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ABSTRACT

We describe an explainable Al saliency map method for use with deep convolu-
tional neural networks (CNN) that is much more efficient than popular gradient
methods. It is also quantitatively similar and better in accuracy. Our technique
works by measuring information at the end of each network scale which is then
combined into a single saliency map. We describe how saliency measures can be
made more efficient by exploiting Saliency Map Order Equivalence. Finally, we
visualize individual scale/layer contributions by using a Layer Ordered Visualiza-
tion of Information. This provides an interesting comparison of scale information
contributions within the network not provided by other saliency map methods.
Since our method only requires a single forward pass through a few of the layers
in a network, it is at least 97x faster than Guided Backprop and much more ac-
curate. Using our method instead of Guided Backprop, class activation methods
such as Grad-CAM, Grad-CAM++ and Smooth Grad-CAM++ will run several
orders of magnitude faster, have a significantly smaller memory footprint and be
more accurate. This will make such methods feasible on resource limited plat-
forms such as robots, cell phones and low cost industrial devices. This will also
significantly help them work in extremely data intensive applications such as satel-
lite image processing. All without sacrificing accuracy. Our method is generally
straight forward and should be applicable to the most commonly used CNNs [ﬂ

1 INTRODUCTION

Deep neural networks (DNN) have provided a new burst of research in the machine learning com-
munity. However, their complexity obfuscates the underlying processes that drive their inferences.
This has lead to a new field of explainable Al (XAl). A variety of tools are being developed to enable
researchers to peer into the inner workings of DNNs. One such tool is the XAl saliency map. It is
generally used with image or video processing applications and is supposed to show what parts of
an image or video frame are most important to a network’s decisions. The seemingly most popular
methods derive a gradient saliency map by back-propagating a gradient from the end of the network
and project it onto an image plane (Simonyan et al.| 2014; Zeiler & Fergus, 2014} |Springenberg
et al., 2015 |Sundararajan et al., |2017; Patro et al., [2019). The gradient can typically be from a
loss function, layer activation or class activation. Thus, it requires storage of the data necessary to
compute a full backward pass on the input image.

Several newer methods attempt to iteratively augment the image or a mask in ways that affect the
precision of the results (Fong & Vedaldi, [2017; |(Chang et al 2018). Additionally, saliency map
encoders can be trained within the network itself (Dabkowski & Gal,[2017). Both of these methods
have a distinct advantage of being more self-evidently empirical when compared with gradient tech-
niques. Class Activation Map (CAM) methods (Selvaraju et al., 2017; Chattopadhyay et al., 2018;
Omeiza et al.,2019) efficiently map a specified class to a region in an image, but the saliency map is
very coarse. They generally use a method like Guided Backprop (Springenberg et al.,[2015) to add
finer pixel level details. This requires a full backwards pass through the network, and it adds signif-
icant memory and computational overhead to CAM solutions relative to just computing the CAM
alone. Several of the CAM methods compute gradients aside from the use of Guided Backprop, but
we will differentiate them by referring to them as CAM methods.

"For reproducibility, full source code is available at http://www.anonymous.submission.com
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1.1 EFFICIENCY AND WHY IT MATTERS HERE

Most saliency map methods require many passes through the network in order to generate results
or train. The gradient methods hypothetically would require just one backwards pass, but often
require as many as 15 in order to give an accurate rendering (Hooker et al.,[2018). This is not always
a problem in the lab when a person has a powerful GPU development box. However, what if one
would like to see the workings of the network at training time or even run time? This can be a serious
hurdle when running a network on mobile or embedded platforms. It is not uncommon for hardware
to be barely fast enough to process each image from a video source. Running a full backward
pass can lead to dropped frames. Additionally, viewing or saving the saliency map for each frame is
infeasible. Another problem is that some platforms may not have the memory capacity to save all the
information required for a backward pass. Gradient based methods cannot work in these instances.
Sometimes this can even be the case with powerful hardware. Satellite images can be vary large and
potentially exhaust generous resources. An efficient method would enable developers in these areas
to get feedback in the field and aid in debugging or understanding the behavior of a network.

Here we show a method of computing an XAI saliency map which is highly efficient. The memory
and processing overhead is several orders of magnitude lower than the commonly used gradient
methods. This makes it feasible in any resource limited environment. Also, since we demonstrate
empirically that our method is either similar or more accurate than the most commonly used gradient
methods, it can be used it to speed up run-time in any situation. It is fast enough that we already use
it automatically when training networks. We notice very little degradation of training speed.

2 METHODS

2.1 SALIENCY MAP DERIVATION

We were looking for a method to compute saliency maps based on certain conditions and assump-
tions.

1. The method used needs to be relatively efficient to support rapid analysis at both test time
and during DNN training.

2. The method should have a reasonable information representation. As a DNN processes
data, the flow of information should become localized to areas which are truly important.

3. The method should capture the intuition that the informativeness of a location is propor-
tional to the overall activation level of all the filters as well their variance. That is, informa-
tive activations should have a sparse pattern with strong peaks.

