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ABSTRACT

Pretrained Language Models (LMs) have shown excellent results in achieving
human-like performance on many language tasks. However, the most powerful
LMs have one significant drawback: a fixed-sized input. Due to this constraint,
these LMs are unable to utilize the full input of long documents. In this paper, we
introduce a new framework to handle documents of arbitrary lengths. We investi-
gate the addition of different mechanisms to handle an extended input size, and we
demonstrate how attention can be used for parameter updates based on the most
discriminating segments of input. We perform extensive validating experiments
on patent and Arxiv datasets, both of which have long text. We show our method
consistently outperforms state-of-the-art results reported in recent literature.

1 INTRODUCTION

Neural Network based Language Models (LMs) have seen a flurry of work, where new design and
implementation improvements have advanced state-of-the-art performance in a variety of natural
language tasks over the past few years (Devlin et al., 2018; Dai et al., 2019; Radford et al., 2019;
Yang et al., 2019; Liu et al., 2019). LMs are powerful tools because they process a collection of
unlabeled text and learn a rich embedding of natural language without supervision. This represen-
tation can be re-purposed on subsequent tasks such as classification and sentiment analysis (Korde
& Mahender, 2012). This technique is essential for reaching state-of-the-art performance, as LM-
based systems are able to achieve much better results than techniques that only use a small, labeled
dataset. Modern LMs achieve thier success by utilizing a powerful mechanism called “The Trans-
former” (Vaswani et al., 2017). The transformer learns strong dependencies between its inputs and
has the ability to be stacked as many times as hardware can handle. This mechanism allows LMs to
take in relatively large, yet still fixed, sized input.

For the largest LMs, the input size can reach up to four thousand tokens; however, this is still a
limitation as they cannot process arbitrarily long documents. On many natural language tasks, this
fixed input size is sufficient. For example, reading comprehension tasks are often used to analyze
the quality of LMs, contain relatively few words on average, and do not have sufficiently long de-
pendencies (Wang et al., 2019). Furthermore, there are multiple tasks where the input data is too
long and must be truncated before being processed (Lee & Hsiang, 2019). Truncation is unsuitable
because long complex text often contains inter-referential pieces of information. For instance, read-
ing the final chapter of a book after all the previous ones takes on a different meaning compared to
reading the same text by itself.

Solving the problem of arbitrarily long input requires more than a cursory glance. A first intuition
may be to take a pretrained LM, separate the text into segments, place a Recursive Neural Network
(RNN) after the embedding, and simply pass in the segments sequentially. This seems reasonable
as RNNs have been used in the past for sequential text-based tasks, e.g. sentiment analysis (Socher
et al., 2011). Unfortunately, using RNNs in this way causes two problems. First, RNNs are typ-
ically trained via backpropagation through time, making them prone to the problem of vanishing
or exploding gradients (Pascanu et al., 2012). While many techniques exist to deal with this issue
(Williams & Peng, 1990; Mujika et al., 2018), they do not solve the secondary problem of signifi-
cant memory requirements for LM parameter updates. Each forward pass through the LM produces
a set of parameter gradients. With multiple forward passes, the number of stored gradients quickly
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grows as a segmented document increases in length. To further complicate the issue, the number of
parameters in transformer-based networks is quadratic in relation to the fixed input size.

In order to solve these problems, we look at the brain’s ability to guide attention and provide be-
havioral updates as a biological inspiration. The brain processes an extraordinary amount of data,
yet from moment to moment, much of that information is filtered out. What becomes filtered is
not arbitrary, but is directly influenced by one’s objective. This filtering can be observed when an
individual is tasked with counting the number of basketball passes in a video, yet fails to register a
large gorilla that appears in center frame (Chabris & Simons, 2011). Even outside the moment to
moment, changes in an individual’s behavior is guided by the structure of their values, self-selected
or otherwise. An individual’s value structure imposes a framework for determining significance of
events (Peterson, 1999). An event that may have been insignificant in the past can go on to take
a new meaning once a new value has been gained or once an old one has changed (Laudet et al.,
2006). This increase in valence may cause a behavioral change, a reorientation of goals, or a shift in
the interpretation of experiences.

