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ABSTRACT

With the success of deep neural networks, Neural Architecture Search (NAS) as a
way of automatic model design has attracted wide attention. As training every child
model from scratch is very time-consuming, recent works leverage weight-sharing
to speed up the model evaluation procedure. These approaches greatly reduce
computation by maintaining a single copy of weights on the super-net and share
the weights among every child model. However, weight-sharing has no theoretical
guarantee and its impact has not been well studied before. In this paper, we conduct
comprehensive experiments to reveal the impact of weight-sharing: (1) The best-
performing models from different runs or even from consecutive epochs within the
same run have significant variance; (2) Even with high variance, we can extract
valuable information from training the super-net with shared weights; (3) The
interference between child models is a main factor that induces high variance; (4)
Properly reducing the degree of weight sharing could effectively reduce variance
and improve performance.

1 INTRODUCTION

Learning to design neural architectures automatically has aroused wide interests recently due to its
success in many different machine learning tasks. One stream of neural architectures search (NAS)
methods is based on reinforcement learning (RL) (Zoph & Le, 2016; Zoph et al., 2018; Tan et al.,
2019), where a neural architecture is built from actions and its performance is used as reward. This
approach usually demands considerable computation power — each search process takes days with
hundreds of GPUs. Population based algorithms (Gaier & Ha, 2019; Liang et al., 2018; Jaderberg
et al., 2017) are another popular approach for NAS, new trials could inherit neural architecture from
better performing ones as well as their weights, and mutate the architecture to explore better ones. It
also has high computation cost.

To speed up the search process, a family of methods attracts increasing attention with greatly reduced
computation (Pham et al., 2018; Liu et al., 2018c; Bender et al., 2018). Instead of training every
child model, they build a single model, called super-net, from neural architecture search space,
and maintain a single copy of weights on the super-net. Several training approaches have been
proposed on this model, e.g., training with RL controller (Pham et al., 2018), training by applying
dropout (Bender et al., 2018) or architecture weights on candidate choices (Liu et al., 2018c). In these
approaches, weight-sharing is the key for the speedup. However, weight sharing has no theoretical
guarantee and its impact has not been well studied before. The directions of improving such methods
would be more clear if some key questions had been answered: 1) How far is the accuracy of found
architecture from the best one within search space? 2) Could the best architecture be stably found in
multiple runs of search process? 3) How does weight sharing affect the accuracy and stability of the
found architecture?

In this paper, we answer the above-mentioned questions using comprehensive experiments and
analysis. To understand the behavior of weight sharing approaches, we use a small search space,
which makes it possible to have ground truth for comparison. It is a simplified NAS problem,
therefore, making it easy to show the ability of the NAS algorithms with weight sharing. As a result,
we find that the rank of child models is very unstable in different runs of the search process, and also
very different from ground truth. In fact, the instability 1 commonly exists not only in different runs,

1In this paper, we use instability and variance interchangeably.
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but also in consecutive training epochs within the same run. Also worthy of note, in spite of high
variance, we can extract statistical information from the variance, the statistics can be innovatively
leveraged to prune search space and improve the search result.

To further understand where the variance comes from, we record and analyze more metric data from
the experiments. It is witnessed that some child models have interference with each other, and the
degree of this interference varies depending on different child models. At the very end of the super-net
training, training each child model in one mini-batch can make this model be the best performing
one on the validation data. Based on the insights, we further explore partial weight sharing, that is,
each child model could selectively share weights with others, rather than all of them sharing the same
copy of weights. It can be seen as reduced degree of weight sharing. One method we have explored
is sharing weights of common prefix layers among child models. Another method is to cluster child
models into groups, each of which shares a copy of weights. Experiment results show that partial
weight sharing makes the rank of child models more stable and becomes closer to ground truth. It
implies that with proper degree or control of weight sharing, better child models can be more stably
found.

To summarize, our main contributions are as follows:

• We define new metrics for evaluating the performance of the NAS methods based on weight
sharing, and propose a down-scaled search space which makes it possible to have a deeper analysis
by comparing it with ground truth.

• We design various experiments, and deliver some interesting observations and insights. More
importantly, we reveal that valuable statistics can be extracted from training the super-net, which
can be leveraged to improve performance.

