
Under review as a conference paper at ICLR 2019

CNNSAT: FAST, ACCURATE BOOLEAN SATISFIA-
BILITY USING CONVOLUTIONAL NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Boolean satisfiability (SAT) is one of the most well-known NP-complete problems
and has been extensively studied. State-of-the-art solvers exist and have found a
wide range of applications. However, they still do not scale well to formulas with
hundreds of variables for uniform 3-SAT problems. To tackle this fundamental
scalability challenge, we introduce CNNSAT, a fast and accurate statistical decision
procedure for SAT based on convolutional neural networks. CNNSAT’s effective-
ness is due to a precise and compact representation of Boolean formulas. On both
real and synthetic formulas, CNNSAT is highly accurate and orders of magnitude
faster than the state-of-the-art solver Z3. We also describe how to extend CNNSAT
to predict satisfying assignments when it predicts a formula to be satisfiable.

1 INTRODUCTION

The Boolean satisfiability problem, or SAT, is a classical decision problem. Given a propositional
formula φ, SAT needs to decide whether φ has a satisfying assignment to its variables. If the answer is
yes, we say that the formula φ is satisfiable, or SAT for short. Otherwise, it is unsatisfiable, or UNSAT
for short. For example, the formula (x1∨x2)∧(¬x1∨x2)∧(x1∨¬x2) is satisfiable when both x1 and
x2 are true (i.e., x1 = x2 = true). Conversely, (x1 ∨x2)∧ (¬x1 ∨x2)∧ (x1 ∨¬x2)∧ (¬x1 ∨¬x2)
cannot be satisfied by any of the possible assignments.

In other words, SAT asks whether the variables of the given Boolean formula φ can be consistently
assigned the values true or false such that the formula evaluates to true. If this is the case, the
formula is called satisfiable. On the other hand, if no such assignment exists, the formula is false for
all possible variable assignments and is unsatisfiable.

SAT is a classical NP-complete problem, and in fact was the first problem proved NP-complete. Many
hard problems naturally reduce to SAT, such as the traveling salesman problem (TSP) and clique
detection. SAT has been extensively studied in the literature for decades because it is a foundational
problem and has wide applications. The more general satisfiability modulo theories (SMT) can also
be reduced to SAT solving.

SAT is one of the most investigated problems, and numerous heuristics exist to help speed up SAT
solving. However, state-of-the-art solvers do not yet scale to large, difficult formulas, such as ones
with hundreds of variables and thousands of clauses for uniform 3-SAT problems (Xu et al., 2012).
This is because the search space for solutions increases exponentially w.r.t. the number of variables.
Most search-based SAT solvers are based on the DPLL approach (Davis et al., 1962), but the search
space, even reduced, is still intractable for very large formulas.

State-of-the-art methods for SAT adopt the Conflict-Driven Clause Learning (CDCL) (Silva &
Sakallah, 1996; Bayardo Jr & Schrag, 1997) algorithm. This is a systematic search algorithm but
employs various optimizations to improve efficiency. However, because the general problem is
NP-complete, systematic search algorithms have exponential worst-case complexity, which limits the
scalability of these methods.

There exists several pieces of previous work that try to use machine/deep learning methods to improve
SAT solvers (Loreggia et al., 2016; Fei & Rompf, 2018), classify SAT/UNSAT (Bünz & Lamm, 2017;
Grozea & Popescu, 2014; Devlin & O’Sullivan, 2008), or directly solve SAT instances (Selsam et al.,
2018). However, all these approaches focus on SAT problems with a small number of variables.

1



Under review as a conference paper at ICLR 2019

In this paper, we introduce CNNSAT, a fast and accurate technique based on Convolutional Neural
Networks (Krizhevsky et al., 2012) to predict both satisfiability and satisfying assignments. Evaluated
on a data set containing 3-SAT problems with up to 410 variables, CNNSAT is able to predict
SAT/UNSAT with more than 95% accuracy and orders of magnitude faster than state-of-the-art
solvers. We also introduce optimizations to further improve CNNSAT’s scalability. As for the more
general SMT problems, CNNSAT is able to predict their satisfiability with more than 73% accuracy.

