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Abstract

Matrix factorization (MF) is a versatile learning method that has found wide ap-
plications in various data-driven disciplines. Still, many MF algorithms do not
adequately scale with the size of available datasets and/or lack interpretability. To
improve the computational efficiency of the method, an online (streaming) MF
algorithm was proposed in [1]. To enable data interpretability, a constrained ver-
sion of MF, termed convex MF, was introduced in [2]. In the latter work, the basis
vectors are required to lie in the convex hull of the data samples, thereby ensuring
that every basis can be interpreted as a weighted combination of data samples. No
current algorithmic solutions for online convex MF are known as it is challenging
to find adequate convex bases without having access to the complete dataset. We
address both problems by proposing the first online convex MF algorithm that
maintains a collection of constant-size sets of representative data samples needed
for interpreting each of the basis [2] and has the same almost sure convergence
guarantees as the online learning algorithm of [1]. Our proof techniques combine
random coordinate descent algorithms with specialized quasi-martingale conver-
gence analysis. Experiments on synthetic and real world datasets show significant
computational savings of the proposed online convex MF method compared to
classical convex MF. Since the proposed method maintains small representative
sets of data samples needed for convex interpretations, it is related to a body of
work in theoretical computer science, pertaining to generating point sets [3], and in
computer vision, pertaining to archetypal analysis [4]. Nevertheless, it differs from
these lines of work both in terms of the objective and algorithmic implementations.

1 Introduction

Matrix Factorization (MF) is a widely used dimensionality reduction technique [5, 6] whose goal
is to find a basis that allows for a sparse representation of the underlying data [7, 8]. Compared to
other dimensionality reduction techniques based on eigendecompositions [9], MF enforces fewer
restrictions on the choice of the basis and hence ensures larger representation flexibility for complex
datasets. At the same time, it provides a natural, application-specific interpretation for the bases.
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MF methods have been studied under various modeling constraints [2, 10, 11, 12, 13, 14, 15, 16].
The most frequently used constraints are non-negativity, constraints that accelerate convergence
rates, semi-non-negativity, orthogonality and convexity [11, 2, 17]. Convex MF (cvxMF) [2] is
of special interest as it requires the basis vectors to be convex combinations of the observed data
samples [18, 19]. This constraint allows one to interpret the basis vectors as probabilistic sums of a
(small) representative subsets of data samples.
Unfortunately, most of the aforementioned constrained MF problems are non-convex and NP-hard [20,
21, 22], but can often be suboptimally solved using alternating optimization approaches for finding
local optima [13]. Alternating optimization approaches have scalability issues since the number
of matrix multiplications and convex optimization steps in each iteration depends both on the data
set size and its dimensionality. To address the scalability issue [23, 24, 25], Mairal, Bach, Ponce
and Sapiro [1] introduced an online MF algorithm that minimizes a surrogate function amenable to
sequential optimization. The online algorithm comes with strong performance guarantees, asserting
that its solution converges almost surely to a local optima of the generalization loss.
Currently, no online/streaming solutions for convex MF are known as it appears hard to satisfy
the convexity constraint without having access to the whole dataset. We propose the first online
MF method accounting for convexity constraints on multi-cluster data sets, termed online convex
Matrix Factorization (online cvxMF). The proposed method solves the cvxMF problem of Ding,
Li and Jordan [2] in an online/streaming fashion, and allows for selecting a collection of “typical”
representative sets of individual clusters (see Figure 1). The method sequentially processes single data
sample and updates a running version of a collection of constant-size sets of representative samples
of the clusters, needed for convex interpretations of each basis element. In this case, the basis also
plays the role of the cluster centroid, and further increases interpretability. The method also allows
for both sparse data and sparse basis representations. In the latter context, sparsity refers to restricting
each basis to be a convex combination of data samples in a small representative region. The online
cvxMF algorithm has the same theoretical convergence guarantees as [1].
We also consider a more restricted version of the cvxMF problem, in which the representative samples
are required to be strictly contained within their corresponding clusters. The algorithm is semi-
heuristic as it has provable convergence guarantees only when sample classification is error-free, as
is the case for non-trivial supervised MF [26] (note that applying [1] to each cluster individually is
clearly suboptimal, as one needs to jointly optimize both the basis and the embedding). The restricted
cvxMF method nevertheless offers excellent empirical performance when properly initialized.
It is worth pointing out that our results complement a large body of work that generalize the method
of [1] for different loss functions [27, 28, 29] but do not impose convexity constraints. Furthermore,
the proposed online cvxMF exhibits certain similarities with online generating point set methods [3]
and online archetypal analysis [4]. The goal of these two lines of work is to find a small set of
representative samples whose convex hull contains the majority of observed samples. In contrast, we
only seek a small set of representative samples needed for accurately describing a basis of the data.
The paper is organized as follows. Section 2 introduces the problem, relevant notation and introduces
our approach towards an online algorithm for the cvxMF problem. Section 3 describes the proposed
online algorithm and Section 4 establishes that the learned basis almost surely converge to a stationary
point of the approximation-error function. The theoretical guarantees hold under mild assumptions
on the data distribution reminiscent of those used in [1], while the proof techniques combine ran-
dom coordinate descent algorithms with specialized quasi-martingale convergence analysis. The
performance of the algorithm is tested on both synthetic and real world datasets, as outlined in Sec-
tion 5. The real world datasets include are taken from the UCI Machine Learning [30] and the 10X
Genomics repository [31]. The experiments reveal that our online cvxMF runs four times faster than
its non-online counterpart on datasets with 104 samples, while for larger sample sets cvxMF becomes
exponentially harder to execute. The online cvxMF also produces high-accuracy clustering results.

