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ABSTRACT

We propose GraphNVP, an invertible flow-based molecular graph generation model.
Existing flow-based models only handle node attributes of a graph with invertible
maps. In contrast, our model is the first invertible model for the whole graph
components: both dequantized node attributes and adjacency tensor are converted
into latent vectors through two novel invertible flows. This decomposition yields
the exact likelihood maximization on graph-structured data. We decompose the
generation of a graph into two steps: generation of (i) an adjacency tensor and
(ii) node attributes. We empirically demonstrate that our model and the two-step
generation efficiently generates valid molecular graphs with almost no duplicated
molecules, although there are no domain-specific heuristics ingrained in the model.
We also confirm that the sampling (generation) of graphs is faster in order of
magnitude than other models in our implementation. In addition, we observe that
the learned latent space can be used to generate molecules with desired chemical
properties. Finally we list open problems for this new direction of fully invertible
graph generation researches.

1 INTRODUCTION

Generation of molecules with certain desirable properties is a crucial problem in computational drug
discovery. Recently, deep learning approaches are being actively studied for generating promising
candidate molecules quickly. Earlier models (Kusner et al., 2017; Gómez-Bombarelli et al., 2018)
depend on a string-based representation of molecules. However, recent models (Jin et al., 2018; You
et al., 2018a; De Cao & Kipf, 2018) directly work on molecular graph representations and record
impressive experimental results. In these studies, either variational autoencoder (VAE) (Kingma &
Welling, 2014) or generative adversarial network (GAN) (Goodfellow et al., 2014; Radford et al.,
2015) are used mainly to learn mappings between the graphs and their latent vector representations.

In this paper, we propose GraphNVP, yet another framework for molecular graph generation based
on the invertible normalizing flow, which was mainly adopted for image generation tasks (Dinh
et al., 2017; Kingma & Dhariwal, 2018). To capture distributions of irregular graph structure of
molecules into a latent representation, we propose a novel two-step generation scheme. Specifically,
GraphNVP is equipped with two latent representations for a molecular graph: first for the graph
structure represented by an adjacency tensor, and second for node (atom) attributes. We introduce
two types of reversible flows that work for the aforementioned two latent representations of graphs.

Recent work by Liu et al. (2019) proposes a flow-based invertible model for transforming the node
attribute matrix. However, they use a non-invertible encoder for transforming the adjacency tensor
making the complete model non-invertible. Our model is the first fully invertible model for the
whole graph components: both adjacency tensor and node attributes are converted into latent vectors
through two novel invertible flows.

To sample a graph, we develop a novel two-step generation process. During the generation process,
GraphNVP first generates the graph structure. Then node attributes are generated according to this
structure. This two-step generation enables efficient generation of valid molecular graphs. The full
reversibility of our model on graphs contributes to two major benefits: a simple architecture and
precise log-likelihood maximization. A major advantage of invertible models is that we do not need
to design a separate decoder for sample generation: new graph samples can be generated by simply
feeding a latent vector into the same model but in the reverse order.
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In contrast, VAE models require an encoder and a separated decoder. Decoding processes of several
VAE graph generators are often quite complicated to assure valid generations (Kusner et al., 2017;
Jin et al., 2018; Ma et al., 2018), and computing a graph reconstruction loss may require expensive
graph matching (Simonovsky & Komodakis, 2018). The lack of an encoder in GAN models makes it
challenging to manipulate the sample generation. For example, it is not straightforward to use a GAN
model to generate graph samples that are similar to a query graph (e.g., lead optimization for drug
discovery), while it is easy for flow-based models.

Unlike VAEs and GANs, invertible models are capable of precise log-likelihood evaluation. We
believe precise optimization is crucial in molecule generation for drugs, which are highly sensitive to
a minor replacement of a single atom (node).

In the experiments, we compare the proposed flow model with several existing graph generation
models using two popular molecular datasets. The proposed flow model generates molecular graphs
with almost 100% uniqueness ratio: namely, the results contain almost no duplicated molecular
graphs without ingrained domain expert knowledge and extra validity checks. The proposed model
enjoys fast graph samplings; faster in orders of magnitude than other graph generation models in
our implementation. Additionally, we show that the learned latent space can be utilized to generate
molecular graphs with desired chemical properties, even though we do not encode domain expert
knowledge into the model. Finally we list open problems for the development of this new direction
of fully invertible graph generation researches.

