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Abstract

Using a low-dimensional parametrization of signals is a generic and powerful
way to enhance performance in signal processing and statistical inference. A very
popular and widely explored type of dimensionality reduction is sparsity; another
type is generative modelling of signal distributions. Generative models based
on neural networks, such as GANs or variational auto-encoders, are particularly
performant and are gaining on applicability. In this paper we study spiked matrix
models, where a low-rank matrix is observed through a noisy channel. This problem
with sparse structure of the spikes has attracted broad attention in the past literature.
Here, we replace the sparsity assumption by generative modelling, and investigate
the consequences on statistical and algorithmic properties. We analyze the Bayes-
optimal performance under specific generative models for the spike. In contrast
with the sparsity assumption, we do not observe regions of parameters where
statistical performance is superior to the best known algorithmic performance. We
show that in the analyzed cases the approximate message passing algorithm is able
to reach optimal performance. We also design enhanced spectral algorithms and
analyze their performance and thresholds using random matrix theory, showing
their superiority to the classical principal component analysis. We complement our
theoretical results by illustrating the performance of the spectral algorithms when
the spikes come from real datasets.

1 Introduction

A key idea of modern signal processing is to exploit the structure of the signals under investigation.
A traditional and powerful way of doing so is via sparse representations of the signals. Images are
typically sparse in the wavelet domain, sound in the Fourier domain, and sparse coding [1] is designed
to search automatically for dictionaries in which the signal is sparse. This compressed representation
of the signal can be used to enable efficient signal processing under larger noise or with fewer samples
leading to the ideas behind compressed sensing [2] or sparsity enhancing regularizations. Recent years
brought a surge of interest in another powerful and generic way of representing signals – generative
modeling. In particular the generative adversarial networks (GANs) [3] provide an impressively
powerful way to represent classes of signals. A recent series of works on compressed sensing and
other regression-related problems successfully explored the idea of replacing the traditionally used
sparsity by generative models [4–10]. These results and performances conceivably suggest that [11]:

Generative models are the new sparsity.

Next to compressed sensing and regression, another technique in statistical analysis that uses sparsity
in a fruitful way is sparse principal component analysis (PCA) [12]. Compared to the standard PCA,
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in sparse-PCA the principal components are linear combinations of a few of the input variables,
specifically k of them. This means (for rank-one) that we aim to decompose the observed data matrix
Y ∈ Rn×p as Y = uvᵀ+ξ where the spike v ∈ Rp is a vector with only k � p non-zero components,
and u, ξ are commonly modelled as independent and identically distributed (i.i.d.) Gaussian variables.

The main goal of this paper is to explore the idea of replacing sparsity of the spike v by the
assumption that the spike belongs to the range of a generative model. Sparse-PCA with structured
sparsity inducing priors is well studied, e.g. [13], in this paper we remove the sparsity entirely and
in a sense replace it by lower dimensionality of the latent space of the generative model. For the
purpose of comparing generative model priors and sparsity we focus on the rich range of properties
in the noisy high-dimensional regime (denoted below, borrowing statistical physics jargon, as the
thermodynamic limit) where the spike v cannot be estimated consistently, but can be estimated better
than by random guessing. In particular we analyze two spiked-matrix models as considered in a
series of existing works on sparse-PCA, e.g. [14–20], defined as follows:

Spiked Wigner model (vvᵀ): Consider an unknown vector (the spike) v? ∈ Rp drawn from a
distribution Pv; we observe a matrix Y ∈ Rp×p with a symmetric noise term ξ ∈ Rp×p and ∆ > 0:

Y =
1√
p

v?v?ᵀ +
√

∆ξ , (1)

where ξij∼N (0, 1) i.i.d. The aim is to find back the hidden spike v? from Y (up to a global sign).

Spiked Wishart (or spiked covariance) model (uvᵀ): Consider two unknown vectors u? ∈ Rn
and v? ∈ Rp drawn from distributions Pu and Pv and let ξ ∈ Rn×p with ξµi∼N (0, 1) i.i.d. and
∆ > 0, we observe

Y =
1√
p

u?v?ᵀ +
√

∆ξ ; (2)

the goal is to find back the hidden spikes u? and v? from Y ∈ Rn×p.