2 Notation and Problem Formulation

We denote sets by [l] = {1,… , l}. Capital letters are reserved for matrices (bold font) and random
variables (RVs) (regular font). Random vectors are described by capital underlined letters, while
deterministic vectors are denoted by lower-case underlined letters. We use M[l] to denote the lth
column of the matrixM,M[r, l] to denote the element in row r and column l, and x[l] to denote the
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Figure 1: A multi-cluster dataset: Stars represent the learned bases, while circles denote representative
samples for the basis of the same color. Left: The representative sets for the individual basis elements
are unrestricted. Right: The representative sets are restricted to lie within their corresponding clusters.

lth coordinate of a vector x. Furthermore, col(M) stands for the set of columns ofM, while cvx(M)
stands for the convex hull of col(M).
Let X ∈ ℝm×n denote a matrix of n data samples of constant dimension m arranged (summarized)
column-wise, let D ∈ ℝm×k denote the k basis vectors used to represent the data and let � ∈ ℝk×n
stand for the low-dimension embedding matrix. The classical MF problem reads as:

min
D,�

‖X − D�‖22 + �‖�‖1. (1)

where ‖x‖2 ≜
√

xT x and ‖x‖1 ≜
∑

j
|

|

x[j]|
|

denote the l2-norm and l1-norm of the vector x,
respectively.
In practice, X is inherently random and in the stochastic setting it is more adequate to minimize the
above objective in expectation. In this case, the data approximation-error g(D) for a fixed D equals:

g(D) ≜ EX[min
�∈ℝk

‖X − D�‖22 + �‖�‖1], (2)

where X is a random vector of dimension m and the parameter � controls the sparsity of the coefficient
vector �. For analytical tractability, we assume that X is drawn from the union of k disjoint, convex
compact regions (clusters), (i) ∈ ℝm, i ∈ [k]. Each cluster is independently selected based on
a given distribution, and the vector X is sampled from the chosen cluster. Both the cluster and
intra-cluster sample distributions are mildly constrained, as described in the next section.
The approximation-error of a single data sample x ∈ ℝm with respect to D equals

l(x,D) ≜ min
�∈ℝk

1
2
‖x − D�‖22 + �‖�‖1. (3)

Consequently, the approximation error-function g(D) in Equation (2) may be written as g(D) =
EX

[

l(X,D)
]

. The function g(D) is non-convex and optimizing it is NP-hard and requires prior
knowledge of the distribution. To mitigate the latter problem, one can revert to an empirical estimate
of g(D) involving the data samples xn, n ∈ [t],

gt(D) =
1
t

t
∑

n=1
l(xn,D).

