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ABSTRACT

For neural sequence model training, maximum likelihood (ML) has been com-
monly adopted to optimize model parameters with respect to the corresponding
objective. However, in the case of sequence prediction tasks like neural machine
translation (NMT), training with the ML-based cross entropy loss would often
lead to models that overgeneralize and plunge into local optima. In this paper,
we propose an extended loss function called dual skew divergence (DSD), which
aims to give a better tradeoff between generalization ability and error avoidance
during NMT training. Our empirical study indicates that switching to DSD loss
after the convergence of ML training helps the model skip the local optimum and
stimulates a stable performance improvement. The evaluations on WMT 2014
English-German and English-French translation tasks demonstrate that the pro-
posed loss indeed helps bring about better translation performance than several
baselines.

1 INTRODUCTION

Neural machine translation (NMT) (Kalchbrenner & Blunsom, 2013; Sutskever et al., 2014) has
shown remarkable performance in terms of sequence-to-sequence learning framework for diverse
language pairs. Unlike the conventional statistical machine translation (SMT) (Koehn et al., 2003)
that explicitly models linguistic features of the training corpus, NMT aims at building an end-to-end
model that directly transforms a source language sequence to the target one. With the development
of attention mechanism (Bahdanau et al., 2015; Luong et al., 2015), NMT has achieved results on
par with or even better than SMT.

During NMT training, maximum likelihood (ML) is the most commonly used strategy that maxi-
mizes the likelihood of the target sentence conditioned on the source throughout training corpus. In
practice, ML-based loss is often represented with a word-level cross entropy form, which has proven
to be effective for NMT modeling. However, Ranzato et al. (2016) pointed out that ML training suf-
fers from two drawbacks. First, the model is only exposed to training distribution and ignores its
own prediction errors during training. Second, a word-level loss is used to optimize the model pa-
rameters at the training time while at inference the model prediction is evaluated by a sequence-level
metric such as BLEU (Papineni et al., 2002). To handle such problems, several recent work focused
on the research of more effective and direct training strategies. Bengio et al. (2015) advocated a
curriculum learning approach that gradually forces the model to deal with its own mistakes as it
does during inference. Wiseman & Rush (2016) proposed a sequence-level loss function in terms
of errors made during beam search. Shen et al. (2016) applied minimum risk training (MRT) from
SMT to optimize NMT modeling directly in terms of BLEU score. Some other work resorted to
reinforcement learning based approaches (Ranzato et al., 2016; Bahdanau et al., 2017).

In this work, we introduce a novel loss called dual skew divergence (DSD) to compensate for the
original ML-based loss. It can be proved that maximizing likelihood is equal to minimizing the
Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) KL(P ||Q) between the real data
distribution P and the model prediction Q. According to Huszár (2015), minimizing KL(P ||Q)
tends to find aQ that covers all the true data distribution and ignores the rest of incorrect candidates,
which will lead to models that overgeneralize and generate implausible samples during inference.
Meanwhile, minimizing the opposite form KL(Q||P ) has a distinct property that tends to model a
Q that avoids assigning probability mass to the unlikely terms. To benefit from both of these two
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divergence and balance the tradeoff between the original ML principle and the concern about the
undesirable model prediction, we interpolate KL(P ||Q) and KL(Q||P ) to form a new DSD loss.

We carry out all the experiments on both English-German and English-French translation tasks
from WMT 2014 and compare our models to some other work with similar model size and dataset.
The early experiments indicate that switching to DSD loss after the convergence of ML training,
a simulated annealing mechanism is actually introduced and it indeed helps the model jump out a
local optimum within a short time. Evaluations on the test sets show that our DSD-extended models
are better than the ML-only ones and outperform a series of strong baselines significantly.

2 NEURAL MACHINE TRANSLATION

In this paper, we closely follow the neural machine translation model proposed by Bahdanau et al.
(2015).1 Different from the conventional statistical models, it is mainly based on a neural encoder-
decoder network with attention mechanism (Bahdanau et al., 2015; Luong et al., 2015). In this
section, we will give a brief introduction about this basic architecture.