Unfortunately, when it comes to modeling this selective learning in Artificial Intelligence systems,
common gradient-based methods fall short. A typical neural network model will update every pa-
rameter based on all of the inputs to minimize an objective function. While this is desired for many
applications, full input based learning can cause issues for others (Pascanu et al., 2012). Ke et al.
(2018) attempt to solve this issue via selective attentive backtracking, though they focus on remem-
bering long-term dependencies rather than utilizing the full context of the input. In this work, we
introduce a method that performs objective-based filtering during learning, but still utilizes the entire
input.

We focus on two domains, specifically for classification: patents and scientific papers. Patent reading
is a typical activity for lawyers trying to find relevant documents. Since 2003, the number of patents
filed has increased nearly every year (WIPO, 2018); and using an automated system to perform
classification is a continuously growing area of interest (Trappey et al., 2006). Scientific papers are
another significant area of investigation. Many papers are uploaded to the internet every day, and
their automatic categorization is becoming a necessity. A statistics paper, for example, may not
be categorized as machine learning by its authors, but could be of interest to the machine learning
community. Additionally, Tshitoyan et al. (2019) show material science concepts can be learned
from scientific papers by a language model. They demonstrated materials for functional applications
could be recommended several years before their initial discovery.

In this work, we use an attention mechanism to discover the significant portions of text to be used
in updating a pretrained LM. We find attention-based updates to be essential because the most sig-
nificant portion of an input sequence may occur anywhere throughout the document. While the
datasets we study often start with highly discriminative features (titles and abstracts), we conduct
experiments to show our attention mechanism can find the important parts of text even when it does
not occur in the first segment. In either case, updating a LM’s parameters from only the first input
segment performs well– often better than just using a baseline of the original LM with the input
truncated to fit the max size. However, we find using an attention mechanism consistently improves
performance and achieves the best results in our experimented language models. Therefore, our
contributions are as follows:

1. We introduce a new framework for performing inference over arbitrary length documents.

2. We perform extensive validating experiments of our methods, showing how our attention-
based framework consistently outperforms alternative methods.

3. We demonstrate the attention mechanism can be utilized to perform selective language
model parameter updates.

2 RELATED WORKS

Language model pretraining is a popular method for tackling many natural language understanding
tasks. Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) and
Generative Pre-Training (GPT) (Radford et al., 2018) are two well-known language model pretrain-
ing methods that we utilize in this work. BERT is trained by selectively conditioning on most of
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Figure 1: Left: The base language model (Base BERT/GPT) for classification. Right: The frame-
work of language model enhancements for classification.

the input sequence, masking the rest, and attempting to predict the masked tokens. BERT is concur-
rently trained with a next sentence prediction task. The token used for the next sentence prediction
task is reused for classification after BERT has been trained. GPT trains via next word prediction
by conditioning on a sequence of text and trying to predict the next token. By training on Wikipedia
and books, GPT is able to generate novel sequences of text. GPT is able to perform classification
by appending a special classifying token at the end of an input, encoding the token into a latent
representation, and using the representation as input to a new linear classifier set specifically for the
task. These language model pretraining methods became state-of-art on natural language process-
ing benchmarks such as GLUE (Wang et al., 2019) and SQUAD (Rajpurkar et al., 2016), achieving
close to human-level performance.

As both BERT and GPT are based on transformers, their computational and storage costs scale
quadratically with the input sequence length. This limits their application to mostly relatively short
pieces of texts. To the best of our knowledge, we are not aware of any works applying these
pretrained language models for long document classification. Next, we discuss a few other deep
learning-based text classification approaches, with special attention to the classification of scientific
papers and patents.

Dai & Le (2015) consider pretraining recurrent neural networks with large corpus of texts, and show
improved performance on several text classification tasks. Kim (2014) introduced convolutional
neural networks (CNN) for text/sentence classification. Yang et al. (2016) introduced a hierarchical
attention mechanism for document classification that attends to interesting sentences and words in
a document. The length of documents considered in latter two works are relatively short, with the
corpus consisting of mostly individual sentences or online reviews.