Maintaining a running estimate ofDt of an optimizer of gt(D) involves updating the coefficient vectors
for all the data samples observed up to time t. Hence, it is desirable to use surrogate functions to
simplify the updates. The surrogate function ĝt(D) proposed in [1] reads as

ĝt(D) ≜
1
t

t
∑

n=1

1
2
‖xn − D�n‖

2
2 + �‖�n‖1, (4)

where �n is an approximation of the optimal value of � at step n, computed by solving Equation (3)
with D fixed to Dn−1, an optimizer of ĝn−1(D).
The above approach lends itself to an implementation of an online MF algorithm, as the sum in Equa-
tion (4) may be efficiently optimized whenever adding a new sample. However, in order to satisfy the
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convexity constraint of [2], all previous values of xn are needed to update D. To mitigate this problem,
we introduce for each cluster (i) a representative set X̂(i)t ∈ ℝm×Ni and its convex hull (representative
region) cvx(X̂(i)t ). The values ofNi are kept constant, and we require Dt[i] ∈ cvx(X̂

(i)
t ). As illustrated

in Figure 1, we may further restrict the representative regions as follows.

u (Figure 1, Left): We only require that X̂(i)t ⊂ cvx(
⋃

j 
(j)), i ∈ [k]. This unrestricted case leads

to an online solution for the cvxMF problem [2] as one may use
⋃

j X̂
(j)
t as a single representative

region. The underlying online algorithms has provable performance guarantees.

r (Figure 1, Right): We require that X̂(i)t ⊂ (i), which is a new cvxMF constraint for both the
classical and online setting. Theoretical guarantees for the underlying algorithm follow from small and
fairly-obvious modifications in the proof for the u case, assuming error-free sample classification.

3 Online Algorithm

The proposed online cvxMF method for solvingu consists of two procedures, described in Algo-
rithms 1 and 2. Algorithm 1 describes the initialization of the main procedure in Algorithm 2. Algo-
rithm 1 generates an initial estimate for the basisD0 and for the representative regions {cvx(X̂

(i)
0 )}i∈[k].

A similar initialization was used in classical cvxMF, with the bases vectors obtained either through
clustering (on a potentially subsampled dataset) or through random selection and additional pro-
cessing [2]. During initialization, one first collects a fixed prescribed number of N data samples,
summarized in X̂. Subsequently, one runs the K-means algorithm on the collected samples to obtain
a clustering, described by the cluster indicator matrix H ∈ {0, 1}N×k, in which H[n, i] = 1 if the n-th
sample lies in cluster i. The sizes of the generated clusters

{

Ni
}

i∈[k] are used as fixed cardinalities
of the representative sets of the online methods. The initial estimate of the basis D0[i] equals the
average of the samples inside the cluster, i.e. D0 ≜ X̂ H diag(1∕N1,… , 1∕Nk).
Note again that initialization is performed using only a constant number of N samples. Hence, K-
means clustering does not significantly contribute to the complexity of the online algorithm. Second,
to ensure that the restricted online cvxMF algorithm instantiates each cluster with at least one data
sample, one needs to take into account the size of the smallest cluster (discussed in the Supplement).

Algorithm 1 Initialization

1: Input: i.i.d samples x1, x2,… , xN of a random vector X ∈ ℝm summarized in X̂.
2: Run K-means on X̂ to generate the cluster indicator matrix H ∈ {0, 1}N×k and determine the

initial cluster sizes (subsequent representative set sizes)Ni, i ∈ [k].
3: Compute D0 and X̂

(i)
0 ∈ ℝm×Ni , ∀i ∈ [k], according to:

D0 = X̂ H diag(1∕N1,… , 1∕Nk)

and summarize the initial representative sets of the clusters into matrices X̂(i)0 , i = [k].
4: Return: D0, {X̂

(i)
0 }i∈[k].

Figure 2: Illustration of one step of the online cvxMF algorithm with multiple-representative regions.

Following initialization, Algorithm 2 sequentially selects one sample xt at a time and then updates the
current representative sets X̂(i)t , i ∈ [k], and bases Dt. More precisely, after computing the coefficient
vector �t in Step 5, one places the sample xt into the appropriate cluster, indexed by it. TheNit -subsets
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Algorithm 2 Online cvxMF
1: Input: Data samples xt, a parameter � ∈ ℝ, and the maximum number of iterations T .
2: Initialization: Compute D0, {X̂

(i)
0 }i∈[k] using Algorithm 1. Set A0 = 0, B0 = 0.