The encoder is a bidirectional recurrent neural network (RNN) such as Gated Recurrent Unit (GRU)
(Cho et al., 2014) or Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997). The
forward RNN reads an input sequence x = (x1, ..., xm) from left to right and calculates a forward
sequence of hidden states (

−→
h 1, ...,

−→
hm) as the representation of the source sentence. Similarly,

the backward RNN reads the input sequence in a reverse direction and learns a backward sequence
(
←−
h 1, ...,

←−
hm). The hidden states of the two RNNs

−→
h i and

←−
h i are concatenated to obtain the source

annotation vector hi = [
−→
h i,
←−
h i]

T as the initial state of the decoder.

The decoder is a forward RNN that predicts a corresponding translation y = (y1, ..., yn) step by
step. The translation probability can be formulated as follows:

p(yj |y<j , x) = q(yj−1, sj , cj),

where sj and cj denote the decoding state and the source context at the j-th time step respectively.
Here, q(·) is the softmax layer and y<j = (y1, ..., yj−1). Specifically,

sj = g(yj−1, sj−1, cj),

where g(·) is the corresponding RNN unit. The context vector cj is calculated as a weighted sum of
the source annotations hi on the basis of the attention mechanism:

cj =

m∑
i=1

αjihi.

The alignment model αji defines the probability that how well yj is aligned to xi, which is a single
layer feed-forward neural network.

The whole model is jointly trained to seek the optimal parameters that can be used to correctly
encode the source sentences and decode them to the corresponding target sentences.

3 DUAL SKEW DIVERGENCE LOSS FOR NMT

3.1 CROSS ENTROPY

In information theory, cross entropy is an important concept measuring the difference between two
probability distributions. In natural language processing, cross entropy is usually used as the evalu-
ation metric of language modeling. During NMT training, word-level cross entropy broadly serves
as the loss function to learn the model parameters.

The NMT model aims at training a single, large neural network that directly transforms a given
source sequence x = (x1, x2, ..., xm) to the corresponding target sequence y = (y1, y2, ..., yn).

1During this study, we are aware that there come advanced models such as Transformer (Vaswani et al.,
2017) and ConvS2S (Gehring et al., 2017). To focus on the loss improvement, we still keep a simple architecture
as baseline in this paper.
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Given a set of training examples D = {〈x(s), y(s)〉}Ss=1, the standard ML training objective is to
maximize the log-likelihood of the training data with respect to the parameters θ:

θ̂ML = argmax
θ
{L(θ)},

L(θ) =
S∑
s=1

logP (y(s)|x;θ) =
S∑
s=1

n∑
i=1

logP (y
(s)
i |x

(s), y
(s)
<i ;θ).

To fit the gradient descent method, the objective is actually transformed to minimize the negative
log-likelihood. In practice, it is realized by minimizing the word-level cross entropy that can be
calculated at each time step of decoding. Given an observed target sequence of length n, the cross
entropy loss in the vector form can be represented as

JXENT = −
n∑
i=1

yi log(ŷi), (1)

where yi is a one-hot vector, referring to the correct target label at time step i and ŷi is the model
approximation given by the softmax layer.

3.2 KULLBACK-LEIBLER DIVERGENCE

Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) is also a measurement that calculates
the distance between two random probability distributions denoted by:

DKL(P ||Q) = Ex∼P [logP (x)− logQ(x)], (2)

where P is the true data distribution of target words and Q is the distribution of model prediction.

Mathematically, there is some connection between KL divergence DKL(P ||Q) and cross entropy
H(P,Q), which can be described as follows:

H(P,Q) = H(P ) +DKL(P ||Q),

where H(P ) refers to the entropy of data itself. Since the gradient of H(P ) with respect to
model parameters about Q is always equal to zero, training with H(P,Q) is identical to that with
DKL(P ||Q). In other words, minimizing cross entropy loss actually means minimizing KL diver-
gence.

3.3 ASYMMETRY OF KL DIVERGENCE

Exchanging the position of P and Q, we can easily get DKL(Q||P ) that is in an inverse direction
with DKL(P ||Q). Following Eq.(2), DKL(Q||P ) can be also rewritten as

DKL(Q||P ) = Ex∼Q[− logP (x) + logQ(x)].