2 PRELIMINARIES

Convolutional neural network (CNN). CNN is a class of deep, feed-forward artificial neural
networks. Many successful applications of CNNs exist in image and sound processing. A CNN has
an input and an output layer, as well as multiple hidden layers, which typically consist of convolutional
layers, pooling layers, fully connected layers and normalization layers.

The SAT and 3-SAT problems. In Boolean logic, a formula is in conjunctive normal form (CNF) if
it is a conjunction of one or more sub-formulas. For a CNF formula, each of its sub-formulas is called
a clause, which is a disjunction of literals (i.e., variables or their negations). The clause-to-variable
ratio of a CNF formula is defined as the ratio of the number of clauses over the number of variables.

Each SAT instance can be represented in CNF. A CNF formula has a satisfying assignment iff there
exists at least one assignment for each variable in the formula such that the formula evaluates to
true. The objective of SAT solving is to determine whether or not a given formula is satisfiable, and
produce a satisfying assignment when the formula is satisfiable.

3-SAT is a special case of SAT where the number of literals in each clause is up to three. Generalizing
3-SAT, N -SAT requires all clauses having no more than N literals, and uniform N -SAT requires all
clauses having exactly N literals. 3-SAT is also NP-complete, and, in general, N -SAT, for N > 2,
can be reduced to 3-SAT.

The SMT problem Satisfiability Modulo Theories (SMT) refers to the problem of determining
whether a first-order formula is satisfiable w.r.t. some logical theories. It is typically applied to the
theory of real numbers, the theory of integers, and the theories of various data structures, such as lists,
arrays, and bit vectors.

For brevity, hereafter if a SAT problem instance is in CNF, we refer to it as CNF. Otherwise, we still
use SAT to refer to the more general case.

3 CNNSAT

This section presents the technical details behind our approach. In particular, it describes the
representation that we introduce to encode CNF formulas, the architecture of our proposed neural
network, and the method that we use to find satisfying assignments.

3.1 REPRESENTATION

A SAT problem has a simple syntactic structure and therefore can be encoded into a syntax-based
representation such as an abstract syntax tree (AST). The semantics of propositional logic induces
rich invariance that such syntactic representations would ignore, e.g., permutation and negation
invariance (Selsam et al., 2018). Permutation invariance stipulates that the satisfiability of a SAT
problem is not affected by swapping the variables (e.g., swapping all occurrences of x1 with those of
x2 in the SAT instance). Negation invariance means that negating every literal corresponding to a
given variable (e.g., replacing xi by ¬xi, and ¬xi by xi for any variable xi in the SAT instance).

As noted by Selsam et al. (2018), syntax-based representations do not capture the semantics of SAT
problems. In other words, they cannot identify even the simplest semantic equivalence among SAT
problems, such as permutation and negation invariance discussed earlier. On the other hand, even
though syntax-based representations may not accurately capture semantic equivalence, sufficient
amount of training data may allow neural networks to learn and predict the semantics of SAT formulas.
Our evaluation in Section 5 confirms this hypothesis. In addition, for certain applications, most
CNFs do not share the same/similar semantics. Therefore, we adopt a syntax-based representation to
balance accuracy and scalability.

2



Under review as a conference paper at ICLR 2019

p CNF 5 6
1 2 3
2 −3 4
1 −2 −3
1 2 4
3 −4 −5
−3 4 5

1 1 1 0 0
0 1 −1 1 0
1 −1 −1 0 0
1 1 0 1 0
0 0 1 −1 −1
0 0 −1 1 1

Figure 1: Example to illustrate our representation.