For patent classification, Li et al. (2018) present a deep learning algorithm called Deep Patent, which
is based on convolutional neural networks and continuous skip-gram embedding. They were the first
to apply deep learning to large scale real-world patent classification. Lee & Hsiang (2019) used the
pretrained BERT model to classify patents at the section and subclass level, only taking the title and
abstract, or the first claim, as input.

For scientific paper classification, He et al. (2019) introduce a relatively large scientific paper dataset
and perform classification through a multi-network approach. They introduce a RNN Attention-
based reinforcement learning scheme. They select short text sequences to be parsed by a CNN.
The representation learned by the CNN is sequentially fed back into the RNN for subsequent text
selections and eventual classification.

Very recently, Cohan et al. (2019) construct a joint sentence representation that allows BERT trans-
former layers to directly utilize contextual information from all words in every sentence. However,
their task is classification at the sentence level for a single text input.

3 METHODS

Our approach for classifying long documents is to divide the long document into a sequence of
segments, each of which is short enough to be processed by a pretrained language model. The in-
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Figure 2: Three enhancements for base LM. Colors are used to represent the progressive enhance-
ment of the combination strategies. Left: The concatenation model (Cat-BERT/GPT). Center: The
RNN based model (RNN-BERT/GPT). Right: The full attention model (ATT-BERT/GPT).

formation from the language model’s representation of each segment is utilized in different manners
to produce a classifier (see Figure 1(right)). We develop multiple strategies to combine these rep-
resentations, progressively enhancing the combinations: starting from simple concatenation to an
attention-based strategy. In this work, one of our primary contributions is to investigate the effec-
tiveness of these different enhancements.

Let x = (x1, x2, . . . , xm) be a document, where xi is a fixed-length sequence of tokens (segment),
and m the number of segments in the document. Let y ∈ Y be the respective labels in a k-class
classification problem. We use zi = LM(xi) ∈ Rd to denote the d-dimensional latent representa-
tion, of the segment xi, for classification (e.g. the representation of the “CLS” token in BERT) from
a selected language model LM. Let CW ,b(v) = σ(Wv + b) be a linear classifier followed by the
softmax function, and let p the vector of probabilities of x being assigned to each class.

Base Language Model (Base LM) In the usual application of deep language models such as
BERT and GPT for text classification, the input text is truncated at a fixed length (256, 512, etc) due
to limits in the size of the model. This corresponds to our basic model:

p = CW ,b(LM(x1)), (1)

where W ∈ Rk×d, b ∈ Rk, and we assume the segment length of x1 equals the input size limit of
the language model. This model is depicted in Figure 1(left).

Next we describe the three progressive enhancements to the base LM, shown in Figure 2.

Concatenated Language Model (Cat-LM) The first enhancement is a natural extension to im-
prove the basic model by including information from more segments x2, . . . , xm. A very simple
way to do this is to concatenate the representation z1, z2, . . . ,zm before the classification layer.
This leads to the model:

p = CW ,b(LM(x1)⊕ LM(x2) · · · ⊕ LM(xm)), (2)

where W ∈ Rk×md, b ∈ Rk. This model is difficult to perform backpropagation directly because
we cannot hold m copies of the LM parameters in memory at the same time. We solve this problem
by stopping the backpropgation paths of some of the segments, namely z2, . . . ,zm. Section 3.1
discusses this approximation.

RNN-augmented Language Model (RNN-LM) The third model we want to consider is one that
summarizes the information from z1, . . . ,zm using a bidirectional LSTM (Hochreiter & Schmid-
huber, 1997). Let (h1,h2, . . . ,hm) = biLSTM(z1, . . . , zm) be the q dimensional hidden state
representations from a bidirectional LSTM, where hi ∈ Rq . The biLSTM-based model can be
written as:

p = CW ,b(LM(x1)⊕ h2 ⊕ hm), (3)

where W ∈ Rk×(d+2q), b ∈ Rk. For this model we also stop the gradient computation at
z2, . . . ,zm, and do not backpropagate beyond the LSTM parameters.