Obviously, DKL(P ||Q) is not identical to its inverse form DKL(Q||P ). Huszár (2015) showed that
minimizing DKL(P ||Q) tends to find a Q that covers all modes (peak value) of P at the cost of
placing probability mass where P has none. However, minimizing DKL(Q||P ) leads to a mode-
seeking behavior: the optimal Q will concentrate around the largest mode of P while completely
ignore smaller modes.

In the case of NMT, multiple target candidate words could have the same high probabilities at each
step of decoding. Consequently, we may have more than one best choice at the same time. Thereby,
the different effects of training with a word-level DKL(P ||Q) or DKL(Q||P ) lie in two aspects:
First, the model trained by minimizing DKL(P ||Q) will tend to memorize all possible outputs
and some words with low probabilities in P will also be assigned high probabilities; Second, the
model trained by minimizing DKL(Q||P ) will instead try to memorize only a subset of all possible
outputs, while the cost is, some words with high probabilities in P will be ignored. In general, the
two different objectives have their own advantages and disadvantages, so it is hard to say which is
actually better. Despite of this, it still provides us with a new direction of choosing the proper loss
function.
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3.4 SKEW DIVERGENCE

The analysis above shows that DKL(Q||P ) may be also a good alternative loss function for NMT
training. However, DKL(Q||P ) is only well-defined when P is never equal to zero, which is not
guaranteed in the NMT training. To overcome the inconvenience, we use some kind of approxima-
tions instead. One such approximation function is the α-skew divergence (Lee, 1999):

sα(Q,P ) = DKL(Q||αQ+ (1− α)P ),
where α controls the degree to which the function approximates DKL(Q||P ) and 0 ≤ α ≤ 1.

By assigning a small value to α, we can simulate the behavior of minimizing DKL(Q||P ) with
α-skew divergence approximation. In our experiments, α is set to 0.01 constantly.

Symmetry

Approximation

Interpolation

Expansion

     

 Skew Divergence

Kullback-Leibler Divergence

Dual Skew Divergence
 

Figure 1: The general idea of the proposed DSD loss function.

3.5 DUAL SKEW DIVERGENCE

Finally, we introduce a new loss with the expectation of retaining the good part of ML objective
and meanwhile compensating its missing part. In order to obtain a symmetrical form of the loss,
we also approximate DKL(P ||Q) with sα(P,Q). By interpolating between both directions of α-
skew divergence, we derive the new loss function, which will be referred to as dual skew divergence
(DSD) below. The interpolated DSD function is given by

DDS = βsα(P,Q) + (1− β)sα(Q,P ), (3)
in which β is the interpolation coefficient and 0 ≤ β ≤ 1.

In terms of notations in Eq.(1), we rewrite Eq.(3) in a computationally implementable form as below:

JDS = − 1

n

n∑
i=1

[βyi log((1− α)ŷi + αyi)− (1− β)ŷi log(ŷi) + (1− β)ŷi log((1− α)yi + αŷi)],

where n is the length of target sequence and the term about H(P ) is conveniently omitted since it
will not appear in the gradient as discussed above. Note that while it is well-defined in mathematics,
we still need to add a small enough constant (10−12 in our implementation) to each log term for
numerical stability. Our main idea about the derivation of the proposed DSD loss is summarized in
the diagram of Figure 1 step by step.

4 EXPERIMENTS

4.1 DATA PREPARATION

We perform all the experiments on data from the shared task of WMT 2014 and report the results on
both English-German and English-French translation tasks. The translation quality is measured by
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case-sensitive 4-gram BLEU score (Papineni et al., 2002) and we use sign test (Collins et al., 2005)
to test the statistical significance of our results.

For English-German task, the training set consists of 4.5M sentence pairs with 91M English words
and 87M German words. For English-French task, the training set contains 12M sentence pairs
with 304M English words and 348M French words. The models are evaluated on the WMT 2014
test set news-test 2014, and the concatenation of news-test 2012 and news-test 2013 is used as the
development set.

The preprocessing on both training sets includes a joint byte pair encoding (Sennrich et al., 2016)
with 32K merge operations after tokenization. The final joint vocabulary size is around 37K
for English-German and 37.2K for English-French translation task respectively. Every out-of-
vocabulary word is replaced with a special 〈UNK〉 token.