3: for t = 1 to T do
4: Sample xt from X.
5: Update �t according to:

�t = argmin
�∈ℝk

1
2
‖

‖

‖

xt − Dt−1�
‖

‖

‖

2

2
+ �‖�‖1. (5)

6: Set At =
1
t

(

(t − 1)At−1 + �t�
T
t
)

and Bt =
1
t

(

(t − 1)Bt−1 + xt �
T
t
)

.
7: Choose the index of the basis it to be updated according to it = Uniform([k]).
8: Generate the augmented representative regions

{

Ŷ{l}t
}

l∈[Nit ]∪{0}
:

Ŷ{0}t = X̂(it)t−1
{

Ŷ{l}t
}

l∈[Nit ]
∶ Ŷ{l}t [j] =

{

X̂(it)t−1[j], if j ∈ [Ni] ⧵ l
xt, if j = l.

(6)

9: Update {X̂(i)t }i∈[k] and Dt by executing the following two steps:
a. Compute l⋆, D̂⋆ by solving the optimization problems:

l⋆, D̂⋆ = argmin
l, D s.t.

D[j]∈cvx
(

X̂(j)t−1
)

j≠it,

D[it]∈cvx
(

Ŷ{l}t
)

1
t

t
∑

n=1

(

1
2
‖

‖

‖

xn − D�n
‖

‖

‖

2

2
+ �‖�n‖1

)

,

= argmin
l, D s.t.

D[j]∈cvx
(

X̂(j)t−1
)

j≠it,

D[it]∈cvx
(

Ŷ{l}t
)

1
2
Tr(DTDAt) − Tr(DTBt).

(7)

b. Set

X̂(i)t =

{

Ŷ{l
⋆}

t , if i = it
X̂(i)t−1, if i ∈ [k] ⧵ it,

Dt = D̂⋆.
10: end for
11: return DT , the learned convex dictionary.

of {col(X̂(it)t )∪xt} (referred to as the augmented representative sets Ŷ{l}t , l ∈ [Nit ]∪{0}), are used in
Steps 8 and 9 to determine the new representative region X̂(it)t+1 for cluster it. To find the optimal index
l ∈ [Nit ] ∪ {0} and the corresponding updated basis D[it], in Step 9 we solveNit convex problems.
The minimum of the optimal solutions of these optimization problems determines the new bases Dt
and the representative regions X̂(i)t (see Figure 2 for clarifications). Note that the combinatorial search
step is executed on a constant-sized set of samples and is hence computationally efficient.
In Step 7, the new sample may be assigned to a cluster in two different ways. For the case u, we
use a random assignment. For the case r, we need to perform the correct sample assignment in
order to establish theoretical guarantees for the algorithm. Extensive simulations show that using
it = argmax �t works very well in practice. Note that in either case, in order to minimize g(D), one
does not necessarily require an error-free classification process.
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4 Convergence Analysis

In what follows, we show that the sequence of dictionaries {Dt}t converges almost surely to a stationary
point of g(D) under assumptions similar to those used in [1], listed below.

(A.1) The data distribution on a compact support set  has bounded “skewness”. The com-
pact support assumption naturally arises in many practical applications. The bounded
skewness assumption for the distribution of X reads as

ℙ(‖X − p‖2 ≤ r | X ∈ ) ≥ � vol
(

B(r, p)
)

∕vol(), (8)

where  ≜ cvx(
⋃

i 
(i)), � is a positive constant and B(r, p) = {x ∶ ‖x − p‖2 ≤ r} stands

for the ball of radius r around p ∈ . This assumption is satisfied for appropriate values of �
and distributions of X that are “close” to uniform.