The noisy high-dimensional limit that we consider in this paper (the thermodynamic limit) is p, n→∞
while β≡n/p= Θ(1), and the noise ξ has a variance ∆ = Θ(1). The prior Pv is representing the
spike v via a k-dimensional parametrization with α≡p/k=Θ(1). In the sparse case, k is the number
of non-zeros components of v?, while in generative models k is the number of latent variables.

1.1 Considered generative models

The simplest non-separable prior Pv that we consider is the Gaussian model with a covariance matrix
Σ, that is Pv(v) = N (v; 0,Σ). This prior is not compressive, yet it captures some structure and can
be simply estimated from data via the empirical covariance. We use this prior later to produce Fig. 4.

To exploit the practically observed power of generative models, it would be desirable to consider
models (e.g. GANs, variational auto-encoders, restricted Boltzmann machines, or others) trained
on datasets of examples of possible spikes. Such training, however, leads to correlations between
the weights of the underlying neural networks for which the theoretical part of the present paper
does not apply readily. To keep tractability in a closed form, and subsequent theoretical insights, we
focus on multi-layer generative models where all the weight matrices W (l) ∈ Rkl+1×kl , l = 1, . . . , L
(with k1 = k, kL+1 = p), are fixed, layer-wise independent, i.i.d. Gaussian with zero mean and unit
variance. Let v ∈ Rp be the output of such a generative model

v = ϕ(L)

(
1√
kL
W (L) . . . ϕ(1)

(
1√
k1

W (1)z
)
. . .

)
. (3)

with z ∈ Rk a latent variable drawn from separable distribution Pz , with ρz = EPz

[
z2
]

and
ϕ(l) element-wise activation functions that can be either deterministic or stochastic. In the setting
considered in this paper the ground-truth spike v? is generated using a ground-truth value of the
latent variable z?. The spike is then estimated from the knowledge of the data matrix Y , and the
known form of the spiked-matrix and of the generative model. In particular the matrices W (l) are
known, as are the parameters β, ∆, Pz , Pu, Pv , ϕ(l). Only the spikes v?, u? and the latent vector z?
are unknown, and are to be inferred.
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For concreteness and simplicity, the generative model that will be analyzed in most examples given
in the present paper is the single-layer case of (3) with L = 1:

v = ϕ

(
1√
k
W z
)
⇔ v ∼ Pout

(
·
∣∣∣ 1√
k
W z
)
. (4)

We define the compression ratio α ≡ p/k. In what follows we will illustrate our results for ϕ being
linear, sign and ReLU functions.

1.2 Summary of main contributions

We analyze how the availability of generative priors, defined in section 1.1, influences the statistical
and algorithmic properties of the spiked-matrix models (1) and (2). Both sparse-PCA and generative
priors provide statistical advantages when the effective dimensionality k is small, k � p. However,
we show that from the algorithmic perspective the two cases are quite different. This is why our main
findings are best presented in a context of the results known for sparse-PCA. We draw two main
conclusions from the present work:

(i) No algorithmic gap with generative-model priors: Sharp and detailed results are known in the
thermodynamic limit (as defined above) when the spike v? is sampled from a separable distribution
Pv . A detailed account of several examples can be found in [21]. The main finding for sparse priors
Pv is that when the sparsity ρ = k/p = 1/α is large enough then there exist optimal algorithms [15],
while for ρ small enough there is a striking gap between statistically optimal performance and the
one of best known algorithms [16]. The small-ρ expansion studied in [21] is consistent with the
well-known results for exact recovery of the support of v? [22, 23], which is one of the best-known
cases in which gaps between statistical and best-known algorithmic performance were described.