SAT Representation. Although a SAT problem can be represented in different forms, we choose
the most common CNF format. Each clause in a CNF formula φ is represented by a vector v, where
v = 〈e1, e2, ..., en〉, and the dimension of v, n, corresponds to the number of variables in φ. For
each element ei in the vector, we set it to 0 if the corresponding variable xi does not occur in the
clause, -1 if the variable xi is negated, and 1 otherwise (i.e., when the literal xi appears in the clause).
Collectively, the vectors for φ’s clauses form an m× n matrix, where m is the number of clauses and
n the number of variables.

Figure 1 shows an example to illustrate this representation. The CNF formula is shown in the left
sub-figure, while the representation is shown in the right sub-figure. The first line in the left sub-figure
(p CNF 5 6) indicates that the CNF has 5 variables and 6 clauses. The other rows in the left
sub-figure is in the format 〈vi1 vi2 vi3〉, where i is the i-th clause, vij is a literal (i.e., j-th variable or
its negation) in the clause — a negative value indicates that the variable is negated. The actual CNF
formula is

(x1∨x2∨x3)∧(x2∨¬x3∨x4)∧(x1∨¬x2∨¬x3)∧(x1∨x2∨x4)∧(x3∨¬x4∨¬x5)∧(¬x3∨x4∨x5)

From the table, we can see that the representation in the right sub-figure encodes all the values of the
variables into corresponding values in the matrix.

This representation is straightforward and the conversion is efficient. Note that this is a sparse matrix
because only a small number of elements in each row are nonzero. However, we observe that, in
practice, a SAT problem may have as many as millions of variables and clauses. At such a large
scale, these SAT problems cannot fit in memory. Therefore, we propose a compact representation to
improve scalability.

Our core idea is to split a matrix into smaller sub-matrices and summarize information for each
sub-matrix. First, we define a fixed size sliding window. Then, we split the original matrix into
sub-matrices according to the size of the original matrix and the sliding window. For each sub-
matrix, ri = 〈pi, ni〉 is a compact representation for the i-th sub-matrix, where pi is the number of
positive values in the sub-matrix and ni the number of negative values. Therefore, each sub-matrix
is converted to a list with 2 elements. It is worth noting that when the size of the sliding window
is 1 × 1, it retains the exact information in the original matrix. In the next section, we introduce
additional optimizations for the compact matrix for better performance. Our experimental evaluation
shows that this representation can accurately capture semantic equivalence.

SMT Representation. There are several straightforward representations for SAT problems. In
contrast, representing SMT problems is more challenging. Although we can design custom represen-
tations for SMT, we choose to translate SMT problems to SAT problems so that we can leverage our
representation of SAT problems to also encode SMT problems.

3.2 NETWORK ARCHITECTURE

Figure 2 depicts the architecture of our proposed neural network which uses three convolution layers
for CNN. The first layer of our network aims at reducing the scale of the input matrix because this
matrix can still be too large to fit in memory even for the compact representation. The last two layers
are used for building neural networks.

For convolution layers whose stride is one, the size of the output after one layer is sightly smaller
than the size of the input. The output size depends on the kernel size. Therefore, the scalability of
this model is poor if the size of the input is large. In order to tackle this challenge, we add the first

3



Under review as a conference paper at ICLR 2019

Figure 2: Network Architecture

Conv 
Layer 
with
NxM
kerne
l size

R
E
L
U

C
N
F

Matrix
2x2
Max 
poo
ling

Conv 
Layer 
with 
5x5 

kerne
l size

R
E
L
U

2x2
Max 
poo
ling

Conv 
Layer 
with 
3x3 

kerne
l size

R
E
L
U

F
C

Result

2x2
Max 
poo
ling

N and M

Algorithm 1: Solving_CNF
Input: φ, N
Output: Result

1 res := predictCNF(φ);
2 if res = UNSAT then
3 return UNSAT;

4 assignment := [];
5 predTimes := 0;
6 index := 0;
7 predLists := new map();
8 while index < NumberOfVar(φ) do
9 assign := random([true, false]);

10 newCNF := assignVar(φ, assign, index);
11 // res is a structure with 〈label, probability〉
12 res := predictCNF(newCNF);
13 predLists.insert(newCNF, res);