(A.2) The quadratic surrogate functions ĝt are strictly convex, and have Hessians that are
lower-bounded by a positive constant �1 > 0. It is straightforward to enforce this assump-
tion by adding a term �1

2 ‖D‖
2
2 to the surrogate or original objective function; this leads to

replacing the positive semi-definite matrix 1
tAt in Equation (7) by 1

tAt + �1I .
(A.3) The approximation-error function l(x,D) is “well-behaved”. We assume that the func-

tion l(x,D) defined in Equation (3) is continuously differentiable, and that its expectation
g(D) = EX[l(X,D)] is continuously differentiable and Lipschitz on the compact set . This
assumption parallels the one made in [1, Proposition 2], and it holds if the solution to Equa-
tion (3) is unique. The uniqueness condition can be enforced by adding a regularization term
�‖�‖22 (� > 0) to l(⋅) in Equation (3). This term makes the (LARS) optimization problem
in Equation (5) strictly convex and hence ensures that it has a unique solution.

In addition, recall the definition of Dt and define D⋆t as the global optima of the surrogate ĝt(D),
Dt = argmin

D[i]∈cvx(X̂(i)t ), i∈[k]
ĝt(D),

D⋆t = argmin
D[i]∈, i∈[k]

ĝt(D).

4.1 Main Results

Theorem 1. Under assumptions (A.1) to (A.3), the sequence {Dt}t converges almost surely to a
stationary point of g(D).

Lemma 2 bounds the difference of the surrogates for two different dictionary arguments. Lemma 3
establishes that restricting the optima of the surrogate function ĝt(D) to the representative region
cvx(X̂(i)t ) does not affect convergence to the asymptotic global optima D⋆∞. Lemma 4 establishes
that Algorithm 2 converges almost surely and that the limit is an optima D⋆∞. Based on the results
in Lemma 4, Theorem 1 establishes that the generated sequence of dictionaries Dt converges to a
stationary point of g(D). The proofs are relegated to the Supplement, but sketched below.
Let Δt ≜ |ĝt(Dt) − ĝt(D⋆t )| denote the difference between the surrogate functions for an unrestricted
basis and a basis for which one requires Dt[i] ∈ cvx

(

X̂(i)t
)

. Then, one can show that

Δt ≤ min
{

Δt−1,
|

|

|

ĝt−1(Dt) − ĝt−1(D⋆t−1)
|

|

|

}

+ O
(1
t

)

.

Based on an upper bound on the error of random coordinate descent used for minimizing the surrogate
function and assumption (A.1), one can derive a recurrence relation for E[Δt], described in the lemma
below. This recurrence establishes a rate of decrease of O

(

1
t2∕(m+2)

)

for E[Δt].

Lemma 2. Let Δt ≜ ĝt(Dt) − ĝt(D⋆t ). Then

E
[

Δt
]

≤ O
(1
t

)

+ E
[

Δt−1
]

− Vm E
[

Δt−1
]
m+2
2 ,
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where Vm ≜
8�mini pi

�
m
2

Γ(m2 +1)

cĝ(m+2) vol()

(

2
A k

)m∕2
, and � is the same constant used in Equation (8) of assump-

tion (A.1). Also, A = maxi At[i, i], ∀ t, while cĝ denotes a bound on the condition number of At, ∀t,
and pi denotes the probability of choosing it = i in Step 7 of Algorithm 2.

Lemma 3 establishes that the optima Dt confined to the representative region and the global optima
D⋆t are close. From the Lipschitz continuity of ĝt(D) asserted in assumptions (A.1) and (A.2), we can
show that Δt = ‖Dt − D⋆t ‖ĝt ≤ ‖Dt − D⋆t ‖2. Lemma 3 then follows from Lemma 2 by applying the
quasi-martingale convergence theorem stated in the Supplement.

Lemma 3.
∑

t
‖Dt−D⋆t ‖2

t+1 converges almost surely.

Lemma 4. The following claims hold true:

P1) ĝt(Dt) and ĝt(D⋆t ) converge almost surely;

P2) ĝt(Dt) − ĝt(D⋆t ) converges almost surely to 0;

P3) ĝt(D⋆t ) − g(D
⋆
t ) converges almost surely to 0;

P4) g(D⋆t ) converges almost surely .

The proofs of P1) and P2) involve completely new analytic approaches described in the Supplement.

5 Experimental Validation

We compare the approximation error and running time of our proposed online cvxMF algorithm with
non-negative MF (NMF), cvxMF [2] and online MF [1]. For datasets with a ground truth, we also
report the clustering accuracy. The datasets used include a) clusters of synthetic data samples; b)
MNIST handwritten digits [32]; c) single-cell RNA sequencing datasets [31] and d) four other real
world datasets from the UCI Machine Learning repository [30]. The largest sample size scales as 106.