2 RELATED WORK

2.1 MOLECULAR GRAPH GENERATION

We can classify the existing molecular graph generation models based on how the data distribution is
learned. Most current models belong to two categories. First, VAE-based models assume a simple
variational distribution for latent representation vectors (Jin et al., 2018; Liu et al., 2018; Ma et al.,
2018). Second, some models implicitly learn the empirical distribution, especially based on the GAN
architecture (e.g., (De Cao & Kipf, 2018; You et al., 2018a; Guimaraes et al., 2017)). Some may
resort to reinforcement learning (You et al., 2018a) to alleviate the difficulty of direct optimization of
the objective function. We also observe an application of autoregressive recurrent neural networks
(RNN) for graphs (You et al., 2018b). In this paper, we will add a new category to this list: namely,
the invertible flow.

Additionally, we can classify the existing models based on the process they use for generating a
graph. There are mainly two choices in the generation process. One is a sequential iterative process,
which generates a molecule in a step-by-step fashion by adding nodes and edges one by one (Jin
et al., 2018; You et al., 2018a). The alternative is one-shot generation of molecular graphs, when
the graph is generated in a single step. This process resembles commonly used image generation
models (e.g., (Kingma & Dhariwal, 2018)). The former process is advantageous in (i) dealing
with large molecules and (ii) forcing validity constraints on the graph (e.g., a valency condition of
molecule atoms). The latter approach has a major advantage: the model is simple to formulate and
implement. This is because the one-shot approach does not have to consider arbitrary permutations
of the sequential steps, which can grow exponentially with the number of nodes in the graph.

Combining these two types of classification, we summarize the current status of molecular graph
generation in Table 1. In this paper, we propose the first graph generation model based on the
invertible flow, with one-shot generation strategy.

2.2 INVERTIBLE FLOW MODELS

To the best of our knowledge, the invertible flow was first introduced to the machine learning
community by (Tabak & Vanden-Eijnden, 2010; Tabak & Turner, 2013). Later, Rezende & Mohamed
(2015) and Dinh et al. (2015) leveraged deep neural networks in defining tractable invertible flows.
Dinh et al. (2015) introduced reversible transformations for which the log-determinant calculation is
tractable. These transformations, known as coupling layers, serve as the basis of recent flow-based
image generation models (Dinh et al., 2017; Kingma & Dhariwal, 2018; Grathwohl et al., 2019)
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Name Distribution Model Generation Process
VAE Adversarial RL RNN Inv.Flow Iterative OneShot

RVAE (Ma et al., 2018) X - - - - - X
CGVAE (Liu et al., 2018) X - - - - X -
JT-VAE (Jin et al., 2018) X - - - - X -

MolGAN (De Cao & Kipf, 2018) - X - - - - X
GCPN (You et al., 2018a) - X X - - X -

GraphRNN (You et al., 2018b) - - - X - X -
GraphNVP - - - - X - X

Table 1: Existing models of molecular graph generation. We propose the first invertible flow-based
graph generation model in the literature..

Readers are referred to the latest survey (Kobyzev et al., 2019) for the general flow methodologies.

So far, the application of flow-based models is mostly limited to the image domain. As a few
exceptions, Kumar et al. (2018) proposed flow-based invertible transformations on graphs. However,
their model is only capable of modeling the node assignments and cannot learn a latent representation
of the adjacency tensor; therefore, it cannot generate a graph structure. Liu et al. (2019) proposed
to plug a non-invertible decoder for the adjacency tensor to this flow model afterwards, giving
up training the entire graph generator in a single unified estimator. We overcome this issue by
introducing two latent representations, one for node assignments and another for the adjacency tensor,
to capture the unknown distributions of the graph structure and its node assignments. Thus, we
consider our proposed model to be the first invertible flow-based model that can generate attributed
graphs including the adjacency structure.