We do not include z2, . . . ,zm as input to the classifier as the size ofW and b scale directly with m,
and with a large m the number of parameters would grow counter-productively. However, we still
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include z1 as the text from that segment typically contains the most discriminative features. By in-
cluding z1, there is a direct path for gradient updates to the language model. Additionally, we found
that including h1, instead of h2, in the classifier consistently produced worse results. We believe
this is from the forward direction of h1 not providing any contextual information. Comparatively,
the backwards direction of h2 provides enough context that, when concatenated with z1, achieves
the best performance.

Attention-based Language Model (ATT-LM) For our attention-based model, we utilize the
structure of RNN-LM and add the attention mechanism as described in Yang et al. (2016). We
define our attention variables as follows:

ui = tanh(Wshi + bs), i = 1, . . . ,m

αi = σ(uTi us)

a =

m∑
i=1

αihi,

(4)

where Ws ∈ R2q×q, bs ∈ Rq,us ∈ Rq are learned attention parameters for attention over seg-
ments. Let M(α) = argmax1≤i≤m αi be the index of the segment that gives the highest attention
weight. These definitions give us our equation for the attention-based model by concatenating a set
of relevant features:

p = CW ,b(LM(x1)⊕ h2 ⊕ hm ⊕ a⊕α⊕ LM(xM(α))), (5)

where W ∈ Rk×(2d+3q+m), b ∈ Rk are the parameters of the linear classifier. For this model, we
stop the gradient computations paths for all zi’s apart from z1 and the selected zM(α).

For all four methods, we let n be the number of training documents and use the negative log likeli-
hood as the loss function:

L = −
n∑
i=1

log pyi , (6)

3.1 PARAMETER UPDATES

We run mini-batch stochastic gradient descent for parameter updates. We treat the parameters of
the language models and the other parameters (weight matrix W for classification, LSTM param-
eters, etc) differently. We perform full gradient computation on non-LM parameters, and only ap-
proximate gradient computation for the LM’s parameters by stopping backpropagation on selected
segments (see the model description above and the Appendix Section A).

4 EXPERIMENTS

Implementation Details. We use PyTorch (Paszke et al., 2017) to conduct all our experiments.
For our pretrained language models, we use the HuggingFace (2019) implementation of the Base-
BERT model (110M parameters) and use the GPT model of similar size (117M parameters). Due
to computational constraints, we do not use BERT-Large or larger GPT models. We use BERT’s
lower-case tokenizer and GPT’s tokenizer with an added classification token. Both models take a
fixed input size of 256 tokens, contain 12 transformer blocks, and have a hidden size of 768 neurons.
We apply dropout (Srivastava et al., 2014) (p = .1) before the final linear layer.

Unless otherwise noted we use a learning rate of 2e−5, use a scheduled ADAM optimizer (Kingma
& Ba, 2015), train for 3 epochs over each training dataset, use a training mini-batch size of 32
documents, and set all other hyper parameters to their default values. While the number of segments
m does not need to be fixed, for ease of processing we set m = 8 for the patent datasets as patents
have a relatively constrained length and 8 allows for minimal padding to be used. We also use
m = 16 segments for the Arxiv dataset as one document typically contains 6k words, many of
which are removed as non-meaningful or are intentionally truncated as part of the bibliography.

Next, we describe the different datasets we use in our experiments.
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XXXXXXXXXMethod
Dataset Arxiv-4 Arxiv-11 section subclass wireless inverted

wireless
Li et al. (2018)
Deep Patent - - - <43 - -

Lee & Hsiang (2019)
PatentBert - - 80.98 66.80 - -

He et al. (2019)
Local Word Glimpses 94.18 80.47 - - - -

Base-GPT 96.59 84.62 83.32 67.29 89.82 87.69
Base-BERT 97.06 87.42 83.85 68.31 90.21 87.72
Cat-GPT 96.82 80.03 83.43 66.17 89.34 88.80
Cat-BERT 97.06 87.34 83.99 68.34 90.64 89.39
RNN-GPT 96.98 85.31 83.52 67.72 90.16 89.19
RNN-BERT 97.62 87.72 83.99 68.72 90.51 89.41
ATT-GPT 97.62 85.94 83.66 68.13 90.31 90.08
ATT-BERT 97.70 87.96 84.13 69.01 90.69 90.25

Table 1: Micro F1 results on our datasets.