14 newCNF := chooseTopNProb(φ, predLists, N);
15 assignment := solver.solve(newCNF);
16 if assignment = SAT then
17 return contructAssign(assignment, predLists, N);

18 return UNKNOWN;

layer, whose goal is to shrink each input matrix into a fixed size matrix by choosing a specific stride
and kernel size. At the high-level, we first split an input matrix into a fixed number of sub-matrices
(e.g., 100× 100). N and M are determined by the input matrix. Then, we extract the features of each
sub-matrix and use them to form a new matrix. In this way, we are able to process matrices of any
size, and the only requirement is that the input matrix should pass the first layer.

After the first convolution layer, the size of the matrix is fixed (e.g., 100 × 100). We then build
three pooling layers and two other convolution layers. The last layer is a fully-connected layer that
computes the scores.

3.3 SAT SOLVING

In order to solve a CNF formula instead of only predicting whether it is SAT or UNSAT, we simplify
the CNF formula by guessing a satisfying assignment. We predict an assignment as follows. First,
we construct new CNF formulas by assigning random values (i.e., true or false) to variables, and
thus construct new matrices. We then feed these new matrices to the trained model and analyze the
prediction results. We choose a specific number of assignments based on prediction probabilities (i.e.,
confidence). Next, we use an off-the-shelf solver to find assignments for the rest of the variables.
Finally, we combine the two types of assignments to construct a final assignment.

Algorithm 1 shows the steps we use for solving CNF formuals. The input is a formula instead of
a compressed matrix, which limits the scalability of satisfiability solving. First, we do not solve

4



Under review as a conference paper at ICLR 2019

Separated LongRange

0
50
0

10
00

15
00

20
00

25
00

Distribution of Clauses

Dataset

N
um

be
r o

f C
la

us
es

(a) Distribution of number of clauses in two dataset

Separated LongRange

0
10
0

20
0

30
0

40
0

Distribution of Variables

Dataset

N
um

be
r o

f V
ar

ia
bl

es

(b) Distribution of number of variables in two dataset

Figure 3: Distribution of variables and clauses in each dataset

formulas that our CNN model predicts to be UNSAT (Lines 1-3). We assign random values (true
or false) to the variables and use our model to predict them (Lines 10-12). Note that we assign
variables one by one based on the order of variables (Line 8). Then, we store the result and the new
CNF (Line 13). After obtaining prediction results for all variables, we select a specific number (i.e.,
N) of predicted variables ranked by probability (Line 14). Reducing the original CNF formula with
these partial assignments yields a new, simplified CNF formula, which is fed to an existing solver
(Line 15). At the end, we merge the predicted partial assignment with the solver result to construct
an assignment if the solver finds a satisfiable assignment (Lines 16-17). Otherwise we regard the
formula as UNKNOWN (Line 18).

Consider, for example, an input CNF formula (x1∨x2)∧ (¬x1∨x2)∧ (x1∨¬x2). First, assume that
we assign false to x1, which leads to the new, simplified CNF formula: (x2) ∧ (¬x2). We feed this
formula to our model, and let us assume that it predicts the formula to be SAT with 80% probability.
Next, we try x2 as true, the CNF formula simplifies to (x1). If the prediction is SAT with 90%
probability and the N is 1, then we assign true to x2 and use a solver to resolve (x1). The solver
returns the satisfying assignment that x1 = true. With these two pieces of variable assignment
information, we derive the satisfying assignment {x1 = true, x2 = true} for the original CNF
formula. Note that if N were chosen to be 2, the combined variable assignment is not a satisfying
assignment. We choose to determine N dynamically based on the dataset.

4 DATASETS

We use CNFgen (Lauria et al., 2017) to generate CNF formulas in the DIMACS format. It generates
combinatorial, challenging problems for SAT solvers. CNFgen is also able to generate different
problems. For this work, we restricted CNFgen to generate random 3-SAT instances whose number
of variables and number of clauses are configurable.