Our approach works by creating saliency maps for the output layer of each scale in a neural network
and then combines them. We can understand scale by noting that the most commonly used image
processing DNNs work on images with filter groups at the same scale which down-sample the image
and pass it to the group of filters at the next scale, and so on. Given a network like ResNet-50 (He
et al.| 2015) with in input image size of 224x224, we would have five scale groups of size 112x112,
56x56, 28x28, 14x14 and 7x7. It is at the end of these scale groups where we are interested in
computing saliency. In this way, our approach is efficient and is computed during the standard
forward pass through the network. No extra pass is needed.

To achieve localization of information, we measure statistics of activation values arising at different
input locations. Given an output activation tensor T € RTP*9%" with spatial indices i,7 € p,q
and depth index k& € r from some layer T = [ (X). In our case [ (.) is a ReLU (Nair & Hintonl
2010). We apply a function to each column at ¢, j over all depths k. This yields a 2D saliency map
S € RTP*7 where S = ¢ (T). We process the tensor after it has been batch-normalized (loffe
& Szegedy, 2015)) and processed by the activation function. When we compute Truncated Normal
statistics as an alternative in later section, we take the tensor prior to the activation function.

Finally, to capture our intuition about the informativeness of an output activation tensor, we de-
rived ¢ (.) by creating a special simplification of the maximum likelihood estimation Gamma Scale
parameter (Choi & Wettel |1969). One way we can express it is:
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Figure 1: The left most image is the input to the network. Five saliency maps are shown for each
spatial scale in the network. They are combined per Eq[3] The right most image is the combined
saliency map created from these. To aid in visualizing context, it has been alpha blended with a gray
scale version of the original image here at 25%. Many more combined saliency map examples can
be seen in Appendix Figures[Q]and

T

-t o (L E) Dm0
k=1 k=1

k=1

To avoid log zero, we add le — 06 to each x;. How mean and variance relate seems readily ap-
parent with the square bracketed part being the computational formula for the standard deviation
with values taken to logs (.) rather than squared. This is preceded by a typical mean estimate. This
meets the third requirement we mentioned. This simplification is Saliency Map Order Equivalent
(SMOE) to the full iterative (and expensive) scale parameter estimation. We define SMOE as fol-
lows. Given saliency map S, € R™P*% and S, € R"P*? where we may have S, # S, if we
sort the pixels by value, then S, will be sorted in exactly the same order as Sj,. That means that the
most salient location ¢, j is exactly the same in both S, and S},. This also means that if we create
a binary mask of the n% most salient pixels, the mask for both S, and S} will also be exactly the
same. SMOE is preserved if for instance, we apply independent monotonic functions to a saliency
map. As such, we may as well strip these away to save on computation. Tie values may create
an imperfect equivalence, but we assert that these should be very rare and not affect results by a
measurable amount.

Using p as the mean of each column 7 in T, we can see the information relation more clearly if we
simplify Eq[I]further which gives us our SMOE Scale method:

1 « o
30(.)=;~k221u-10g2 (g%) (2)

The resemblance to conditional entropy is apparent. However, since the values in Eq [2] are not
probabilities, this does not fit the precise definition of it. On the other hand, the interpretation is
fairly similar. It is the mean activation multiplied by the information we would gain if we knew
the individual values which formed the mean. Put in traditional terms, it is the information in the
mean conditioned on the individual values. Numerical examples of this method at work can be seen
in Appendix Table [3] along with more information on the derivation. To create a 2D saliency map
S € RTP*4 we simply apply Eqat each spatial location i, j € p, ¢ with column elements k € r
in the 3D activation tensor T for a given input image.

2.2 COMBINED SALIENCY MAP GENERATION

For each input image, we derive five saliency maps. For different networks, this number may vary.
Given a network such as a ResNet (He et al.| 2015), AlexNet (Krizhevsky et al., [2013), VGG Net
(Simonyan & Zisserman, [2015)) or DenseNet (Huang et al.| [2017) we compute saliency on the final
tensor computed at each spatial scale. Recall that most image classification networks process images
in a pipeline that processes an image in consecutive groups of convolution layers where each group
downsamples the image by 1/2x before passing it onto the next. It is just prior to the downsampling
that we compute each saliency map. Computing saliency across image scales is a classical technique
Itti et al.,[T998). This is also similar to the method used in the XAl saliency technique described in
Dabkowski & Gall, 2017).
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Figure 2: Images are shown with their combined saliency map using our LOVI scheme. The hue in
each saliency map corresponds to layer activation. Earlier layers start at violet and trend red in the
last layers following the order of the rainbow. Areas which are blue or violet are only activated early
in network processing. They tend to activate early filters, but are later disregarded by the network.
Yellow and red areas are only activated later in the network. They appear to be places where the
objects components are combined together. White areas are activated throughout all network layers.
They possibly correspond to the most important features in the image. Many more examples can be
seen in Appendix Figures[TT]and

To make our maps easier to visualize or combine together, we normalize them from O to 1 by
squashing them with the normal cumulative distribution function ~ (s; u, o). Here mean and stan-
dard deviation are computed independently over each saliency map. We then create a combined
saliency map by taking the weighted average of the maps. Since they are at different scales, they are
upsampled via bilinear interpolation to match the dimensions of the input image. Given r saliency
maps that have been bilinear interpolated (upsampled) to the original input image size p, g, they are
then combined as:

2221 Y (Siyg,ki ks Ok) - W

Cij = T
D k=1 W

Note that technically, we compute v (s; 4, o) before we upsample. Weighting is very useful since
we expect that saliency maps computed later in the network should be more accurate than saliency
maps computed earlier as the network has reduced more irrelevant information in deeper layers,
distilling relevant pixels from noise (Tishby et al.,[2000). Network activity should be more focused
on relevant locations as information becomes more related to the message. We observe this behavior
which can be seen later in Figure ] A saliency map generation example can be seen in Figure [I]
with many more examples in Appendix Figures[9)and[10]

3)

The advantages of creating saliency maps this way when compared with most gradient methods are:

e Pro: This is relatively efficient, requiring processing of just five low cost layers during a
standard forward pass.

e Pro: We can easily visualize the network at different stages (layers).

e Con: The current method does not have a class specific activation map (CAM) (Selvarajul
et al, 2017}, [Chattopadhyay et al 2018} [Omeiza et al.,[2019), but we discuss how this can
be done later.

2.3  VISUALIZING MULTIPLE SALIENCY MAPS

One advantage to computing multiple saliency maps at each scale is that we can get an idea of what
is happening in the middle of the network. However, with so many saliency maps, we are starting
to be overloaded with information. This could get even worse if we decided to insert saliency maps
after each layer rather than just at the end of each scale. One way to deal with this is to come up with
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a method of combining saliency maps into a single image that preserves useful information about
each map. Such a composite saliency map should communicate where the network is most active as
well as which layers specifically are active. We call our method Layer Ordered Visualization of
Information (LOVI). We do this by combining saliency maps using an HSV color scheme (Joblove
& Greenberg, |1978) where hue corresponds to which layer is most active at a given location. That is,
it shows the mean layer around which a pixels activity is centered. Saturation tells us the uniqueness
of the activation. This is the difference between the maximum value at a location and the others.
Value (intensity) corresponds to the maximal activation at that location. Basically, this is a pixel’s
importance.

If only one layer is active at a location, the color will be very saturated (vivid colors). On the other
hand, if all layers are equally active at a given location, the pixel value will be unsaturated (white or
gray). If most of the activation is towards the start of a network, a pixel will be violet or blue. If the
activation mostly happens at the end, a pixel will be yellow or red. Green indicates a middle layer.
Thus, the color ordering by layer follows the standard order of the rainbow. Examples can be seen
in Figure[2} Given k € r saliency maps S (in this instance, we have » = 5 maps), we stack them
into a tensor S € RTP*4%" Note that all s € [0, 1] because of Eq and they have been upsampled
via bilinear interpolation to match the original input image size. Given:

o) =1- k2 (5 v =1 @
Hue € [0, 360] is basically the center of mass of activation for column vector s at each location

i,j € p,qin S:
_ D k=1 Sk ¢ (k)
22:1 Sk

Saturation € [0, 1] is the inverse of the ratio of the values in s compared to if they are all equal to the

maximum value. So for instance, if one value is large and all the other values are small, saturation
is high. On the other hand, if all values are about the same (equal to the maximum value), saturation

is very small:
D (56) — v
r-maz(s)- (1—v)
Value € [0, 1] is basically just the maximum value in vector s :
Val = mazx (s) (7

Once we have the HSV values for each location, we then convert the image to RGB color space in
the usual manner.

Hue -300 (5)

Sat=1— (6)

2.4 QUANTIFICATION VIA ROAR AND KAR

(Hooker et al., [2018) proposed a standardized method for comparing XAI saliency maps. This
extends on ideas proposed by (Dabkowski & Gall, 2017;|Samek et al., 2017) and in general hearkens
back to methods used to compare computational saliency maps to psychophysical observations (Itti
& Koch, 2001). The general idea is that if a saliency map is an accurate representation of what is
important in an image, then if we block out salient regions, network performance should degrade.
Conversely, if we block out non-salient regions, we should see little degradation in performance. The
ROAR/KAR metrics measure these degradations explicitly. The KAR metric (Keep And Retrain)
works by blanking out the least salient information/pixels in an input image, and the ROAR (Remove
And Retrain) metric uses the contrary strategy and removes the most salient pixels. Figure 3| shows
an example of ROAR and KAR masked image. A key component to the ROAR/KAR method is that
the network needs to be retrained with saliency masking in place. This is because when we mask
out regions in an input image, we unavoidably create artifacts. By retraining the network on masked
images, the network learns to ignore the new artifacts and focus on image information.