(a) Well-separated clusters. (b) Overlapping clusters.

Figure 3: Results for Gaussian mixtures with color-coded clusters. Here, tSNE stands for the t-
distributed stochastic neighbor embedding [33], in which the x-axis represents the first and the y-axis
the second element of the embedding. Color-coded circles represent samples, diamonds represent
basis vectors learned by the different algorithms, while crosses describe samples in the representative
regions. The “interpretability property” can be easily observed visually.

Synthetic Datasets. The synthetic datasets were generated by sampling from a 3�-truncated Gaussian
mixture model with 5 components, and with samples-sizes in [103, 106]. Each component Gaussian
has an expected value drawn uniformly at random from [0, 20] while the mixture covariance matrix
equals the identity matrix I (“well-separated clusters”) or 2.5 I ("overlapping clusters"). We ran the
online cvxMF algorithm with both unconstrainedu and restrictedr representative regions, and
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used the normalization factor � = c∕
√

m suggested in [34]. After performing cross validation on an
evaluation set of size 1000, we selected c = 0.2. Figure 3 shows the results for two synthetic datasets
each of size n = 2, 500 and withN = 150. The sample size was restricted for ease of visualization
and to accommodate the cvxMF method which cannot run on larger sets. The number of iterations
was limited to 1, 200. Both the cvxMF and online cvxMF algorithms generate bases that provide
excellent representations of the data clusters. The MF and online MF method produce bases that
are hard to interpret and fail to cover all clusters. Note that for the unrestricted version of cvxMF,
samples of one representative set may belong to multiple clusters.
For the same Gaussian mixture model but larger datasets, we present running times and times to
convergence (or, if convergence is slow, the maximum number of iterations) in Figure 4 (a) and (b),
respectively. For well-separated synthetic datasets, we let n increase from 102 to 106 and plot the
results in (a). The non-online cvxMF algorithm becomes intractable after 104 sample, while the
cvxMF and MF easily scale for 106 and more samples. To illustrate the convergence, we used a
synthetic dataset with n = 5, 000 in order to ensure that all four algorithms converge within 100s.
Figure 4 (b) plots the approximation error l2 =

1
n‖X − D�‖2 with respect to the running time. We

chose a small value of n so as to be able to run all algorithms, and for this case the online algorithms
may have larger errors. But as already pointed out, as n increases, non-online algorithms become
intractable while the online counterparts operate efficiently (and with provable guarantees).

(a) time complexity of different methods (b) convergence of objective

Figure 4: (a): Running times (s) vs. the log of the dataset sizes; (b) Running times (s) vs. the l2 error.

(a) MF (b) cvxMF (c) online MF (d) online cvxMF (Rr)

Figure 5: MNIST results (as the eigenimage set is overcomplete, clustering accuracy is omitted).

The MNIST Dataset. The MNIST dataset was subsampled to a smaller set of 10, 000 images of
resolution 28×28 to illustrate the performance of both the cvxMF and online cvxMFmethods on image
datasets. All algorithms ran 3, 000 iterations withN = 150 and � = 0.1 to generate “eigenimages,”
capturing the characteristic features used as bases [35]. Figure 5 plots the first 9 eigenimages. The
results for the u algorithm are similar to that of the non-online cvxMF algorithm and omitted.
CvxMF produces blurry images since one averages all samples. The results are significantly better
for the r case, as one only averages a small subset of representative samples.
Single-Cell (sc) RNAData. scRNA datatsets contain expressions (activities) of all genes in individual
cells, and each cell represents one data sample. Cells from the same tissue under same cellular
condition tend to cluster, and due to the fact that that the sampled tissue are known, the cell labels are
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known a priori. This setting allows us to investigate the r version of the online cvxMF algorithm
to identify “typical” samples. For our dataset, described in more detail in the Supplement, the two
non-online method failed to converge and required significantly larger memory. Hence, we only
present results for the online methods. Results pertaining to real world datasets from the UCI Machine

Figure 6: Results for the online methods executed on a blood-cell scRNA dataset.

Learning repository [30], also used for testing cvxMF [2], are presented in the Supplement.
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