We generate two kinds of datasets, Long Range and Separated. The number of variables for
Long Range ranges from 10 to 410 and the clause-variable ratio ranges from 4 to 8. It takes longer
time for solvers to solve CNFs with more than 400 variables and 8 clause-variable ratio. We generate
16, 000 random CNFs.

The second dataset Separated is used to test the ability of CNNSAT when predicting CNFs with three
smaller datasets. The data set consists of three sub-datasets: (1) a small dataset whose number of
variables ranges from 12 to 30, (2) a medium dataset whose number of variables ranges from 130 to
160, and (3) a large dataset whose number of variables is between 300 and 330. The clause-variable
ratio still ranges from 4 to 8. There are 95, 000 CNF formulas in this dataset.

5



Under review as a conference paper at ICLR 2019

0

225

450

675

900

0-10 60-79 120-139 180-199 240-259 300-319 360-379

UNSAT SAT

(a) Dataset: Long Range

0

450

900

1350

1800

0-10 40-59 80-99 120-139 160-179 200-219 240-259 280-299 320-339

UNSAT SAT

(b) Dataset: Separated

Figure 4: Distribution on the number of variables in two datasets.

We use 75% of the whole dataset for training and the rest of them for testing. A dataset should contain
a relatively balanced distribution of satisfiable and unsatisfiable instances, and cannot be made from
instances that are all in the same class. The ratio of SAT to UNSAT is 9637:6357 in Long Range and
the ratio of SAT to UNSAT is 5604:3896 in Separated.

Figure 3a depicts the number of clauses in the different datasets. Figure 3b shows the distribution
of the number of variables in the different datasets. Long Range is a dataset that is unbiased w.r.t.
the number of variables, but Separated is not. The goal of the Separated dataset is to compare the
behavior of networks with balanced and unbalanced datasets.

Figures 4a and 4b show the distribution of SAT and UNSAT instances in the different datasets. The
number of SAT and UNSAT instances in these datasets is nearly evenly distributed across different
ranges of variables. Note that the number of variables is not evenly distributed (Figure 4b) because
we would also like to evaluate the performance of CNNSAT when the dataset is not evenly distributed
by the number of variables.

Finally, we construct our SMT dataset from the SMT benchmarks provided by SMT (2018). We
choose two theories: QF_BV and QF_IDL. As for predicting satisfiability for SMT problems, we
use Z3 (De Moura & Bjørner, 2008) to convert them to SAT problems and use our model to predict
satisfiability for these SAT problems.

5 EVALUATION

All our experiments run on a PC with the following hardware configuration: Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz, 16GB memory and the GPU is GeForce 730 with 2GB memory. We have
implemented CNNSAT based on TensorFlow with GPU support.

As discussed earlier, we use CNFgen (Lauria et al., 2017) to generate random 3-SAT problem
instances in the DIMACS format. We use Z3 (De Moura & Bjørner, 2008) to convert SMT problems
to SAT problems. PicoSAT (Biere, 2007) is used to help predict assignments for CNF formulas. We
discard all SAT problems that cannot be solved by PicoSAT within a 10-minute budget. For each
dataset, 75% of the data is used for training and the rest for testing.

5.1 PREDICTION RESULTS ON RANDOM 3-SAT PROBLEMS

Table 1 shows the summary results of our neural network on different datasets. We evaluated
CNNSAT’s accuracy over the datasets with the 25% holdout setting, i.e., we trained our models on
75% of the data and tested on the remaining 25% data. We performed all experiments three times
and computed the average performance over these three runs.