We will give a few examples to show why we need both metrics. If a saliency map is good at deciding
which parts of an image are least informative but gets the ranking of the most salient objects wrong,
ROAR scores will suggest the method is very good. This is because it masks out the most salient
locations in one large grouping. However, ROAR will be unable to diagnose that the saliency map
has erroneously ranked the most informative locations until we have removed 50% or more of the
salient pixels. As such, we get no differentiation between the top 1% and the top 10% most salient
pixels. On the other hand, KAR directly measures how well the saliency map has ranked the most
informative locations. By using both metrics, we can quantify the goodness of both the most and
least salient locations in a map.
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Figure 3: These are the KAR (kept) and ROAR (removed) mask images created by masking out the
original images with the combined saliency map. The percentage is how much of the image has been
kept or removed based on the combined saliency map. Thus, the /0% kept example shows the top
10% most salient pixels in the image. It is these example images that are fed into the network when
we compute the KAR and ROAR scores. Many more examples can be seen in Appendix Figure §]

3  QUANTITATIVE EXPERIMENTS

3.1 COMPARING DIFFERENT EFFICIENT STATISTICS

We tested our SMOE Scale saliency map method against several other statistical measures using
three different datasets that have fairly different tasks and can be effectively trained from scratch.
The sets used are ImageNet (Deng et all, 2009), CSAIL Places (Zhou et al. [2014) and COWC
(Mundhenk et all, 2016). ImageNet as a task focuses on foreground identification of objects in
standard photographic images. Places has more emphasis on background objects, so we would
expect more spatial distribution of useful information. COWC, Cars Overhead With Context is
an overhead dataset for counting as many as 64 cars per image. We might expect information
to be spatially and discretely localized, but distributed over many locations. In summary, these
three datasets are expected to have fairly different distributions of important information within
each image. This should give us more insight into performance than if we used several task-similar
datasets (e.g. Three photographic foreground object sets such as; ImageNet + CUB (birds)

+ CompCars 2015))
For compatibility with (Hooker et al.| 2018)), we used a ResNet-50 network 2015). We

also show performance on a per layer basis in order to understand the accuracy at different levels
of the network. For comparison with our SMOE Scale method, we included any statistical measure
which had at least a modicum of justification and was within the realm of the efficiency we were
aiming for. These included parameter and entropy estimations from Normal, Truncated-normal,
Log-normal and Gamma Distribution models. We also tested Shanon Entropy and Renyi Entropy.
To save compute time, we did a preliminary test on each method and did not continue using it if
the results qualitatively appeared very poor and highly unlikely to yield good quantitative results.
Normal entropy was excluded because it is SMOE with the Normal standard deviation. This left us
with nine possible statistical models which we will discuss in further detail.

Saliency maps for each method are computed over each tensor column in the same way as we did
with our SMOE Scale metric. The only difference is with the truncated-normal statistic which
computes parameters prior to the ReLU layer. We should note that (Jeong & Shin, [2019) uses a
truncated normal distribution to measure network information for network design. Recall that we
have five saliency map layers. They are at the end of each of the five network spatial scales. We
test each one at a time. This is done by setting the network with pre-trained weights for the specific
dataset. Then, all weights in the network which come after the saliency mask to be tested are
allowed to fine-tune over 25 epochs. Otherwise, we used the same methodology as
for data augmentation etc. This is necessary in order to adapt the network to mask related artifacts
as specified in the ROAR/KAR protocol. At the level where the saliency map is generated, we
mask out pixels in the activation tensor by setting them to zero. For this experiment, we computed
the ROAR statistic for the 10% least salient pixels. For KAR, we computed a map to only let
through the top 2.5% most salient pixels. This creates a more similar magnitude between ROAR
and KAR measures. Layer scores for the top five methods can be seen in Figure ] We combine
layer scores two different ways since ROAR and KAR scores are not quite proportional. These
methods both yield very similar results. The first method takes the improvement difference between
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Figure 4: SMOE Scale is compared with several other efficient statistical methods. The Y-axis is
the combined score per scale layer over all three image sets. The X-axis is the network layer with
L1 being the earliest layer in the network and L5 near the end. A difference score of zero means
the result was about the same as for a randomly generated saliency map. Less than zero means it
is worse. SMOE Scale differentiates itself the most early on in the network where most statistical
methods score at the level of a random saliency map. About mid way through, the difference between
methods becomes relatively small. This may be because information contains more message and less
noise by this point in processing. Finer grain details can be seen in Appendix Table 4]

Table 1: KAR and ROAR results per dataset. The Difference Score shows the results using Eq
[l The Information Score uses Eq[9} They are sorted by the average difference score (AVG). The
SMOE Scale from Eq [2| performs best overall using both scoring methods. The vanilla standard
deviation is second best. Recall it is SMOE with normal entropy. Truncated normal entropy is
best on the COWC set and ranks third overall. It is interesting to note that the difference in scores
over COWC are not as large as the other two datasets. The top four methods all are information
related and mean activation style methods are towards the bottom. Finer grain details can be seen in
Appendix Table 4]

Difference Score Information Score
Method ImNet Places COWC AVG ImNet Places COWC AVG
SMOE Scale 1.70 0.90 1.61 140 1.13 0.68 1.31 1.04
Standard Dev 1.64 0.83 1.61 1.36  1.07 0.61 1.30 0.99
Trunc Normal Ent 1.56 0.77 1.64 1.32  1.00 0.56 1.32 0.96
Shanon Ent 1.61 0.80 1.51 1.31 0098 0.59 1.23 0.93