Our analysis of the spiked-matrix models with generative priors reveals that in the investigated cases
the algorithmic gap disappears and known algorithms are able to obtain (asymptotically) optimal
performance even when the dimension is greatly reduced, i.e. α� 1. Analogous conclusion about
the lack of algorithmic gaps was reached for the problem of phase retrieval under a deep generative
prior in [9]. This result suggests that plausibly generative priors are better than sparsity as they lead
to algorithmically easier problems and give back the hope that the structure can be exploited not only
information-theoretically but also tractably.

(ii) Spectral algorithms reaching statistical threshold: Arguably the most basic algorithm used to
solve the spiked-matrix model is based on the leading singular vectors of the matrix Y . We will refer
to this as PCA. Previous work on spiked-matrix models [17,21] established that in the thermodynamic
limit and for separable priors of zero mean PCA reaches the best performance of all known efficient
algorithms in terms of the value of noise ∆ below which it is able to provide positive correlation
between its estimator and the ground-truth spike. While for sparse priors positive correlation is
statistically reachable even for larger values of ∆ [17, 21], no efficient algorithm beating the PCA
threshold is known2.

In the case of generative priors we find in this paper that other spectral methods improve on the
canonical PCA. We design a spectral method, called LAMP, that (under certain assumptions, e.g.
zero mean of the spikes) reach the statistically optimal threshold, meaning that for larger values
of noise variance no other (even exponential) algorithm is able to reach positive correlation with
the spike. Again this is a striking difference with the sparse separable prior, making the generative
priors algorithmically more attractive. We demonstrate the performance of LAMP on the spiked-
matrix model when the spike is taken to be one of the fashion-MNIST images showing considerable
improvement over canonical PCA.

2 Analysis of information-theoretically optimal estimation

We first discuss the information theoretic results on the estimation of the spike, regardless of the
computational cost. A considerable amount of results have been obtained for the spiked-matrix
models with separable priors [14, 15, 18, 19, 25–29]. Here, we extend these results to the case where
the spike v? ∈ Rp is generated from a generic non-separable prior Pv on Rp.

2This result holds only for sparsity ρ = Θ(1). A line of works shows that when sparsity k scales slower than
linearly with p, algorithms more performant than PCA exist [22, 24]
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2.1 Mutual Information and Minimal Mean Squared Error

We consider the mutual information between the ground-truth spike v? and the observation Y ,
defined as I(Y ; v?) = DKL(P(v?,Y )‖Pv?PY ). Next, we consider the best possible value of the
mean-squared-error on recovering the spike, commonly called the minimum mean-squared-error
(MMSE). The MMSE estimator is computed from marginal-means of the posterior distribution
P (v|Y ).
Theorem 1. [Mutual information for the spiked Wigner model with structured spike] Informally
(see SM section 3 for details and proof), assume the spikes v? come from a sequence (of growing
dimension p) of generic structured priors Pv on Rp, then

lim
p→∞

ip ≡ lim
p→∞

I(Y ; v?)
p

= inf
ρv≥qv≥0

iRS(∆, qv), (5)

with iRS(∆, qv) ≡
(ρv − qv)2

4∆
+ lim
p→∞

I
(

v; v +
√

∆
qv
ξ
)

p
(6)

and ξ being a Gaussian vector with zero mean, unit diagonal variance and ρv = lim
p→∞

EPv
[vᵀv]/p.

This theorem connects the asymptotic mutual information of the spiked model with generative prior
Pv to the mutual information between v taken from Pv and its noisy version, I(v; v +

√
∆/qvξ).

Computing this later mutual information is itself a high-dimensional task, hard in full generality, but it
can be done for a range of models. The simplest tractable case is when the prior Pv is separable, then
it yields back exactly the formula known from [18, 19, 26]. It can be computed also for the Gaussian
generative model, Pv(v) = N (v; 0,Σ), leading to I(v; v +

√
∆/qvξ) = Tr (log (Ip + qvΣ/∆)) /2.