3 GRAPHNVP: FLOW-BASED GRAPH GENERATION MODEL

3.1 FORMULATION

We use the notation G = (A,X) to represent a graph G consisting of an adjacency tensor A and a
feature matrix X . Let there be N nodes in the graph. Let M be the number of types of nodes and
R be the number of types of edges. Then A ∈ {0, 1}N×N×R and X ∈ {0, 1}N×M . In the case of
molecular graphs, G = (A,X) represents a molecule with R types of bonds (single, double, etc.)
and M types of atoms (e.g., oxygen, carbon, etc.). Our objective is to learn an invertible model fθ
with parameters θ that maps G into a latent point z = fθ(G) ∈ RD=(N×N×R)+(N×M). We describe
fθ as a normalizing flow composed of multiple invertible functions.

Let z be a latent vector drawn from a known prior distribution pz(z) (e.g., Gaussian): z ∼ pz(z).
With the change of variable formula, the log probability of a given graph G can be calculated as:

log (pG(G)) = log (pz(z)) + log

(∣∣∣∣det( ∂z

∂G

)∣∣∣∣) , (1)

where ∂z
∂G is the Jacobian of fθ at G.

3.2 GRAPH REPRESENTATION

Directly applying a continuous density model on discrete components may result in degenerate
probability distributions. Therefore, we cannot directly employ the change of variable formula (Eq. 1)
for these components. The same issue, especially modeling the discrete structure of the adjacency
A, has been a problem in existing one-shot generators based on GAN (De Cao & Kipf, 2018) and
VAE (Ma et al., 2018). They resort to an ad-hoc workaround; treating the adjacency tensor as a
real-valued continuous tensor. In this paper we take another approach, dequantization (Theis et al.,
2016), following the flow-based image generation models (Dinh et al., 2017; Kingma & Dhariwal,
2018). The dequantization process adds uniform noises to A and X and yield the dequantized graph
component G′ = (A′, X ′). Specifically, A′ = A+ cu; u ∼ U [0, 1)N×N×R and X ′ = X + cu; u ∼
U [0, 1)N×M , where 0 < c < 1 is a scaling hyperparameter (c = 0.9 is adopted for our experiment).
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Figure 1: Forward transformation of the proposed GraphNVP. The original discrete A and X are first
dequantized into A′ and X ′. Layers of invertible couplings are applied to these dequantized tensors.

This G′ is used as the input in Eq. 1. Note that the original discrete inputs A and X can be recovered
by quantization: simply applying floor operation on each continuous value in A′ and X ′.

Hereafter, all the transformations consisting fθ are performed on dequantized inputs A′ and X ′,
not on A and X . It means fθ is a bijective function that maps G′ → z: thus f−1(z) returns the
dequantized G′, not the original G. However, our generative model can recover the original discrete
G by performing the postprocessing quantization to inverted G′.

There are a few works related to discrete invertible flows such as (Hoogeboom et al., 2019; Tran et al.,
2019). The former maps discrete data x to a discrete latent space. However, we prefer a smoothly
distributed continuous latent space for molecule decoration and optimization applications (see Sec.
4.3). The latter can map discrete data x to a continuous z, but computation includes approximation.
Approximated likelihood evaluations decreases the significance of the invertible flows against VAEs.
So we do not adopt these options in this paper.

3.3 COUPLING LAYERS

Based on real-valued non-volume preserving (real NVP) transformations introduced in (Dinh et al.,
2017), we propose two types of reversible affine coupling layers; adjacency coupling layers and node
feature coupling layers that transform the adjacency tensor A′ and the feature matrix X ′ into latent
representations, zA ∈ RN×N×R and zX ∈ RN×M , respectively.