Table 1 shows CNNSAT’s accuracy on two datasets. The overall accuracy on the Long Range 3-SAT
instances is 98.1%. The accuracy for SAT on SAT instances is 99.0%, and the accuracy for UNSAT
on UNSAT instances is 97.0%. The accuracy for predicting satisfying assignments is 92.6%. The

6



Under review as a conference paper at ICLR 2019

Table 1: Accuracy of the Trained Model

Dataset Accuracy Time (Second) % of Imp
on assignOverall On sat On unsat On assign Pred Mini

SAT
Pico
SAT

Long Range 98.1% 99.0% 97.0% 92.6% 227 39109 39919 22.4%
Separated 96.4% 97.7% 94.3% 91.4% 105 429 355 -79.3%

Table 2: Accuracy on permutation and negation

Dataset Operation Accuracy % of differenceOverall On sat On unsat
Long Range permutation 97.8% 99.4% 95.4% 0.31%
Long Range negation 98.0% 98.5% 97.2% 0.43%
Separated permutation 96.1% 97.2% 94.5% 0.49%
Separated negation 96.2% 97.6% 94.2% 0.24%

overall accuracy for the Separated 3-SAT instances is 96.4%. The accuracy for SAT on the SAT
instances is 97.7%, while the accuracy for UNSAT on the UNSAT instances is 94.3%. CNNSAT’s
accuracy for predicting satisfying assignments is 91.4%.

As for the scalability of CNNSAT, we evaluated it from three aspects. First, we measure the time
spent on predicting the satisfiability of CNF formulas. We use Z3, PicoSAT, MiniSAT (Sorensson &
Een, 2005), Glucose (Audemard & Simon, 2009), Dimetheus (Gableske, 2013) and CaDiCaL (Biere,
2017) for comparison to evaluate CNNSAT’s efficiency. Due to space constraints, we only show
the results for the two best performing solvers, MiniSAT and PicoSAT. The “Pred” means the time
used when making predictions on the test data. Note that 1/4 of the CNF formulas were used for
testing. “MiniSAT” and “PicoSAT” show the time that MiniSAT and PicoSAT spent on solving all
the CNF formulas, respectively. The results show that CNNSAT clearly outperforms MiniSAT and
“PicoSAT” by 1-2 orders of magnitude, making it practical for real-world use. “% of Imp on assign”
denotes the percentage of improvement for our SAT solving algorithm compared to directly solving
CNFs predicted as satisfiable using PicoSAT. We can observe that predicting speed for Long Range
is improved when using our method. However, the performance for dataset Separated is decreased.
The reason is that Separated contains less complicated CNFs and thus there is little improvement
when CNNSAT could predict values for a part of the variables. In contrast, CNNSAT introduces
additional overhead by predicting potential assignments.

5.2 EQUIVALENCE RESULTS

In this experiment, we evaluate two kinds of semantic equivalent operations, permutation invariance
and negation invariance. For negation invariance, we generate datasets by negating half the variables.
As for permutation invariance, we randomly choose two variables and swap them. For each CNF
instance, we swap variables bN/2c times, whereN is the number of variables. For the two operations,
we evaluate them three times and average the results.

Table 2 shows the results. We can see that CNNSAT predicts SAT/UNSAT with high accuracy. The
corresponding accuracy is close to the original dataset in Table 1. The % of difference shows the
percent of differences in individual predictions. The evaluation results show that CNNSAT is able to
capture the semantics of SAT problems.

5.3 ACCURACY ON SMT BENCHMARKS

Table 3 shows the accuracy of CNNSAT on SMT benchmarks. The timeout for each phase is also 10
minutes. “CNV time” stands for how much time it takes to convert SMT problems to SAT problems.
In our experiment, Z3 may convert an SMT to an empty SAT whose number of variable is zero or
one. We ignore these trivial SAT instances.

We can see from the table that CNNSAT is able to predict them with more than 73% accuracy. In
addition, CNNSAT is 1-2 orders faster than Z3.

7



Under review as a conference paper at ICLR 2019

Table 3: Accuracy SMT benchmarks

Dataset Accuracy Time (Second)
Overall On sat On unsat CNV time Pred time Z3 time

QF_BV 73.8% 87.9% 48.5% 28,010 6,365 396,107
QF_IDL 91.2% 97.5% 44.6% 701 157 138,656

5.4 DISCUSSIONS

Sparse Convolutional Neural Network. We use traditional CNN for CNNSAT, and construct a
matrix based on CNF. However, it is clear that the matrix is sparse. In fact, for 3-SAT problems, the
matrices are very sparse and most elements in these matrices are zero. However, we have not found
sparse CNNs that best fit our scenario. Graham & van der Maaten (2017) present the Submanifold
Sparse Convolutional Networks but since the matrices in our setting is not submanifold, it does not fit
our representation.