More interestingly, the mutual information associated to the generative prior in eq. (6) can also
be asymptotically computed for the multi-layer generative model with random weights, defined in
eq. (3). Indeed, for the single-layer prior (4) the corresponding formula for mutual information has
been derived and proven in [30]. For the multi-layer case the mutual information formula has been
derived in [6] and proven for the case of two layers in [31]. Theorem 1 together with the results
from [6, 30, 31] yields the following formula (see SM sec. 3 for details) for the spiked Wigner model
(1) with L-layer generative prior (3):

iRS(∆, qv) =
ρ2
v

4∆
+

1

4∆
q2
v+ (7)

1

α
extr
{q̂l,ql}l

[
1

2

L∑
l=1

αlq̂lql −
L∑
l=2

αlΨ
(l)
out (q̂l, ql−1)− αΨ

(L+1)
out

(qv
∆
, qL

)
−Ψz (q̂z)

]
.

where αl = kl/k (note that in particular α1 = 1) and the functions Ψz,Ψout are defined by

Ψz(x) ≡ Eξ
[
Zz
(
x1/2ξ, x

)
log
(
Zz
(
x1/2ξ, x

))]
, (8)

Ψ
(l)
out(x, y) ≡ Eξ,η

[
Z(l)

out

(
x1/2ξ, x, y1/2η, ρl − y

)
log
(
Z(l)

out

(
x1/2ξ, x, y1/2η, ρl − y

))]
, (9)

with ξ, η ∼ N (0, 1) i.i.d., ρl+1 the second moment of the hidden variable h(l+1) =

ϕ(l)
(

1√
kl
W (l)h(l)

)
∈ Rkl+1 and Zz , Z(l)

out are the normalizations of the following denoising scalar
distributions:

Qγ,Λz (z) ≡ Pz(z)

Zz(γ,Λ)
e−

Λ
2 z

2+γz , Q
(l),B,A,ω,V
out (v, x) ≡ P

(l)
out(v|x)

Z(l)
out(B,A, ω, V )

e−
A
2 v

2+Bv e
− (x−ω)2

2V√
2πV

.

(10)

Result (7) is remarkable in that it connects the asymptotic mutual information of a high-dimensional
model with a simple scalar formula that can be easily evaluated. In the SM sec. 2 we show how this
formula is obtained using the heuristic replica method from statistical physics and, once we have the
formula in hand, we prove it using the interpolation method in SM sec. 3. In SM sec. 2.2 we also
give the corresponding formula for the spiked Wishart model.
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Beyond its theoretical interest, the main point of the mutual information formula is that it yields
the optimal value of the mean-squared error (MMSE). It is well-known [32] that the mean-squared
error is minimized by an estimator evaluating the conditional expectation of the signal given the
observations. Following generic theorems on the connection between the mutual information and
the MMSE [33], one can prove in particular that for the spiked-matrix model [27] the MMSE on the
spike v? is asymptotically given by:

MMSEv = ρv − q?v , (11)

where q?v is the optimizer of the function iRS (∆, qv).

2.2 Examples of phase diagrams

Taking the extremization over qv, q̂z, qz in eq. (7), we obtain the following fixed point equations:

qv = 2∂qvΨout

(qv
∆
, qz

)
, qz = 2∂q̂zΨz (q̂z) , q̂z = 2α∂qzΨout

(qv
∆
, qz

)
. (12)

Using (11), analyzing the fixed points of eqs. (12) provides all the informations about the performance
of the Bayes-optimal estimator in the models under consideration.

Phase transition: A first question is whether better estimation than random guessing from the
prior is possible. In terms of fixed points of eqs. (12), this corresponds to the existence of the
non-informative fixed point q?v = 0 (i.e. zero overlap with the spike, or maximum MSEv = ρv).
Evaluating the right-hand side of eqs. (12) at qv = 0, we can see that q?v = 0 is a fixed point if

EPz
[z] = 0 and EQ0

out
[v] = 0 , (13)

where Q0
out(v, x) ≡ Q0,0,0,ρz

out (v, x) from eq. (10). Note that for a deterministic channel the second
condition is equivalent to ϕ being an odd function.