We apply LX layers of node feature coupling layers to a feature matrix X ′ to obtain zX . We denote
an intermediate representation of the feature matrix after applying the `th node feature coupling layer
as z(`)X . Starting from z

(0)
X = X ′, we repeat updating rows of zX over LX layers. Each row of z(`)X

corresponds to a feature vector of a node in the graph. Finally, we obtain zX = z
(LX)
X as the final

latent representation of the feature matrix. The `th node feature coupling layer updates a single row `
of the feature matrix while keeping the rest of the input intact:

z
(`)
X [`, :]← z

(`−1)
X [`, :]� exp

(
s(z

(`−1)
X [`−, :], A)

)
+ t(z

(`−1)
X [`−, :], A), (2)

where functions s and t stand for scale and translation operations, and � denotes element-wise
multiplication. We use zX [`−, :] to denote a latent representation matrix of X ′ excluding the `th row
(node). Rest of the rows of the feature matrix will stay the same as

z
(`)
X [`−, :]← z

(`−1)
X [`−, :]. (3)

Both s and t can be formulated with arbitrary nonlinear functions, as the reverse step of the model
does not require inverting these functions. Therefore, we use the graph adjacency tensor A when
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Figure 2: Masking schemes used in proposed affine coupling layers. Left: Adjacency coupling
layer: A single row of adjacency tensor is masked. Right: Node feature coupling layer: All channels
belonging to a single node are masked.

computing invertible transformations of the node feature matrix X ′. So as functions s and t in a node
feature coupling layer, we use a sequence of generic graph neural networks. It should be noted that
we use the discrete adjacency tensor A, as only the node feature matrix is updated in this step. In this
paper, we use a variant of Relational GCN (Schlichtkrull et al., 2018) architecture.

Likewise, we apply LA layers of transformations for the adjacency tensor A′ to obtain the latent
representation zA. We denote an intermediate representation of the adjacency tensor after applying
the `th adjacency coupling as z(`)A . The `th adjacency coupling layer updates only a single slice of z`A
with dimensions N×R as:

z
(`)
A [`, :, :]← z

(`−1)
A [`, :, :]� exp

(
s(z

(`−1)
A [`−, :, :])

)
+ t(z

(`−1)
A [`−, :, :]). (4)

The rest of the rows will stay as it is:

z
(`)
A [`−, :, :]← z

(`−1)
A [`−, :, :]. (5)

For the adjacency coupling layer, we adopt multi-layer perceptrons (MLPs) for s and t functions.
Starting from z

(0)
A = A′, we repeat updating the first axis slices of zA over LA layers. Finally, we

obtain zA = z
(LA)
A as the final latent representation of the adjacency tensor.

3.3.1 MASKING PATTERNS AND PERMUTATION OVER NODES

Eqs. (2, 4) are implemented with masking patterns shown in Figure 2. Based on experimental
evidence, we observe that masking zA(A′) and zX(X ′) w.r.t. the node axis performs the best.
Because a single coupling layer updates one single slice of zA and zX , we need a sequence of N
coupling layers at the minimum, each masking a different node, for each of the adjacency coupling
and the node feature coupling layers.

We acknowledge that this choice of masking axis over zX and zA makes the transformations not
invariant to permutations of the nodes. We can easily formulate permutation-invariant couplings by
changing the slice indexing based on the non-node axes (the 3rd axis of the adjacency tensor, and
the 2nd axis of the feature matrix). However, using such masking patterns results in dramatically
worse performance due to the sparsity of molecular graphs. For example, organic compounds are
mostly made of carbon atoms. Thus, masking the carbon column in X ′ (and zX ) results in feeding
a nearly-empty matrix to the scale and the translation networks, which is almost non-informative
to update the carbon column entries of X ′ and zX . We consider this permutation dependency as a
limitation of the current model, and we intend to work on this issue as future work.

3.4 TRAINING

During the training, we perform the forward computations shown in Figure 1 over minibatches of
training data (G = (A,X)) and obtain latent representations z = concat(zA, zX). Our objective is
maximizing the log likelihood pG(G) (Eq. 1) over minibatches of training data. This is implemented
as minimization of the negative log likelihood using the Adam optimizer (Kingma & Ba, 2015).
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Figure 3: Generative process of the proposed GraphNVP. We apply the inverse of the coupling layers
in the reverse order, so that the dequantized inputs Ã and X̃ are recovered. Additional quantization
reconstructs the original discrete graph, G = (A,X).