Patents. Patents can be broken down into multiple levels of resolution according to the Interna-
tional Patent Classification System (IPC): Section, Class, Subclass, ... etc. The most broad category,
Section, has eight labels (A-H). For instance, Section A is concerned with Human Necessities, while
Section H is concerned with Electricity. We also perform classification experiments on a more de-
tailed level of categorization: Subclass, which contains 638 labels. Patents were gathered from the
Google Patents Public Dataset via SQL queries.

We gathered all documents from the United States Patent Office (USPTO) from 2006-2014 as our
training set and use all patents from 2015 as our test set. We have 1,917,334 training and 296,724
testing documents, where 15,172 and 1,835 documents were respectively skipped for missing ab-
stracts. The text of a patent is composed of different parts: title, abstract, and a list of claims. For
our purposes, we consider one patent to be first the title, then the abstract, followed by each claim in
order– claim 1, claim 2, ... until the last claim.

(Inverted) Wireless Patents. We selected a subset of patent data to perform additional experi-
ments. We chose the wireless (H04) Class due to its large number of training and test examples
(the second most of all the Class data). The Class with the most examples (computing) was not
chosen due to its large imbalance in Subclasses (dominated by one label with over 75% examples).
We use the wireless Class to construct an inverted patent dataset, where a single patent starts with
its last claim, up to the first claim in the reverse order, then the abstract, and lastly the title. It is
commonly believed that the abstract and the first claim is the most useful in classifying a patent.
We create this dataset to present information in reverse order of relevance to test models that bias
towards the beginning of documents (e.g., models that truncate beyond a fixed number of tokens).
After processing, the wireless Class contains 250,982 training and 42,892 testing documents, where
15,172 and 97 documents were skipped, respectively, for missing abstracts.

Arxiv papers. We study the long document dataset provided by He et al. (2019). It consists of
33,388 papers, from 11 different categories, downloaded from the scientific article hosting website
Arxiv. The least occurring category is “math.AC” with 2885 documents, and the most occurring
is ”cs.DS” with 4136 documents. We call this dataset Arxiv-11. They also provide a subset of the
data using four categories and 12,195 documents, which we refer to as Arxiv-4. All downloaded
pdf documents were converted to txt files, with no document less than 1,000 words. We randomly
sample 90% for training and use the remaining 10% for test.

5 RESULTS

Patents and Arxiv Datasets. We report our main results in Table 1, where the numbers are micro-
F1 scores. We make three observations. First, we compare our methods to the previous work
using DeepPatent (Li et al., 2018), PatentBert (Lee & Hsiang, 2019) and Local Word Glimpses (He
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XXXXXXXXXMethod
Param 3 epochs

2e-5 lr
3 epochs
3e-5 lr

3 epochs
4e-5 lr

3 epochs
5e-5 lr

8 epochs
2e-5 lr

8 epochs
5e-5 lr

Base GPT 96.19 96.59 96.43 96.19 96.27 96.35
Base BERT 96.90 97.06 96.43 96.27 96.58 97.06
Cat-GPT 93.88 94.28 95.63 95.31 96.74 96.82
Cat-BERT 96.82 96.98 96.27 96.66 96.90 97.06
RNN-GPT 96.03 96.82 96.59 96.98 96.90 96.74
RNN-BERT 97.62 96.74 97.06 96.74 96.51 96.90
ATT-GPT 95.79 97.38 97.62 97.62 96.43 97.14
ATT-BERT 97.06 97.70 96.27 95.87 96.98 97.14

Table 2: The effect of changing the learning rate, and epoch, hyper-parameters for all models on the
Arxiv-4 dataset.

et al., 2019). Table 1 shows the Base LMs perform well. We note our Base BERT implementation
outperforms PatentBert as they do not combine the title, abstract, and claims– but only the title
and abstract or just the first claim. Second, we compare Base LMs against the three enhancements
across 4 variants of the patent dataset and 2 variants of the Arxiv dataset. The RNN-based and
attention-based LMs show consistent improvement over base LMs, while the simple concatenation-
based LM is not consistent. Furthermore, the usage of attention is superior in all cases (highlighted
in the last line). Lastly, it is also interesting to note that BERT-based models consistently outperform
GPT-based models. This is likely due to the use of bidirectional contexts in BERT.