When the condition (13) holds, (qv, q̂z, qz) = (0, 0, 0) is a fixed point of eq. (12). The numerical
stability of this fixed point determines a phase transition point ∆c, defined as the noise below which
the fixed point (0, 0, 0) becomes unstable. This corresponds to the value of ∆ for which the largest
eigenvalue of the Jacobian of the eqs. (12) at (0, 0, 0), given by

2d(∂qvΨout, α∂qzΨout, ∂q̂zΨz)|(0,0,0) =


1
∆

(
EQ0

out
v2
)2

0 1
ρ2
z

(
EQ0

out
vx
)2

α
∆

(
EQ0

out
vx
)2

0 α
ρ2
z

(
EQ0

out
x2 − ρz

)2
0

(
EPz

z2
)2

0

 ,

(14)

becomes greater than one. The details of this calculation can be found in sec. 6 of the SM.

It is instructive to compute ∆c in specific cases. We therefore fix Pz = N (0, 1) and Pout(v|x) =
δ(v − ϕ(x)) and discuss two different choices of (odd) activation function ϕ.

Linear activation: For ϕ(x) = x the leading eigenvalue of the Jacobian becomes one at ∆c = 1+α.
Note that for L > 1 the result is derived in SM sec. 2.3 and reads ∆c = 1 +

∑L
l=1

α
αl

. Note
that in the limit α = 0 we recover the phase transition ∆c = 1 known from the case with
separable prior [21]. For α > 0, we have ∆c > 1 meaning the spike can be estimated more
efficiently when its structure is accounted for.

Sign activation: For ϕ(x) = sgn(x) the leading eigenvalue of the Jacobian becomes one at ∆c =

1 + 4α
π2 . As above it generalizes for L > 1 as ∆c = 1 +

∑L
l=1

(
4
π2

)l α
αl

. For α = 0,
Pv = Bern(1/2), and the transition ∆c = 1 agrees with the one found for a separable prior
distribution [21]. As in the linear case, for α > 0, we can estimate the spike for larger values
of noise than in the separable case.

In Fig. 1 we solve the fixed point equations (12) and plot the MMSE obtained from the fixed point in
a heat map, for the linear, sign and relu activations. The white dashed line marks the above stated
threshold ∆c. The property that we find the most striking is that in these three evaluated cases, for all
values of ∆, α and L that we analyzed, we always found that eq. (12) has a unique stable fixed point.
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Figure 1: Spiked Wigner model MMSEv on the spike as a function of noise to signal ratio ∆/ρ2
v , and

generative prior (4) with compression ratio α for L = 1 linear (left, ρv = 1), sign (center, ρv = 1),
and relu (right, ρv = 1/2) activations. Dashed white lines mark the phase transitions ∆c, matched by
both the AMP and LAMP algorithms. Dotted white line marks the phase transition of canonical PCA.
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Figure 2: Spiked Wigner model: MMSEv as a function of noise ∆ - (upper) for a wide range of
compression ratios α = 0, 1, 10, 100, 1000, for L = 1 linear (left), sign (center), and relu (right)
activations. Unique stable fixed point of (12) is found for all these cases - (lower) for different depths
L = 1, 2, 3 with constant compressive ratio α1 = α2 = α3 = 1, for linear (left), sign (center), and
relu (right) activations. The second moment of the variable v for L = 1, 2, 3 are ρ(L)

v = 1 for linear
and sign, while for ReLU ρ

(L)
v = 1/2L. Similarly a unique stable fixed point is found in these cases.