Trunc Normal Std 1.51 0.71 1.64 1.28 1.00 0.52 1.32 0.94
Trunc Normal Mean 1.38 0.67 1.64 1.23  0.96 0.49 1.32 0.92
Normal Mean 1.29 0.63 1.42 1.11  0.75 0.44 1.18 0.79
Log Normal Ent 1.16 0.66 1.44 1.09 0.82 0.47 1.20 0.83
Log Normal Mean 1.46 0.55 1.09 1.03  0.54 0.35 0.88 0.59

tested method’s score and a randomized mask score. We have five k € [0, 1] KAR scores for a
method. We have five p € [0, 1] ROAR scores for a method and five z € [0, 1] scores from a
random mask condition. This corresponds to each saliency map spatial scale which we tested. We
compute a simple difference score as:

5
D (p, k) = Z (zp — pp) + Z (Kq — 2q) ®)

p=1 q=1
The second method is an information gain score given by:

5

5
zZ
I(p,k) =~ E pp - loge (ZI)) - E zq - loga (Hq) )
p=1 p qg=1 q

Table[I] shows the results.
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Figure 5: SMOE Scale with prior layer weights is compared with three popular baseline methods
that all use Squared SmoothGrad. Scores for these three are taken from (Hooker et al.,2018)). The Y-
axis is the model accuracy on /mageNet only. The X-axis is how much of the input image salient
pixels are kept or removed. KAR keeps the most salient locations. Higher accuracy values are
better. ROAR removes the most salient regions. Lower values are better. Our method does not seem
to suffer as much when the 10% least salient parts are removed in KAR and in general maintains a
better score. Our ROAR scores are very similar to Guided Backprop. Finer grain details can be seen
in Appendix Table[5] Note that these results are nor per layer. For a closer numerical comparison
with the mask layer method, see Appendix Table ]

3.2 COMPARISON WITH POPULAR METHODS

We compare our method with three popular saliency map methods using the standard ROAR/KAR
methodology. These are Gradient Heatmaps (Simonyan et al.l [2014), Guided Backprop (Sprin-
genberg et all 2015) and Integrated Gradients (Sundararajan et all 2017). All methods use
SmoothGrad-Squared (Smilkov et al.|[2017) which gives generally the best results. We should note
that without SmoothGrad or another augmentation, all three do not yield very good ROAR/KAR
scores.

We compare three different weighting strategies when combining the saliency maps from all five
scales. In the first strategy, we weight all five maps equal [1,1,1,1,1]. In the second, we use a rule-
of-thumb like approach where we weight the first layer the least since it should be less accurate.
Then each successive layer is weighted more. For this we choose the weights to be [1,2,3,4,5]. The
third method weights the maps based on the expected accuracy given our results when we computed
Table |1} These prior weights are [0.18, 0.15, 0.37, 0.4, 0.72]. The reason for showing the rule-of-
thumb results is to give an idea of performance given imperfect weights since one may not want to
spend time computing optimal prior weights.

To fairly compare the three popular saliency map methods with our own, we adopt a methodology
as close as possible to (Hooker et al.,[2018)). We train a ResNet-50 from scratch on ImageNet with
either ROAR or KAR masking (computed by each of the different saliency mapping approaches in
turn) at the start of the network. Otherwise, our training method is the same as (He et al.,|2015). The
comparison results are shown in Figure[5] We can try and refine these results into fewer scores by
subtracting the sum of the ROAR scores from the sum of the KAR scores. The results can be seen
in Table[2] The KAR score for our method is superior to all three comparison methods. The ROAR
score is better than Guided Backpropagation and Integrated Gradients. This suggests our method
is superior at correctly determining which locations are most salient, but is not as good as Gradient
Heatmaps for determining which parts of the image are least informative.

4 DISCUSSION

4.1 METHOD EFFICIENCY

The method as proposed is much faster than the three baseline comparison methods. Given a
ResNet-50 network, we only process five layers. The other methods require a special back prop-
agation step over all layers. We can compute the cost in time by looking at operations that come
from three sources. The first is the computation of statistics on tensors in five layers. The second is
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Table 2: Combined KAR and ROAR scores for several methods on ImageNet Only. The top
three rows show several popular methods with Squared SmoothGrad (Smilkov et al.,|2017). These
scores are created by simply summing the individual scores together. ROAR is negative since we
want it to be as small as possible. Prior Layer Weights means we applied layer weights based on the
prior determined accuracy of the layer saliency map. We include our top three scoring methods. The
SMOE Scale method outperforms the three baseline methods on KAR. It outperforms Guided Back-
prop and Integrated Gradients on ROAR as well as overall. The Gradient method is best overall, but
as we discuss later, it is at least /456 times more computationally expensive to compute. Truncated
normal entropy scores about the same as SMOE Scale. Since SMOE Scale gains its largest perfor-
mance boost in the earlier layers, when we apply prior weighting, we reduce that advantage. Finer
grain details can be seen in Appendix Table[5]

Method KAR ROAR SUM

Gradient (Simonyan et al.| 2014) 357 -3.54 0.04
Guided Backprop (Springenberg et al., 2015) 3.60  -3.57 0.04
Integrated Grad (Sundararajan et al.;[2017) 3.62 -3.58 0.03

Gradient -w- SmoothGrad Sq. 352 212 1.41
Guided Backprop -w- SmoothGrad Sq. 349 233 1.16
Integrated Grad -w- SmoothGrad Sq. 356  -2.68 0.88
SMOE Scale + Prior Layer Weights 361 -231 1.30
SMOE Scale + Layer Weights [1,2,3,4,5] 3.62 -234 1.28
SMOE Scale + Layer Weights [1,1,1,1,1] 3.62 -246 1.15
Normal Std + Prior Layer Weights 3.61 -2.32 1.29
Trunc Normal Ent + Prior Layer Weights 361 231 1.30

the normalization of each 2D saliency map. Third we account for the cost of combing the saliency
maps.