Inverted Patents. As shown in recent work (Lee & Hsiang, 2019; Li et al., 2018), only the abstract
or first claim on a patent is needed for good classification performance. To analyze the effect of at-
tention discovering the location of discriminative content, we invert the structure of the patents in our
wireless dataset and train new models. Comparing the results from the second last column (wireless)
and last column (inverted wireless) in Table 1, we see that Base LMs, which only take into account
of first 256 tokens, suffer from a drop of F1 scores of more than 2.0. Cat-LMs and RNN-LMs reduce
the gap in F1 scores to about 1.0, while the attention-based models perform the best, with the gap
between wireless and inverted wireless reducing to smaller than 0.5.

Exploration of Hyper-parameters. Next, we investigate the effects of different hyper-parameters
on the various models using a small set of training data. For this analysis, we use the Arxiv-4 dataset.
While the attention-based models seem to do well, table 2 demonstrates the unpredictable nature of
using different learning rates along with different training epochs. This behavior aligns with the
claims of Devlin et al. (2018), who also found fine-tuning on small datasets sometimes lead to
unstable results.

Training and Evaluation Time. Lastly, we compare the training time and evaluation speed of
our models on the Arxiv-11 dataset. As shown in Table 3, all of the enhanced variants of the LMs
require nearly 3-4x training time and over 2x to evaluate. Considering there are substantially more
operations required to process the full input text via multiple forward passes, this slow down is
better than expected. The difference in training time between the attention-based models and non-
attention-based is surprising, given the fact that the LM’s parameters must be updated with more
than one set of gradients. This points towards further gradient computations being feasible for
architectures and hardware that can handle the additional required memory.

Base LM Cat-LM RNN-LM ATT-LM
BERT Training time 1.000 2.711 3.079 3.610
BERT Evaluation time 1.000 2.712 2.940 3.147
GPT Training time 1.000 3.088 3.551 3.558
GPT Evaluation time 1.000 2.520 2.689 2.839

Table 3: An analysis of the different model run times as a factor of the baseline method.
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Base BERT Cat-BERT RNN-BERT ATT-BERT Ablated
ATT-BERT

x1 gradients 11.92 12.96 11.92 81.05 81.11
No x1
gradients 11.92 46.72 70.59 81.08 81.11

Table 4: BERT model results when shuffling every x1 in the Arxiv-11 dataset.

5.1 ABLATION EXPERIMENT

In order to understand the effects of the attention, we introduce an ablated model that allows us to
investigate how attention influences and guides backpropagation. The model we use is similar to
ATT-BERT, but we remove LM(x1), h2, and hm from the classifier. Therefore it can be written as:

p = CW,b(a⊕α⊕ LM(xM(α))), (7)

with W ∈ Rk×(q+m+d), b ∈ Rk being the parameters of the linear classifier. This model performs
well, but not better than ATT-BERT. The full results of this model can be seen in table 5 in the
appendix. But here, we use this model to carry out two additional experiments.

Shuffling Experiment. First, we perform a shuffled input experiment to examine the effect of
using attention to guide language model parameter updates. We use all the same setup as the exper-
iments for the Arxiv-11 column in Table 1, except for each training iteration, we randomly permute
each segment x1 between all mini-batch examples. This means methods that use x1 will no longer
be able to rely upon those gradients to give an informative update to the model’s parameters. Table
4 shows how the non-attention-based methods guess the maximum occurring class when gradients
are updated using x1. The table also shows how these methods perform poorly without gradients to
update the language model parameters. However, the attention-based methods are able to perform
well despite the loss of information from shuffling, and ATT-BERT is relatively unaffected by the
loss of gradients from x1.

(a) (b)

Figure 3: (a) An analysis of the effect on attention α values between the original wireless dataset,
and the inverted wireless dataset. (b) A comparison of α values with the ablated model.