Thus we have not identified any first order phase transition (in the physics terminology). This is
illustrated in Fig. 2 for larger values of α (upper) and for different depths L (lower), where we solved
the eq. (12) iteratively from uncorrelated initial condition, and from initial condition corresponding
to the ground truth signal, and found that both lead to the same fixed point. In particular, as a unique
fixed point is found, the Bayes optimal errors are continuous and we did not observe any algorithmic
gap. Details of the expressions equivalent to eq. (12-14) for L ≥ 1 are detailed in SM sec. 2.3.
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3 Approximate message passing with generative priors

A straightforward algorithmic evaluation of the Bayes-optimal estimator is exponentially costly.
This section is devoted to the analysis of an approximate message passing (AMP) algorithm that
for the analyzed cases is able to reach the optimal performance (in the thermodynamic limit). For
the purpose of presentation, we focus again on the spiked Wigner model (see SM for the spiked
Wishart model). For separable priors, the AMP for the spiked Wigner model is well known [14–
16]. It can, however, be extended to non-separable priors [6, 34, 35]. We show in SM sec. 4
how AMP can be generalized to handle the generative model (4). Iterating this derivation leads
naturally to its multi-layer version ML-AMP for L ≥ 1. In particular AMP for L = 1 reads:

Input: Y ∈ Rp×p and W ∈ Rp×k:
Initialize to zero: (g, v̂,Bv, Av)t=0.
Initialize with: v̂t=1 = N (0, σ2), ẑt=1 = N (0, σ2), and ĉt=1

v = 1p, ĉt=1
z = 1k, t = 1.

repeat
Spiked layer:

Btv = 1
∆

Y√
p v̂t − 1

∆

(1ᵀ
p ĉtv)
p v̂t−1 and Atv = 1

∆p‖v̂
t‖22Ip.

Generative layer:
V t = 1

k

(
1
ᵀ
k ĉtz
)

Ip, ωt = 1√
k
W ẑt − V tgt−1 and gt = fout

(
Btv, Atv,ωt, V t

)
,

Λt = 1
k‖gt‖22Ik and γt = 1√

k
W ᵀgt + Λtẑt.

Update of the estimated marginals:
v̂t+1 = fv(Btv, Atv,ωt, V t) and ĉt+1

v = ∂Bfv(Btv, Atv,ωt, V t),
ẑt+1 = fz(γ

t,Λt) and ĉt+1
z = ∂γfz(γ

t,Λt),
t = t+ 1.

until Convergence.
Output: v̂, ẑ.

Algorithm 1: AMP algorithm for the spiked Wigner model with single-layer generative prior.

where Is and 1s denote respectively the identity matrix and vector of ones of size s. The update
functions fout and fv are the means of V −1 (x− ω) and v with respect to Qout, eq. (10), while the
update function fz is the mean of z with respect to Qz , eq. (10).

The algorithm for the spiked Wishart model is very similar and both derivations are given in SM
sec. 4. We define the overlap of the AMP estimator with the ground truth spike as (v̂t)ᵀv?/p−→qtv
as p→∞. Perhaps the most important virtue of AMP-type algorithms is that their asymptotic
performance can be tracked exactly via a set of scalar equations called state evolution. This fact has
been proven for a range of models including the spiked matrix models with separable priors in [36],
and with non-separable priors in [35]. To help the reader understand the state evolution equations we
provide a heuristic derivation in the SM, section 4.4. For L = 1, the state evolution states that the
overlap qtv evolves under iterations of the AMP algorithm as:

qt+1
v = 2∂qvΨout

(
qtv
∆
, qtz

)
, qt+1

z = 2∂q̂zΨz

(
q̂tz
)
, q̂tz = 2α∂qzΨout

(
qtv
∆
, qtz

)
, (15)