4.2 MODELS AND TRAINING DETAILS

We train two different baselines with SMT and NMT systems respectively. For the SMT baseline,
we use the phrase-based SMT system MOSES (Koehn et al., 2007). The log-linear model of MOSES

is trained by the minimum error rate training (MERT) (Och, 2003) that directly optimizes model
parameters with respect to evaluation metrics. Our SMT baseline is trained with the default con-
figurations in MOSES together with a trigram language model trained on the target language using
SRILM (Stolcke, 2002). For the NMT baseline, we use the model architecture of the attention-based
RNNSearch (Bahdanau et al., 2015). Our NMT baseline model is generally similar to Bahdanau
et al. (2015), except that the input feeding approach is applied and the attention layer is built on top
of LSTM layer instead of GRU.

During NMT training, each direction of the LSTM encoder and the LSTM decoder are with 1000
dimensions. The word embedding and the attention size is set to 620. The batch size is set to 128,
and no dropout is used for all models. The training set is reshuffled at the beginning of each epoch.
A single Nvidia Titan X (Pascal) GPU is used to train all the NMT models.

For English-German task, training lasts for 9 epochs in total. We use Adam optimizer for the first 5
epochs with the learning rate of 3.0× 10−4, and then switch to plain SGD with the learning rate of
0.1. At the beginning of epoch 8, we decay the learning rate to 0.05.

For English-French task, the models are trained for 4 epochs. Adam optimizer with the learning rate
of 3.0 × 10−4 is used for the first 2 epochs. We then switch to SGD with the learning rate of 0.1,
and finally decay the learning rate to 0.05 at the beginning of epoch 4.

To demonstrate the effectiveness of our model, we also compare it to several state-of-art NMT
systems with the same dataset and similar model size.

• RNNSearch-LV (Jean et al., 2015): a modified version of RNNSearch based on impor-
tance sampling which allows the model to have a very large target vocabulary without any
substantial increase in computational cost.

• Local-Attn (Luong et al., 2015): applying a local attention mechanism that focuses only on
a small subset of the source positions when predicting each target word.

• MRT (Shen et al., 2016): optimized by a loss function for minimum risk training. The
model parameters are directly optimized with respect to the evaluation metrics.

• Bahdanau-LL (Bahdanau et al., 2017): this model closely followed the architecture of Bah-
danau et al. (2015) with ML training and achieved a higher performance by annealing the
learning rate and penalizing too short output sequences during beam search.

• Bahdanau-AC+LL (Bahdanau et al., 2017): a neural sequence prediction model that com-
bines the actor-critic from reinforcement learning with the original ML training.

For DSD training, we keep the hyper-parameter settings the same as NMT baselines. However, we
tried a series of preliminary experiments and found that DSD training alone from random initial-
ization would be easy to cause vanishing gradient failure with stuck on low BLEU scores. Thus
we eventually adopt a hybrid training strategy. To provide a reliable initialization, the training starts
from cross entropy loss and then switch to DSD loss at different switching points. The model trained
with such strategy is referred to DSD-NMT hereafter.
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4.3 EFFECT OF β

As shown in Section 3.5, the interpolation parameter β controls the degree of conservativeness of
the model. When β is close to one, the loss function behaves more like DKL(P ||Q) which tends to
cover all the modes of P . When β is close to zero, the loss function behaves more like DKL(Q||P )
which prefers to memorize only a subset of the true data distribution conservatively. In order to
find an optimal value of β, we study the effect of β on the translation quality of English-German
task. Table 1 reports the BLEU scores with different β on the development set with greedy search.
It shows that the model trained with β = 0 performs the best, which surprisingly indicates that
the skew inverse KL divergence is better than the interpolation form in terms of our loss function
applying strategy. Note that the inverse form of skew divergence loss is still a special case of our
general DSD loss.

Table 1: BLEU scores with different β on English-German dev set
Model Baseline β = 1 β = 0.5 β = 0

BLEU 20.11 20.41 20.94 21.32

1 2 3 4 5 6 7 8 9 10
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Figure 2: BLEU scores with different beam sizes on English-German dev set(β = 0).