Attention α Comparisons. Second, we measure and compare the α values on the wireless and
inverted wireless patent dataset. We average the α value for each of the eight input segments over
the entire test set. Figure 3 (a) comparatively shows the α values of our attention-based model on the
wireless and inverted wireless dataset; this clearly demonstrates how the attention mechanism is able
to accurately pick up on the important sections of text. Figure 3(b) shows a comparison between
ATT-BERT and the ablated model on both the wireless and inverted wireless datasets. The α values
for both models on the inverted dataset seem relatively similar, with the ablated model placing
heavier emphasis on the first few segments. But for the wireless dataset, the effect of including the
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gradients of x1 can been seen on, where the α1 value is over 0.7 on the ablated model. This means
enabling backpropagation to occur for input x1 has a positive effect for ATT-BERT and, moreover,
that the title and abstract in a patent are of high discriminative importance.

6 CONCLUSIONS

In this work, we achieved state-of-the-art results on multiple long document classification tasks by
utilizing pretrained language models with attention-based enhancements. With language modeling
continuing to see improvements every month, we showed how different models can be utilized with
our method. We performed numerous experiments to clearly demonstrate the value added by using
attention to learn from important segments. We showed that the additional gradient computation as
a result of attention is marginal when compared to the consistent improvement of results. We ana-
lyzed the effects of the attention mechanism through the loss of input information via both shuffling
experiment and a carefully constructed dataset augmentation.
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XXXXXXXXXMethod
Dataset Arxiv-4 Arxiv-11 section subclass wireless inverted

wireless
Ablated
ATT-BERT 97.38 87.22 84.01 68.87 90.31 89.98

ATT-BERT 97.70 87.96 84.13 69.01 90.69 90.25

Table 5: Micro F1 results of our ablated BERT model compared to the ATT-BERT.

A GRADIENT COMPUTATION FOR LANGUAGE MODEL PARAMETERS

Let us denote our language model representation be zi = LM(xi) = fθ(xi), where θ are the
language model parameters. Let hφ be the function we compute on top of the LM representations,
e.g., the classifier, LSTM, etc. The parameter φ can contain the classification weights W and the
LSTM weights. The models considered in this paper can be written as:

p = hφ(fθ(x1), . . . , fθ(xm))

Coupled with the loss function l (log loss) and the target label y, we have

l(p, y) = l(hφ(fθ(x1), . . . , fθ(xm)), y)

Computing the gradient over the LM parameters θ, by chain rule we have

∂

∂θ
l(p, y) =

∂

∂z
l(z, y) |z=hφ(...) [

∂

∂u
hφ(u, fθ(x2), . . . , fθ(xm))

∂

∂θ
fθ(x1)

+
∂

∂u
hφ(fθ(x1),u, . . . , fθ(xm))

∂

∂θ
fθ(x2) + · · ·+

∂

∂u
hφ(fθ(x1), . . . ,u)

∂

∂θ
fθ(xm)]

(8)

By stopping the gradient computation over x2, . . . , xm, we are dropping the terms related to
∂
∂θfθ(xi), i ≥ 2, from the above formula. In optimization, we say q is a descent direction if
〈q, ∂θl〉 < 0. The negative gradient −∂θl is clearly a descent direction. The gradient above in
Equation (8) is in the form ∂θl = c

∑m
i=1 gi, where gi are the gradient term of the ith segment in

the equation. By dropping terms in the backpropagation, we are assuming either the contribution
from g1 (or gM(α) in the attention model of Equation 5) dominates the contributions from other
segments, or the gradients gi from different segments point towards similar directions, so that the
truncated gradient is still a descent direction.

In some cases, if the storage of partial gradients ∂
∂uhφ(z1, . . . ,u, . . . ,zm) is feasible, it is possible

to compute the full gradient in two passes over the mini-batch. For example, in the basic Cat-BERT
model for classification, this partial gradient is Wi scaled by the derivative of softmax, where i is
the index of the segment. We can compute these Wi with the derivative of the softmax as scaling
factors in a first pass, and accumulate gradients over fθ(xi) scaled by these factors in a second pass
over the mini-batch.
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