with initialization qt=0
v = ε, qt=0

z = ε and a small ε > 0. We notice immediately that (15) are the
same equations as the fixed point equations related to the Bayes-optimal estimation (12) with specific
time-indices and initialization, but crucially the same fixed points. This observation generalizes
naturally to L > 1. Thus the analysis of fixed points in sec. 2.2 applies also to the behaviour of AMP.
In particular in all the scenarios for which we solved the corresponding equations numerically we
found the stable fixed point of (12) to be unique or equivalently the Bayes optimal errors as a function
of the noise to be continuous. Hence under the assumption that the data was created using the model
from eq. (1) and the spike from eq. (3) with i.i.d weight matrices W (l) and i.i.d. Gaussian entries,
it means the AMP algorithm is able to reach asymptotically the optimal performance in all these
cases. This is further illustrated in Fig. 3 where we explicitly compare runs of AMP on finite size
instances with the results of the asymptotic state evolution, thus also giving an idea of the amplitude
of the finite size effects. Note that we provide a demonstration notebook in [37] that compares AMP,
LAMP and PCA numerical performances. Finally as has been done in previous works, e.g. [5, 8–10]
for compressed sensing and denoising, translating our results to practical situations in designing an
AMP algorithm that takes care of correlated GAN or VAE weights is still under investigation.
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Figure 3: Comparison between PCA, LAMP and AMP - (upper) for (left) the linear, (center) and
sign activations, for L = 1 and compression ratio α = 2. Lines correspond to the theoretical
asymptotic performance of PCA (red line), LAMP (green line) and AMP (blue line). Dots correspond
to simulations of PCA (red squares), LAMP (green crosses) for k = 104 and AMP (blue points)
for k = 5.103, σ2 = 1. (Right) Illustration of the spectral phase transition in the matrix Γvvp
eq. (18) at α = 2 with an informative leading eigenvector with eigenvalue equal to 1 out of the
bulk for ∆ ≤ 1 + α. We show the bulk spectral density µ(α,∆). The inset shows the two leading
eigenvalues - (lower) for (left) three layers generative model with (α1, α2, α3) = (1, 1, 1) using
linear activations (k = 104) (right) two layers generative model with (α1, α2) = (1, 1) using sign
activations (k = 2.104). The vertical lines show the PCA and the optimal threshold respectively.

4 Spectral methods for generative priors

Spectral methods are the most common class of algorithms used for spiked matrix estimation. For
instance, canonical PCA estimates the spike from the leading eigenvector of the matrix Y . A classical
result from Baik, Ben Arous and Péché (BBP) [38] shows that this eigenvector is correlated with the
signal if and only if the signal-to-noise ratio ρ2

v/∆ > 1. For sparse separable priors (with ρ2
v = Θ(1)),

∆PCA = ρ2
v is also the threshold for AMP and it is conjectured that no polynomial algorithm can

improve upon it [21]. In the previous section we show that for the analyzed generative priors AMP
has a better threshold than PCA. Here we design a spectral method, called LAMP, that matches
the AMP threshold and is hence superior over the canonical PCA. In order to do so, we follow the
powerful strategy pioneered in [39] and linearize the AMP around its non-informative fixed point. In
the spiked Wigner model with a single-layer prior (L = 1) the linearized AMP leads to the following
operator:

Γvvp =
1

∆

(
(a− b)Ip + b

WW ᵀ

k
+ c

1p1
ᵀ
k

k

W ᵀ

√
k

)
×
(
Y√
p
− aIp

)
, (16)

where parameters are moments of distributions Pz and Q0
out according to

a ≡ ρv , b ≡ ρ−1
z EQ0

out
[vx]2 , c ≡ 1

2
ρ−3
z EPz

[
z3
]
EQ0

out
[vx2]EQ0

out
[vx] . (17)

We denote the spectral algorithm that takes the leading eigenvectors of (16) as LAMP (for linearized-
AMP). Its derivation is presented in SM sec. 5 together with the one for the spiked Wishart model. For
the specific case of Gaussian z and prior (4) with the sign activation function we obtain (a, b, c) =
(1, 2/π, 0). For linear activation we get (a, b, c) = (1, 1, 0), leading to

Γvvp =
1

∆
Kp

[
Y√
p
− Ip

]
with Kp =

[WW ᵀ]

k
= Σ ≈ 1

n

n∑
α=1

vα(vα)ᵀ , (18)
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Figure 4: Illustration of canonical PCA (top line) and the LAMP (bottom line) spectral methods
Alg. 2 on the spiked Wigner model. The covariance Kp is estimated empirically, see (18), from
the FashionMNIST database [40]. The estimation of the spike is shown for two images from
FashionMNIST, with (from left to right), noise variance ∆ = 0.01, 0.1, 1, 2, 10.