Ops for our solution ranges from 1.1x107 to 3.9x107 FLOPs (using terminology from (He et al.,
2015)) for a ResNet-50. The network itself has 3.8x10° FLOPs in total. The range in our count
comes from how we measure Log and Error Function operations that are computationally expensive
compared to more standard ops and whose implementations vary. We estimate the worst case from
available software instantiations. Most of the work comes from the initial computation of statistics
over activation tensors. This ranges from 9.2x10° to 3.7 x 10" FLOPs. In total, this gives us an
overhead of 0.3% to 1.0% relative to a ResNet-50 forward pass. All gradient methods have a nominal
overhead of at least 100%. A breakdown of the FLOPs per layer and component can be seen in Table
[6)in the appendix.

Compared to any method which requires a full backward pass, such as gradient methods, our solution
is nominally between 97x and 344x faster for non-SmoothGrad techniques, which according to
(Hooker et al., 2018) performs poorly on ROAR/KAR scores. We are between 1456x and 5181x
faster than a 15-iteration SmoothGrad implementation that yields the competitive results in Table
E} 15 iterations as well as other parameters was chosen by (Hooker et al.| 2018)) who describe this
selection in more detail.

The memory footprint of our method is minuscule. Computation over tensors can be done inline
which leaves the largest storage demand being the retention of 2D saliency maps. This is increased
slightly by needing to store one extra 112x112 image during bilinear up-sampling. Peak memory
overhead related to data is about 117 kilobytes per 224x224 input image.

4.2 USAGE WITH A CLASS ACTIVATION MAP

Our method does not have a class activation map (Selvaraju et al., 2017; \Chattopadhyay et al.,2018;;
Omeiza et al.| 2019) in the current implementation. This is because what we have is more akin to
Guided Backprop which Grad-CAM etc. combine with their class activation map to improve their
pixel level accuracy. The overhead for the class activation map itself is not large since in practice, it
involves computing gradients over the last few network layers only. This makes Guided Backprop



Under review as a conference paper at ICLR 2020

SMOE Scale

STD

Figure 6: These are examples of the first level saliency maps from SMOE Scale and Standard Devi-
ation. It is common for both std and truncated normal entropy to flood in areas with modest texture.
This may explain why difference scores for these two methods are at or below the performance of a
random saliency map.

the most expensive computational part. By replacing it with our method, accuracy should increase
as per Table 2] while dramatically reducing both computational and memory overhead.

4.3 SMOE SCALE 1s THE MOST ROBUST MEASURE

SMOE Scale is the only metric without a failure case among all the statistics we tested. It is the
only static that reliably scores in the top half of all the ones we tested. For Image Net and Places, it
is the only one always in the top three. All statistics except for SMOE Scale and Shannon Entropy
have at least one layer where they have a difference score at or below zero. This means they are
as accurate as a random saliency map for at least one condition. SMOE Scale is the most robust
statistic to use in terms of expected accuracy. The next highest scoring statistics, standard deviation
and truncated normal entropy, are no better than a random on layer 1. Figure[6]shows why this may
be. It is important to note that layer 1 contains the finest pixel details and should be expected to be
important in rendering visual detail in the final combined saliency map.

5 CONCLUSION

We have created a method of XAl saliency which is extremely efficent and is quantitatively com-
parable or better than several popular methods. It can also be used to create a saliency map with
interpretability of individual scale layers. Future work includes creating a class specific activation
map and expanding it to non-DNN architectures. We are currently testing our class activation map
integration Fast-CAM and will introduce it in a future work.
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A APPENDIX

A.1 DERIVATION OF SMOE SCALE

The maximum likelihood estimator of scale in the Gamma probability distribution is given as:
- f: (10)
= — "L’i
kn P
This requires the additional iterative estimation of the shape parameter & starting with an estimate s:
s=1In 1anx- lznjln(x-) (11)
N n 4 ’ n 4 ‘

Then we get to within 1.5% of the correct answer via:

3—s++/(s—3)2+ 24s

k=~ 12
12s (12)
Then we use the Newton-Ralphson update to finish:
In(k) — (k) —
ko g — ) Z¥(k) = s (13)

5 —v'(k)

But we can see application of Eqs [I2]and [[3]is monotonic. This is also apparent from the example
which we can see in Figure|[7]

Figure 7: A plot of the resulting £ values from input s values in the gamma probability distribution
maximum likelihood estimation. It is monotonic and reciprocal.

k is SMOE to %, SO we rewrite Eq with the reciprocal of k and optionally use the more efficient

logo as:
6 _ 1 En x; - |lo 1 En x; | — 1 En logs (x;) (14)
SMOE = 2 i 92 n i n = g2 (T4
This then simplifies to:
~ 1 n W
0 = . 1 L 15
SMOE = — ;:1 p - logy (%) (15)

We can see the results this gives with different kinds of data in Table 3]
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Table 3: Examples of SMOE Scale results given different data. This shows in particular when
log variance and standard deviation give similar or diverging results. It is easier to see how SMOE
Scale as a measure or variance is proportional to the mean. So, if we have lots of large values in an
output, we also need them to exhibit more variance relative to the mean activation.