Guiding SAT solvers. Most state-of-the-art SAT solvers implement Conflict-Driven Clause Learning
(CDCL) (Silva & Sakallah, 1996; Bayardo Jr & Schrag, 1997). In CDCL, it continues selecting a
variable and assigning true or false, and try to find conflict until all variable values are assigned.
CNNSAT may improve its performance by trying to assign a variable the value leading the formula
to SAT. Although the performance is not improved when a formula is UNSAT, it may improve
performance when a formula is SAT. The performance can also be improved by learning the strategy
that guiding the selection to choose a conflicting assignment.

6 RELATED WORK

Bello et al. (2017) present a framework to tackle combinatorial optimization problems using neural
networks and reinforcement learning. They also apply it to other NP-hard problems such as trav-
eling salesman problem and KnapSack. It shows performance improvement compared to standard
algorithmic methods.

Fei & Rompf (2018) propose another avenue for SAT. They cast symbolic reasoning problems
directly as gameplay to leverage the full decision-making power of neural networks through deep
reinforcement learning. Most SAT solvers are based on the Conflict Driven Clause Learning (CDCL)
algorithm, which is a typical symbolic reasoning process that can be cast as a game of controlling the
branching decisions. The results show that this method can obtain better performance.

Xu et al. (2012) show that 70% classification accuracy can be obtained based on phase transition
features on uniform-random 3-SAT formulas. CNNSAT’s prediction accuracy is significantly higher
under a similar experimental setup. In addition, phase transition features vary on different kinds of
formulas, and thus a significant performance drop is expected on SAT instances converted from SMT
formulas.

NeuroSAT (Selsam et al., 2018) uses an undirected graph to represent CNFs and builds a model by
two vectors, three multilayer perceptrons and two layer-norm LSTMs. However, it needs to generate
certain type of pairs to model SAT. In each pair, one element is satisfiable, the other is unsatisfiable,
and the two differ by negating only a single literal occurrence in a single clause. Therefore, the
training data is constrained by this requirement, which means for some data like uniform 3-SAT, it
takes significant amount of time to generate the training data. In contrast, for CNNSAT, any training
data is useful. NeuroSAT is unable to precisely predict satisfiability when the number of variables
is large. Bünz & Lamm (2017) propose a method based on Graph Neural Network that is able to
classify SATs with around 60% validation error. The representation is similar to NeuroSAT, which
uses graphs to represent CNFs.

Feature-based machine learning methods Devlin & O’Sullivan (2008); Grozea & Popescu (2014) can
also classify SATs. Grozea & Popescu (2014) aim to empirically test the ability of machine learning
models to act as decision oracles for NP problems. They only evaluated the idea on formulas with up
to 100 variables. The approach does not scale to formulas with more variables, such as those large
formulas considered in this paper. Devlin & O’Sullivan (2008) view the satisfiability problem as a
classification task. Based on easy to compute structural features of instances of large satisfiability

8



Under review as a conference paper at ICLR 2019

problems, they use a variety of standard classifier learners to classify previously unseen instances of
the satisfiability problem as either SAT or UNSAT. The accuracy for classification is more than 90%.
In comparison, CNNSAT can predict variable assignments and handle much larger formulas.

7 CONCLUSION

In this paper, we have introduced a new fast and accurate approach for solving SAT problems via
Convolutional Neural Networks. We have described how we represent SAT instances, how we
design our proposed neural network, how we optimize our technique for scalability, and our extensive
evaluation to show CNNSAT’s high accuracy and scalability on large SAT and SMT problem instances.
Because CNNSAT’s effectiveness, it may find interesting applications in domains that require fast
SAT and SMT solving, such as software analysis and verification, symbolic execution, planning and
scheduling, and combinatorial design.