where the last two equalities come from the fact that for the model (4) with linear activation and
Gaussian separable Pz , Kp is asymptotically equal to the covariance matrix between samples of
spikes, Σ. The same observation holds for the sign activation function. In fact, the spectral method
based on the matrix in eq. (18) can also be derived linearizing AMP with a Gaussian prior with
covariance Σ. Interestingly, as the spectral method based on the matrix Kp in eq. (18) can be
empirically estimated directly from n samples of spikes, vα, α = 1, . . . , n, without the knowledge of
the generative model (ϕ,W ) itself, it suggests a simple practical implementation of LAMP Alg. 2
for any prior Pv .

Input: Observed matrix Y ∈ Rp×p, prior Pv on v ∈ Rp

Take the leading eigenvector v̂ ∈ Rp of Kp

[
Y√
p − Ip

]
with Kp = EPv

[vvᵀ] .

Algorithm 2: LAMP spectral algorithm
Analogously to the state evolution for AMP, the asymptotic performance of both PCA and LAMP can
be evaluated in a closed-form for the spiked Wigner model with single-layer generative prior with
linear activation (4). The corresponding expressions are derived in SM sec. 5 and plotted in Fig. 3 for
the three considered algorithms that illustrates LAMP spectral method reaches the same threshold
than ML-AMP for different depths L and activations.

For illustration purposes, we display the behaviour of this spectral method on the spiked Wigner
model with spikes coming from the Fashion-MNIST dataset in Fig. 4. A demonstration notebook is
provided in [37], illustrating PCA and LAMP performances on Fashion-MNIST dataset.

Remarkably, the performance of the spectral method based on matrix (18) can be investigated
independently of AMP using random matrix theory. An analysis of the random matrix (18) shows
that a spectral phase transition for generative prior with linear activations appears at ∆c = 1 + α
(as for AMP). This transition is analogous to the well-known BBP transition [38], but a non-GOE
random matrix (18) needs to be analyzed. For the spiked Wigner models with linear generative prior
we prove two theorems describing the behavior of the supremum of the bulk spectral density, the
transition of the largest eigenvalue and the correlation of the corresponding eigenvector:
Theorem 2 (Bulk of the spectral density, spiked Wigner, linear activation). Let α,∆ > 0, then:

(i) The spectral measure of Γvvp converges almost surely and in the weak sense to a compactly
supported probability measure µ(α,∆). We denote λmax the supremum of the support of µ(α,∆).

(ii) For any α > 0, as a function of ∆, λmax has a unique global maximum, reached exactly at the
point ∆ = ∆c(α) = 1 + α. Moreover, λmax(α,∆c(α)) = 1.
Theorem 3 (Transition of the largest eigenvalue and eigenvector, spiked Wigner, linear activation).
Let α > 0. We denote λ1 ≥ λ2 the first and second eigenvalues of Γvvp . If ∆ ≥ ∆c(α), then as
p→∞ we have a.s. λ1→λmax and λ2→λmax. If ∆ ≤ ∆c(α), then as p→∞ we have a.s. λ1→1

and λ2→λmax. Further, denoting ṽ a normalized (‖ṽ‖2 = p ) eigenvector of Γvvp with eigenvalue λ1,
then |ṽᵀv?|2/p2→ε(∆) a.s., where ε(∆) = 0 for all ∆ ≥ ∆c(α), ε(∆) > 0 for all ∆ < ∆c(α) and
lim∆→0 ε(∆) = 1.
Thm. 2 and Thm. 3 are illustrated in Fig. 3. The proof gives the value of ε(∆), which turns out to
lead to the same MSE as in Fig. 3 in the linear case. We state the theorems counterparts for the uvᵀ

linear case in SM sec. 7. The proofs of the theorems and the precise arguments used to derive the
eigenvalue density, the transition of λ1 and the computation of ε(∆) are given in SM sec. 7, and a
Mathematica demonstration notebook is also provided in [37]. We also describe in SM the difficulties
to circumvent to generalize the analysis to a non-linear activation function with random matrix theory.
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