4.4 EFFECT OF BEAM SIZE

In Figure 2, we plot the variation curves of BLEU scores for the proposed DSD model and NMT
baseline with different beam sizes on the English-German development set. With the increasing of
beam size, the BLEU score is also increasing and the best score is given by the beam size of 10 for
both NMT baseline and DSD-NMT. However, when beam search is used, the margin between the
proposed DSD method and ML training becomes smaller, which is a general observation for beam
search is more tolerable to temporary mistakes.

4.5 TRAINING LOSS AND BLEU

Since we start the training of DSD-NMT with an initial ML learning, it is meaningful to study how
much the model performance with this training strategy will be influenced by the switching location
timing. In Figure 3, we plot the curves of BLEU scores and training loss against training steps from
the actual training process for English-German task with greedy search at different switching posi-
tions (steps of 100K, 200K, 245K and 313K). Figure 3 shows that when switching to our new loss
function, the BLEU scores are all improved, especially, there is more than one point improvement
at steps 245K and 313K. Comparing all the training curves shows that a better DSD switching point
should be located around the convergence of the standard ML training. At the same time after DSD
switching, the cross entropy loss that is supposed to be minimized keeps increasing as the corre-
sponding BLEU scores, which undoubtedly indicates that cross entropy fails to reflect translation
quality near the end of its training. The long time training may cause the model to plunge into a lo-
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Figure 3: BLEU scores and training loss on English-German dev set with DSD switching after
100K, 200K, 245K and 313K steps (β = 0, greedy search).

cal optimum, while the loss switching operation brings a model behavior like a simulated annealing
mechanism2 and helps the model jump onto a better optimum.

Table 2: Performance on English-German
task

Model Method BLEU
RNNsearch-LV ML+beam 19.40
Local-Attn ML+beam 20.90
MRT MRT+beam 20.45
Baseline-SMT MERT+greedy 18.83

MERT+beam 19.91
Baseline-NMT ML+greedy 20.89

ML+beam 22.13
ML+deep 24.64

DSD-NMT DSD+greedy 22.02++

DSD+beam 22.60+

DSD+deep 25.00++

Table 3: Performance on English-French task
Model Method BLEU
RNNsearch-LV ML+beam 34.60
MRT MRT+beam 34.23
Bahdanau-LL ML+greedy 29.33

ML+beam 30.71
Bahdanau-AC+LL ML+AC+greedy 30.85

ML+AC+beam 31.13
Baseline-SMT MERT+greedy 31.55

MERT+beam 33.82
Baseline-NMT ML+greedy 32.10

ML+beam 34.70
DSD-NMT DSD+greedy 33.56++

DSD+beam 35.04+

4.6 RESULTS ON TEST SETS

The results about English-German and English-French translation tasks on test sets are reported in
Tables 2 and 3.3 For previous work, the best BLEU scores of single models are listed from the
original papers. From Tables 2 and 3, we see that DSD-NMT outperforms all the other models and
our own baselines using standard cross entropy loss with both greedy search and beam search.

For English-German task, Table 2 shows that even our baseline NMT models achieve better per-
formance than most of the listed systems. It may owe to the integrative action of joint BPE, input
feeding and the mixed training strategy of Adam and SGD algorithms. For greedy search, our DSD
model outperforms SMT and NMT baselines by 3.19 and 1.13 BLEU respectively. It is even better

2We also tried an automatically loss function switching strategy just like simulated annealing that switches
the loss according to the growth rate of BLEU. However, switching DSD back to cross entropy will not further-
more increase BLEU over the original score.

3“++” indicates statistically significant difference from NMT baseline at p < 0.01 and “+” at p < 0.05.
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than the best listed system Local-Attn (Luong et al., 2015) with beam search. For beam search,
DSD-NMT outperforms SMT baseline with improvement of 2.69 BLEU points. However, it in-
creases only 0.47 BLEU over NMT baseline, which is in line with our discussion in Section 4.4.
Furthermore, we also test our DSD loss on a deep NMT model where the encoder and decoder are
both stacked 4-layer LSTMs. The result also shows that we can get 0.36 points improvement which
demonstrates the effectiveness and robustness of our DSD model.

