CIFAR-100 datasets.

Additional Results Using Explicit Dropout Ensembles. Smith & Gal (2018) demonstrated that
explicit ensembles with MC dropout models produce better uncertainty estimates than that of deep
ensembles. Thus we examine the effectiveness of ensembling multiple explicit models trained with
structured dropout. This would serve as a fair comparison to deep ensemble. We use five explicit
models, each trained with random initialization. drop_rate = 0.1 is used for all methods as it is
impractical to tune for the optimal dropout rates for an ensemble of five models. Note that the optimal
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dropout rates found for individual models do not carry over to explicit ensembles of five models, as
we observe in our experiments. At test time, we generate six sampled models from each dropout
models (30 samples in total).

Results obtained are summarized in Table 3. Similar to previous findings, ensembles with omnibus
dropout consistently outperform all the rest. Moreover, ensembles with all types of structured dropout
methods do better than MC dropout and deep ensembles. Deep ensembles does the worst in terms of
uncertainty estimates.

We also investigate the sensitivity of the methods to the choice of dropout rate. To that end, we also
report the results obtained with a single model for each method, with a fixed dropout rate of 0.1, a
reasonable default value for dropout rate in general. The results are shown in Table 2. Possibly due to
the combination of all dropout method, omnibus dropout seems to be also relatively insensitive to the
choice of dropout rate, performing well in all the experiments.

Results on Tuning the Dropout Rate. Figure 7 illustrates the plots of NLL and accuracy against
dropout rate for all models on all of the datasets. As discussed in Appendix B, conflict between NLL
and accuracy can occur sometimes. Interestingly, the NLL drastically increases after minima on all
three datasets for dropBlock, suggesting the possibility that the block size for dropBlock may be too
large towards later convolutional layers when the size of feature maps are comparable to that of block
size.

16


	Introduction
	Related Work
	An Analysis of the Performance of MC Dropout
	MC Dropout as Ensembles of Dropout Models
	Decomposing the Performance of Ensembles
	Performance of MC Dropout and Model Diversity
	Omnibus Dropout

	Experiments
	Ensemble Diversity
	Performance Evaluation
	Bayesian Active Learning

	Conclusion and Future Work