3.5 TWO-STEP MOLECULAR GRAPH GENERATION

Because our proposed model is invertible, graph generation is simply executing the process shown
in Figure 1 in reverse. During the training, node feature coupling and adjacency coupling can be
performed in either order, as the output of one coupling module does not depend on the output of
the other coupling module. However, because the node feature coupling module requires a valid
adjacency tensor as an input, we also need an adjacency tensor to perform the reverse step of node
feature coupling. Therefore, we apply the reverse step of adjacency coupling module first, so we get
an adjacency tensor as the output. Next, the adjacency tensor is fed into the reverse step of the node
feature coupling. The generation process is shown in Figure 3. In section 4, we show that this 2-step
generation process can efficiently generate chemically valid molecular graphs.

1st step: We draw a random sample z = concat(zA, zX) from prior pz and split sampled z into
zA and zX . Next, we apply a sequence of inverted adjacency coupling layers on zA. As a result,
we obtain a probabilistic adjacency tensor Ã′, from which we construct a discrete adjacency tensor
Ã ∈ {0, 1}N×N×R by taking node-wise and edge-wise argmax.

2nd step: We generate a feature matrix given the sampled zX and the generated adjacency tensor
Ã. We input Ã along with zX into a sequence of inverted node feature coupling layers to attain X̃ ′.
Likewise, we take node-wise argmax of X̃ ′ to get discrete feature matrix X̃ ∈ {0, 1}N×M .

4 EXPERIMENTS

4.1 PROCEDURE

We use two popular chemical molecular datasets, QM9 (Ramakrishnan et al., 2014) and ZINC-
250k (Irwin et al., 2012). QM9 dataset contains 134k molecules, and ZINC-250k is made of 250k
drug-like molecules randomly selected from the ZINC database. The maximum number of atoms in a
molecule are 9 for the QM9 and 38 for the ZINC, respectively (excluding hydrogen). Following a
standard procedure, we first kekulize molecules and then remove hydrogen atoms from them. The
resulting molecules contain only single, double, and triple bonds.

We convert each molecule to an adjacency tensor A ∈ {0, 1}N×N×R and a feature matrix X ∈
{0, 1}N×M . N is the maximum number of atoms a molecule in a certain dataset can have. If a
molecule has less than N atoms, we insert virtual nodes as padding to keep the dimensions of A and
X the same for all the molecules. Because the original adjacency tensors can be sparse, we add a
virtual bond edge between the atoms that do not have a bond in the molecule. Thus, an adjacency
tensor consists of R=4 adjacency matrices stacked together, each corresponding to the existence
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Method QM9 ZINC
% V % N % U % R % V % N % U % R

GraphNVP 83.1
(± 0.5)

58.2
(± 1.9)

99.2
(± 0.3) 100.0 42.6

(± 1.6)
100.0
(± 0.0)

94.8
(± 0.6) 100.0

RVAE 96.6 97.5 - 61.8 34.9 100.0 - 54.7
MolGAN 98.1 94.2 10.4 - - - - -
GVAE 60.2 80.9 9.3 96.0 7.2 100.0 9.0 53.7
CVAE 10.3 90.0 67.5 3.6 0.7 100.0 67.5 44.6
JT-VAE - - - - 100.0 100.0 100.0 76.7
CG-VAE 100.0 94.4 98.6 - 100.0 100.0 99.8 -

Table 2: Performance of generative models with respect to quality metrics. Baseline scores are
borrowed from the original papers. Zinc results of JT-VAE are reproduced based on the settings
written in the original paper. Scores of GraphNVP are averages over 5 runs. Standard deviations are
presented below the average scores.

of a certain type of bond (single, double, triple, and virtual bonds) between the atoms. The feature
matrix is used to represent the type of each atom (e.g., oxygen, fluorine, etc.).

We use a multivariate Gaussian distribution N (0, σ2I) as prior distribution pz(z), where standard
deviation σ is learned simultaneously during the training. More details are presented in the appendix.