For English-French task, with greedy search, the performance of DSD-NMT is still superior to other
systems listed in Table 3. It achieves an increase of 1.46 and 2.01 BLEU points for NMT and SMT
baselines respectively. For beam search, our DSD-NMT outperforms SMT and NMT baselines by
1.22 and 0.34 BLEU, respectively. Compared to other previous models, DSD-NMT with greedy
search also brings about more performance improvement than beam search.

The results of the sign test in both tables also indicate that DSD-NMT indeed enhances the transla-
tion quality over baselines trained only with cross entropy loss at high significant levels.

5 RELATED WORK

The standard NMT system commonly adopts the word-level cross entropy loss to learn model pa-
rameters. However, this type of ML learning has been shown not to be an optimal method for
sequence model training (Ranzato et al., 2016). A number of recent work attempted to seek dif-
ferent training strategies or improve the loss function. One of such approaches is by Bengio et al.
(2015), who proposed to gently change the training process from a fully guided scheme using the
true previous token towards a less guided scheme which mostly uses the generated tokens instead.
Some other researches focused on the study of sequence-level training algorithm. For instance,
Shen et al. (2016) applied minimum risk training (MRT) in end-to-end NMT. Their basic idea is
to minimize the expected loss with respect to the posterior distribution and the model parameters
are directly optimized according to the evaluation metrics. Wiseman & Rush (2016) introduced a
sequence-level loss function in terms of errors made during the beam search. They develop a non-
probabilistic variant of seq2seq model that can assign a score to any possible target sequence. It
avoids classical biases associated with local training and unifies the training loss with the test-time
usage. Another sequence-level training algorithm was proposed by Ranzato et al. (2016) that di-
rectly optimizes the metrics used at test time. It is built on REINFORCE algorithm. Their major
contribution is Mixed Incremental Cross-Entropy Reinforce (MIXER) based on incremental learn-
ing and the use of a hybrid loss function which combines both REINFORCE and cross entropy.
Similarly, with a reinforcement learning style scheme, Bahdanau et al. (2017) introduced a critic
network to predict the value of an output token, given the policy of an actor network. This results in
a training procedure that is much closer to the test phase, and allows the model to directly optimize
for a task-specific score such as BLEU. Edunov et al. (2018) presented a comprehensive comparison
of classical structured prediction loss for seq2seq models. Differently, we intend to optimize the
training loss considering both easy implementation and not introducing more model complexities.

6 CONCLUSION

This work proposes a general and balanced loss function called dual skew divergence for NMT train-
ing. Adopting a hybrid training strategy with both cross entropy and DSD training, we empirically
verify that switching to DSD loss after the convergence of ML training can introduce a simulated
annealing behavior to stably help the model jump onto a better optimum. More exactly, our studies
show that skew inverse KL divergence (deep blue formula in Figure 1) working together with KL
divergence (i.e., cross entropy loss, shallow blue formula in Figure 1) actually gives the best perfor-
mance in terms of the general using of DSD loss. The evaluations on WMT 2014 English-German
and English-French translation tasks prove that the proposed novel loss indeed improves ML-only
training and outperforms other strong baselines.

Since the DSD loss can be generalized to apply in all other seq2seq models, it is promising to extend
this proposed approach to other related tasks, such as text summarization and machine reading
comprehension. We are also trying our best to apply DSD loss to deeper and stronger models like
Transformer (Vaswani et al., 2017) and ConvS2S (Gehring et al., 2017) which are more sensitive to
model parameters.
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translation. In Proceedings of the 43rd annual meeting on association for computational linguis-
tics, pp. 531–540. Association for Computational Linguistics, 2005.

Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Classical
structured prediction losses for sequence to sequence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 355–364. Association for Computational
Linguistics, 2018. doi: 10.18653/v1/N18-1033. URL http://aclweb.org/anthology/
N18-1033.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9:1735–1780,
1997.

Ferenc Huszár. How (not) to train your generative model: Scheduled sampling, likelihood, adver-
sary? arXiv e-print arXiv:1511.05101, 2015.
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