Input Values Mean STD SMOE Scale
0.5 1 0.5 1 0.5 1 0.5 1 0.75 0.25 0.064
1 2 1 2 1 2 1 2 1.5 0.5 0.127
2 4 2 4 2 4 2 4 3 1 0.255
1 2 1 2 1 2 1 2 1.5 0.5 0.127
2 3 2 3 2 3 2 3 25 0.5 0.074
2 4 2 4 2 4 2 4 3 1 0.255
0.6125  1.8375 0.6125  1.8375 0.6125 1.8375 0.6125 1.8375 1.225 0.6125 0.254

14
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A.2 MORE EXAMPLES OF KAR SALIENCY MASKS

Figure 8: These are the last mini-batch images in our GPU:0 buffer when running the ImageNet
validation set. The top images are the original input images and the ones on the bottom are 10%
KAR images of the most salient pixels. These are images used when computing KAR scores.

15
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A.3 MORE EXAMPLES OF COMBINED SALIENCY MAPS

washer torch schooner |lipsticlk tractor

Yorls Y 1 wine |Boston

basset snhake|llkuvasz

Figure 9: These are more examples of combined saliency maps using the same images that appear
in Figure[8] These images are not alpha blending with the original. Above each image is the ground
truth label, while the label the network gave it is below. This was auto-generated by our training
scripts.

16



Under review as a conference paper at ICLR 2020

washer torch schooner |lipstick tractor

washer orc schooner |lipstic ractor
Norfollt tegvestment |red wine |water botlhamper

Yorls lhamper
basset ot shalkellituvasz

Englis s|(po sea snalkellcuvasz maze
blaclt swa|Croclt Potlaffenpinsddislk bralk

ENpInNnsdgals

Figure 10: These are the same as Figure [9] except with the original image gray scaled and alpha
blended at 25%.
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A.4 MORE EXAMPLES OF LOVI SALIENCY MAPS

washer torch Schoq'ner

5 £ F ._; pl‘
e A S
washer torc schooner fipstick
Norfolk tegvestment |red wine |water bot

%

red wine
sea

¢

."-j'
bla

clkk swa|Croc

Figure 11: These are more examples of visualizing multiple saliency maps using the same images
that are in Figure[8] These images are not alpha blending with the original.
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washer lipsticlk

torch Scho.'c;‘ner tractor

wine 3t
snake|llkuvasz

Figure 12: These are the same as Figure [[T| with the original image gray scaled and alpha blended
at 25%.
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A.5 COMPARING DIFFERENT EFFICIENT STATISTICS IN MORE DETAIL

This subsection shows the raw scores for each statistic over each dataset.

Table 4: KAR and ROAR results per dataset. This is a more detailed version of Table [I] and
Figure[d] The differing effects of the distribution of data in the three sets seems to manifest itself in
the L5 scores whereby the more concentrated the information is spatially, the better the ROAR/LS
score seems to be.

KAR Kept Percent ROAR Removed Percent
Method L1 L2 L3 L4 L5 L1 L2 L3 L4 L5
ImageNet

Random 66.42 6128 50.67 40.81 4298 7348 7241 6890 64.63  66.04
SMOE Scale 56.61  50.69 5125 4640 63.00 4448 4481 3635 3388 21.15
STD 51.84 50.73  50.72 46.16  62.82 4578 4274  36.17 3441  22.88
Mean 5321 4034 50.88  46.85 62.56 5266 64.10 37.85 3415 19.19
Shannon Ent 5543 4569 50.89 47.17 61.18 4474 5138 38.73 3578  18.07
Log Normal Mean 5598 3228 51.08 4721 62.02 5720 6822 4442 3498  18.50
Log Normal ENT 53.01 4252 51.13 46.85 6226 4792 62.64 3873 3450 1891

Trunc Normal Mean ~ 50.67  49.69  50.69 4352  62.87 4688 49.76 3544 3758  20.92
Trunc Normal Std 50.66 51.02 50.60 4254 6297 46.78 43770 35.68  38.18  21.57
Trunc Normal Ent 50.84  50.62  50.57 4363 6297 4692 4548 3556 37.64 21.25

Best 56.61 51.02  51.25 47.21 63.00 4448 4274 3544  33.88 18.07
Worst 50.66 32.28 50.57 4254  61.18 5720 68.22 4442 38.18 22.88
Places
Random 5720 53.59 47.83 41.26 39.45 60.77  60.25 58.14  56.41 55.26
SMOE Scale 49.76  45.67 46.39  40.57 53.50  44.35 44.61 39.80  40.26 27.94
STD 47.15 4475 46.28 3941 53.53 46.41 43.69 39.28  41.38 29.12
Mean 47.93 40.38 4594  41.10 5233 50.66 56.58  41.26 39.90 27.38
Shannon Ent 48.80 4320 4592 4131 50.62 4197 4928 4293 39.98 27.06
Log Normal Mean 50.05 35.87 46.23 41.45 51.67 5221 57.91 45.17 39.73 26.88
Log Normal ENT 47.77 41.41 46.02 4139 5225 48.96 56.34 4191 39.68 27.00