REFERENCES

SMT-LIB The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.edu/
benchmarks.shtml, 2018.

Gilles Audemard and Laurent Simon. Glucose: a solver that predicts learnt clauses quality. SAT
Competition, pp. 7–8, 2009.

Roberto J Bayardo Jr and Robert Schrag. Using CSP look-back techniques to solve real-world SAT
instances. In Aaai/iaai, pp. 203–208, 1997.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. In ICLR, 2017. ISBN 9781845936877. doi: 10.1146/
annurev.cellbio.15.1.81. URL http://arxiv.org/abs/1611.09940.

Armin Biere. PicoSAT version 535. Solver description, SAT competition, 2007, 2007.

Armin Biere. CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT competition
2017. SAT COMPETITION 2017, pp. 14, 2017.

Benedikt Bünz and Matthew Lamm. Graph neural networks and Boolean satisfiability. arXiv preprint
arXiv:1702.03592, 2017.

Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, 1962.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

David Devlin and Barry O’Sullivan. Satisfiability as a classification problem. In Proc. of the 19th
Irish Conf. on Artificial Intelligence and Cognitive Science, 2008.

Wang Fei and Tiark Rompf. From gameplay to symbolic reasoning: Learning SAT solver heuristics
in the style of Alpha (Go) Zero. arXiv preprint arXiv:1802.05340, 2018.

Oliver Gableske. Solver description of Dimetheus v. 1.700 for the SAT competition 2013. Proceedings
of SAT Competition 2013, pp. 30, 2013.

Benjamin Graham and Laurens van der Maaten. Submanifold sparse convolutional networks. arXiv
preprint arXiv:1706.01307, 2017.

Cristian Grozea and Marius Popescu. Can machine learning learn a decision oracle for NP problems?
a test on SAT. Fundamenta Informaticae, 131(3-4):441–450, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

9

http://smtlib.cs.uiowa.edu/benchmarks.shtml
http://smtlib.cs.uiowa.edu/benchmarks.shtml
http://arxiv.org/abs/1611.09940


Under review as a conference paper at ICLR 2019

Massimo Lauria, Jan Elffer, Jakob Nordstrom, and Marc Vinyals. CNFgen: A Generator of Crafted
Benchmarks. In Theory and Applications of Satisfiability Testing âĂŞ SAT, pp. 464–473, 2017.
ISBN 9783319662633. doi: 10.1007/978-3-319-66263-3. URL https://link.springer.
com/content/pdf/10.1007{%}2F978-3-319-66263-3{_}30.pdf.

Andrea Loreggia, Yuri Malitsky, Horst Samulowitz, and Vijay A Saraswat. Deep learning for
algorithm portfolios. In AAAI, pp. 1280–1286, 2016.

Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura, and David L Dill.
Learning a SAT solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

JP Marques Silva and Karem A Sakallah. Conflict analysis in search algorithms for satisfiability. In
Tools with Artificial Intelligence, 1996., Proceedings Eighth IEEE International Conference on, pp.
467–469. IEEE, 1996.

Niklas Sorensson and Niklas Een. MiniSAT v1.13 — a SAT solver with conflict-clause minimization.
SAT, 2005(53):1–2, 2005.

Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. Predicting satisfiability at the phase transition. In
AAAI, 2012.

10

https://link.springer.com/content/pdf/10.1007{%}2F978-3-319-66263-3{_}30.pdf
https://link.springer.com/content/pdf/10.1007{%}2F978-3-319-66263-3{_}30.pdf

	Introduction
	Preliminaries
	CNNSAT
	Representation
	Network Architecture
	SAT Solving

	Datasets
	Evaluation
	Prediction Results on Random 3-SAT Problems
	Equivalence Results
	Accuracy on SMT Benchmarks
	Discussions

	Related Work
	Conclusion