4.2 NUMERICAL EVALUATION

Following (Kingma & Dhariwal, 2018), we sample 1,000 latent vectors from a temperature-truncated
normal distribution pz,T (z) (see the appendix for details) and transform them into molecular graphs
by performing the reverse step of our model. We compare the performance of the proposed model
with baseline models in Table 2 using following metrics. Validity (V) is the percentage of generated
graphs corresponding to valid molecules. Novelty (N) is the percentage of generated valid molecules
not present in the training set. Uniqueness (U) is the percentage of unique valid molecules out of
all generated molecules. Reconstruction accuracy (R) is the percentage of molecules that can be
reconstructed perfectly by the model: namely, the ratio of molecules G s.t. G = f−1θ (fθ (G)).

We choose Regularizing-VAE (RVAE) (Ma et al., 2018) and MolGAN (De Cao & Kipf, 2018)
as baseline one-shot generation models. We compare with two additional models: grammar
VAE(GVAE) (Kusner et al., 2017) and character VAE (CVAE)(Gómez-Bombarelli et al., 2018),
which learn to generate string representations of molecules. Finally, JT-VAE (Jin et al., 2018) and CG-
VAE (Ma et al., 2018) as the state-of-the-art iterative generation models with complicated decoders
with validity checkers.

Notably, proposed GraphNVP guarantees 100% reconstruction accuracy, attributed to the invertible
function construction of normalizing flows. Also, it is notable that GraphNVP enjoys a significantly
high uniqueness ratio. Although some baselines exhibit a higher validity on QM9 dataset, the set of
generated molecules contains many duplicates. Additionally, we want to emphasize that our model
generates a substantial number of valid molecules without explicitly incorporating the chemical
knowledge as done in some baselines (e.g., valency checks for chemical graphs in RVAE, MolGAN,
JT-VAE, and CG-VAE. This is preferable because additional validity checks consume computational
time (see Sec.4.2.1), and may result in a low reconstruction accuracy (e.g., RVAE and JT-VAE). As
GraphNVP does not incorporate domain-specific procedures during learning, it can be easily used for
learning generative models on general graph structures. Two iterative generation models, JT-VAE (Jin
et al., 2018) and CG-VAE (Liu et al., 2018), show great results in the table. However, decoders of
these models are quite complicated to properly implement and reproduce the same performance. In
contrast, the proposed GraphNVP enjoys a simple network architecture and its decoder is immediately
available by just inverting the trained coupling layers.

Considering the simplicity of the model, proposed GraphNVP achieves good performance among
latest graph generation models. We guess the generation scheme of the GraphNVP may affect these
performances in part. The proposed generation scheme is in the midst of the one-shot and the iterative
graph generation. From a higher perspective, our generation is one-shot: once we sample the latent
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vector z = [zX , zA] then the final output graph is determined. In a detailed observation, the inversion
process is iterative: for each (inverting) `-th layer of two couplings, the network recovers a adjacency
matrix or a feature vector of a `-th node, given representations of all the nodes except `-th node. One
layer of partition-based affine coupling is not a mapping of super-flexible, but may be flexible enough
to warp a single node’s representation.

4.2.1 COMPUTATIONAL TIME FOR GRAPH GENERATION

One practically important aspect of graph generation is computational time. Training and sampling
a generative model is much faster than wet-lab experiments, but the computational time is still an
issue for tasks involving huge search spaces: e.g. drug search. We compare the computational time
(wall-clock time) for sampling 1, 000 graphs for ZINC dataset experiment runs. The average wall-
clock time (excluding preprocessing time) of GraphNVP for sampling is only 4.6 [sec] (implemented
in Chainer Tokui et al. (2015)). This is faster in order of magnitude than several baselines (in our
test runs): 193.5 [sec] for CVAE (Tensorflow), 460 [sec] for GVAE (Tensorflow), and 124 [sec] for
JT-VAE (pytorch).