Trunc Normal Mean  46.25 4476  46.12  38.08 53.18 4692 4692 48.83 42.09 28.06
Trunc Normal Std 4596 4535 4638  37.61 53.38  46.41 46.76 4486 4243  28.68
Trunc Normal Ent 46.06 45.01 46.38 37.57 53.15 46.67 46.67 38.85 42.09 28.11

Best 50.05 45.67 4639 4145 5353 4197 4369 3885 39.68  26.88
Worst 4596 3587 4592 3757 50.62 5221 5791 4883 4243  29.12
COwWC
Random 65.05 5743 5230 6431 6555 7738 7544 7111 7825 7732
SMOE Scale 64.19 63.02 71.05 6287 80.65 45.16 4409 4397 6278  59.49
STD 60.36 6195 70.89 6457 8055 44.12 4352 4410 60.69 59.73
Mean 63.82 5990 7320 61.83 80.54 4579 5924  44.61 64.02  58.86
Shannon Ent 62.64 6378 7329 6099 7877 4650 4423 4642 6831 57.98

Log Normal Mean 6637 46.05 72.89  60.21 80.38 4898  71.02 46.69 67.19 58.16
Log Normal ENT 6323 6278 7326 6099 8044 4510 57.12 4492 6561  58.56
Trunc Normal Mean  60.00  63.35  72.08 65.62  80.54 4298 4444 4415 61.60 5945
Trunc Normal Std 59.52 6374 7158 6558  80.54 4276 4345 4398  62.07 59.81
Trunc Normal Ent 59.79 6348  71.77 6568 80.59  43.04 4380 43.89 61.79 59.89
Best 66.37 6378 7329 6568 80.65 4276 4345 4389 60.69 5798
Worst 59.52  46.05 70.89 6021 7877 4898  71.02 46.69 6831  59.89
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A.6 COMBINED KAR AND ROAR SCORES WITH MORE DETAIL

This subsection shows the raw scores for each ROAR and KAR mask. We also added the non-
SmoothGrad methods so we can see how much of an improvement it makes.

Table 5: Combined KAR and ROAR scores for several methods. This is a more detailed version
of Table[2and Figure[5} The top six rows show several popular methods with and without Squared
SmoothGrad applied to give optimal results. These are taken from (Hooker et al., [2018). Prior
Layer Weights means we applied layer weights based on the prior determined accuracy of the layer
saliency map. We include our top three scoring methods. The SMOE Scale method outperforms
the three baseline methods on KAR. It outperforms Guided Backprop and Integrated Gradients on
ROAR as well as overall. The Gradient method is best overall, but as we discussed, it is much more

expensive to compute.

KAR Kept Percent ROAR Removed Percent

Method 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Rand 63.53  67.06 69.13 71.02 72.65 7265 71.02 69.13 67.06 63.53
Gradient 67.63 7145 7202 7285 7346 7294 7222 7097 7072  66.75
Guided Backprop 71.03 7245 7228 72,69 7156 7229 7191 7118 7148  70.38
Integrated Grad. 7038 7251 7266  72.88 7332 7317 7272  72.03 71.68 6820
Gradient -w- SmoothGrad Sq. 63.25 69.79 7220 73.18 7396 6935 60.28 4155 2945 11.09
Guided Backprop -w- SmoothGrad Sq. 6242 6896  71.17 7272 7377 69.74 6056 5221 3498 1553
Integrated Grad. -w- SmoothGrad Sq. 67.55 6896 7224 73.09 7380 70.76  65.71 58.34 4371 29.41
SMOE Scale + Prior Layer Weights 6544 7214 7428 7451 7501 7040 60.33 4848 3423 17.72
SMOE Scale + Layer Weights [1....,5] 6576  72.60 7397 7453 7494 7028 6093 4873 3566 18.01
SMOE Scale + Layer Weights [1....,1] 66.13 7228 73772 7452 7497 7128  63.58 5285 3874 1972
Normal Std + Prior L. Weights 6548 7217 7393 7462 7467 6998  60.39 4875  34.63 18.13
Trunc Normal Ent + Prior L. Weights 65.45 7238 7410 7440 7475 6985 60.08 48.05 34.32 18.37
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A.7 OPERATIONS COMPUTATION

Table 6: FLOPs for each layer. This is the breakdown of FLOPs for each layer. Log and Error
Function are counted as one operation in this example. SMOE Ops is how many operations it takes
to compute the initial saliency map using the SMOE Scale statistic. Norm Ops is the number of
operations needed to normalize the saliency map. Combine Ops is the number of ops needed to
upsample and combine each saliency map.

Layer Dimensions FLOPS

Layer Channels  SizeH SizeW  SMOEOps Norm Ops  Combine Ops
Layer1 64 112 112 3223808 150528 225792
Layer2 256 56 56 3214400 37632 338688
Layer3 512 28 28 1606416 9408 338688
Layer4 1024 14 14 803012 2352 338688
Layer5 2048 7 7 401457 588 338688

Total 9249093 200508 1580544
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