The sampling time affects the number of valid, novel, and unique molecular graphs we can collect
within a unit time. The validity of the GraphNVP samples are relatively low, but still keeps 40%.
In contrast, sampling time is 30 to 100 times shorter. Thus we can obtain more (10 to 40 times)
valid, novel, and unique molecules in the same computation time. Once we obtained the generated
molecule, we usually calculate or predict the value of specific property in computer to check the
generated molecules have desired values. Thus generating many molecules increases the chance to
discover molecule with required property. Assume we need to prepare 1 million unique, novel, and
valid molecules from models trained via ZINC dataset. With a very rough estimate, we expect the
GraphNVP, JT-VAE, and GVAE requires 1.1 hours, 1.5 days, and 121 5 days, respectively. Such slow
graph generations would harm the productivity of the R&D projects. Further, this will reduce the
usage of cloud computing servers such as Amazon EC2, in turn reducing the monetary cost.

These computational time may depend on choices of frameworks and skills of implementations.
However we think it is safe to say that the GraphNVP is significantly faster than other models
in sampling for several reasons: the GraphNVP decoder does not involve additional chemical
validity check (Jin et al., 2018), or grammatical validity-assurance for sampling (Kusner et al., 2017).
Deterministic decoding of graphNVP further reduces generation time in practical scenarios since a
latent vector is not needed to be decoded multiple times as done for JT-VAE.

4.3 SMOOTHNESS OF THE LEARNED LATENT SPACE

Next, we qualitatively examine the learned latent space z by visualizing the latent points space. In
this experiment, we randomly select a molecule from the training set and encode it into a latent
vector z0 using our proposed model. Then we choose two random axes which are orthogonal to each
other. We decode latent points lying on a 2-dimensional grid spanned by those two axes and with z0
as the origin. Figure 4 shows that the latent spaces learned from both QM9 (panel (a)) and ZINC
dataset (panel (b)) vary smoothly such that neighboring latent points correspond to molecules with
minor variations. This visualization indicates the smoothness of the learned latent space, similar
to the results of existing VAE-based models (e.g., (Liu et al., 2018; Ma et al., 2018)). However, it
should be noted that we decode each latent point only once unlike VAE-based models. For example,
GVAE (Kusner et al., 2017) decodes each latent point 1000 times and selects the most common
molecule as the representative molecule for that point. Because our decoding step is deterministic
such a time-consuming measure is not needed. In practice, smoothness of the latent space is crucial for
decorating a molecule: generating a slightly-modified graph by perturbing the latent representation
of the source molecular graph.

4.4 PROPERTY-TARGETED MOLECULE OPTIMIZATION

Our last task is to find molecules similar to a given molecule, but possessing a better chemical
property. This task is known as molecular optimization in the field of chemo-informatics. We train a
linear regressor on the latent space of molecules with quantitative estimate of drug-likeness (QED) of
each molecule as the target chemical property. QED score quantifies how likely a molecule is to be a
potential drug. We interpolate the latent vector of a randomly selected molecule along the direction of
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Figure 4: Visualization of the learned latent spaces along two randomly selected orthogonal axes.
The red circled molecules are centers of the visualizations (not the origin of the latent spaces). An
empty space in the grid indicates that an invalid molecule is generated. Left: Learned latent space for
QM9. Right: Learned latent space for ZINC.

QED=0.406 QED=0.512 QED=0.559QED=0.443

Figure 5: Chemical property optimization. Given the left-most molecule, we interpolate its latent
vector along the direction which maximizes its QED property. Upper: Molecule optimization for
ZINC. Lower: Molecule optimization for QM9.

increasing QED score as learned by linear regression. Figure 5 demonstrates the learned latent space
and a simple linear regression yields successful molecular optimization. Here, we select a molecule
with a low QED score and visualize its neighborhood. However, we note that the number of valid
molecules that can be generated along a given direction varies depending on the query molecule. We
show another property optimization example on QM9 dataset in the appendix.

Although we could perform molecular optimization with linear regression, we believe an extensive
Bayesian optimization (e.g., (Jin et al., 2018; Kusner et al., 2017)) on the latent space may provide
better results.

5 CONCLUSION

In this paper, we proposed GraphNVP, an invertible flow-based model for generating molecular
graphs. Specifically, the proposed model is the first fully invertible model for the whole graph
components: both of node attributes and an adjacency tensor are converted into latent vectors through
two novel invertible flows. Our model can generate valid molecules with a high uniqueness score
and guaranteed reconstruction ability with very simple invertible coupling flow layers. The proposed
model enjoys a fast graph generation; faster in order of magnitude than other graph generation models
in our implementation. In addition, we demonstrate that the learned latent space can be used to search
for molecules similar to a given molecule, which maximize a desired chemical property.

9
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5.1 OPEN PROBLEMS

As the first paper for fully invertible graph generation models, we identified several open problems
of this research direction. One is the permutation-invariant graph generation, which is essentially
difficult to achieve by coupling-based flow layers. Another is the number of nodes in generated
graphs. The current formulation of the GraphNVP must choose the maximum number of nodes
within generated graphs. This is the limitation of one-shot generative models compared to iterative
ones. Incorporating external validity checks would improve the validity of the generative model.
There is a possibility that overfitting causes the lower validity and novelty. If this is the case then it
is interesting to devise a good regularizer for reliable graph generations. Additionally, we believe
more exploration of the reasons contributing to the high uniqueness ratio of the proposed model will
contribute to the understanding of graph generation models in general.

We will provide our implementation of the proposed GraphNVP in near future.
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A NETWORK ARCHITECTURE DETAILS

For QM9 dataset, we use a total of 27 adjacency coupling and 36 node feature coupling layers. For
ZINC dataset, we keep the number of coupling layers equal to the maximum number of atoms a
ZINC molecule can have, 38. We model affine transformation (both scale and translation) of an
adjacency coupling layer with a multi-layer perceptron (MLP). As mentioned in the main text, we
utilize both node assignments and adjacency information in defining node feature coupling layers.
However, we found affine transformations can become unstable when used to update the feature
matrix with Relational-GCN (RelGCN). Therefore, we use only additive transformations in node
feature coupling layers.

We initialize the last layer of each RelGCN and MLP with zeros, such that each affine transformation
initially performs an identity function.

We train the models using Adam optimizer with default parameters (α = 0.001) and minibatch sizes
256 and 128 for QM9 and ZINC datasets. We use batch normalization in both types of coupling
layers.

B TRAINING DETAILS

For training data splits, we used the same train/test dataset splits used in (Kusner et al., 2017). We
train each model for 200 epochs. We did not employ early-stopping in the experiments. We chose
the model snapshot of the last (200) epoch for evaluations and demonstrations. All models are
implemented using Chainer-Chemistry1 and RDKit2 libraries.

C EFFECT OF TEMPERATURE

Following previous work on likelihood-based generative models (Kingma & Dhariwal, 2018), we
sampled latent vectors from a temperature-truncated normal distribution. Temperature parameter
handles uniqueness and validity trade off. Sampling with a lower temperature results in higher
number of valid molecules at the cost of uniqueness among them. How temperature effects validity,
uniqueness, and novelty of generated molecules is shown in Figure 6. Users may tune this parameter
depending on the application and its goal. In our experiments we chose 0.85 and 0.75 as the
temperature values for QM9 and ZINC models respectively.

D EFFECT OF ADJACENCY TENSOR IN GRAPHNVP COUPLING

We performed additional experiment to quantify the effect of A introduced in the node feature
coupling. We trained an ablation model, which replace the RelGCN layer with an MLP which does
not use A. For QM9 dataset the validity drops to 41.8± 1.26%, about half the validity of original
GraphNVP model.

1https://github.com/pfnet-research/chainer-chemistry
2https://github.com/rdkit/rdkit
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Figure 6: Impact of temperature on the quality of graph generation. Sampling with a smaller
temperature yields more valid molecules but with less diversity (uniqueness) among them. Each
experiment is performed five times and the average is reported in this figure. Left panel: impact of
temperature on sampling from latent space of QM9. Right panel:Impact of temperature on sampling
from latent space of ZINC.
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Figure 7: Chemical property optimization. We select a molecule from QM9 dataset randomly and
then interpolate its latent vector along the axis which maximizes water-octanol partition coefficient
(logP).

E ADDITIONAL VISUALIZATIONS

Fig. 7 illustrates an example of chemical property optimization for water-octanol partition coefficient
(logP) on QM9 dataset.
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