• We take a step further to explain the reasons of high variance. Then we use decreased degree of
weight sharing, which shows lower variance and better performance, to support the reasoning.

2 RELATED WORKS

Neural Architecture Search (NAS) is invented to relieve human experts from laborious job of
engineering neural network components and architectures by automatically searching optimal neural
architecture from a human-defined search space. Arguably, the recent growing interesting in NAS
research begins from the work by Zoph and Le (Zoph & Le, 2016) where they train a controller using
policy gradients (Williams, 1992) to discover and generate network models that achieve state-of-
the-art performance. Following these works, there is a growing interest in using RL in NAS (Pham
et al., 2018; Baker et al., 2017; Tan et al., 2019; Zoph et al., 2018). There have also been studies in
evolutionary approaches (Real et al., 2019; 2017; Miikkulainen et al., 2017; Xie & Yuille, 2017; Liu
et al., 2018b). Most of these works still demand high computational cost that is not affordable for
large networks or datasets.

Weight sharing approaches Weight sharing means sharing architecture weights among different
components or models. Pham et al. (2018) combined this approach with previous work of NAS (Zoph
& Le, 2016) and proposed Efficient Neural Architecture Search (ENAS), where a super-net is
constructed which contains every possible architecture in the search space as its child model, and
thus all the architectures sampled from this super-net share the weights of their common graph nodes.
It significantly reduces the computational complexity of NAS by directly training and evaluating
sampled child models directly on the shared weight. After the training is done, a subset of child
models is chosen and they are either finetuned or trained from scratch to get the final model.

Many follow-up works leverage weight sharing as a useful technique that can be decoupled from RL
controllers, including applying dropout on candidate choices (Bender et al., 2018), converting the
discrete search space into a differentiable one (Liu et al., 2018c; Wu et al., 2018; Xie et al., 2019),
searching via sparse optimization (Zhang et al., 2018), and directly searching for child models for
large-scale target tasks and hardwares (Cai et al., 2019).

Previous studies on stability of weight sharing All the weight-sharing approaches are based on
the assumption that the rank of child models obtained by evaluating a child model of the trained
super-net is valid, or at least, capable of finding one of the best child models in the search space.
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However, this assumption does not generally hold. For example, Guo et al. (2019) believed that child
models are deeply coupled during optimization, causing high interference among each other. Sciuto
et al. (2019) discovered that there is little correlation between the rank found by weight sharing
and rank of actual performance. Anonymous (2020) also conducted a benchmark experiment that
shows a similar instability when the search space contains thousands of child models, by leveraging
ground truth results measured by Ying et al. (2019). However on the other hand, research on transfer
learning (Razavian et al., 2014), where a particular model trained on a particular task can work well on
another task, and multitask learning (Luong et al., 2015), where multiple models trained for multiple
tasks share the same weights during training, suggest otherwise and encourage the weights to be
shared among child models, to reduce the long training time from scratch to convergence (Pham et al.,
2018). Therefore, in this paper we show whether weight sharing helps and why, using comprehensive
experiments.

3 WEIGHT-SHARING: VARIANCE AND INVARIANCE

3.1 METHODOLOGY

The space of a typical neural architecture search task usually has more than 1010 different child
models (Tan et al., 2019; Liu et al., 2018a; 2019), thus, it is impossible to train them all, which leads
to the problem that without ground truth it is hard to assess how good the found child model is in the
search space. To solve this problem, we down-scale search space under the assumption that small
search space is easier than large search space, if the search methods works in large search space they
are also supposed to work in small search space.
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Figure 1: Down-scaled search space.

Following DARTS (Liu et al., 2018c), we design a search space for a cell, as shown in Figure 1, and
stack four cells each of which has the same chosen structure, forming a convolutional neural network.
A cell is defined as a directed acyclic graph (DAG) of n nodes (tensors) x1, . . . , xn. A cell starts with
x0, which is the output tensor of its previous cell fed through a 1x1 conv layer to match the targeted
number of channels in the current layer. The output of the cell is simply the sum of x1, . . . , xn. The
DAG is designed to be densely connected, i.e.,

xj =
∑

0≤i<j

O(i,j)(xi) (1)

where O(i,j) is the selected operation at edge (i, j). In the down-scaled search space, each cell
contains only two nodes (i.e., n = 2) and O(i,j) is one of the four primitive operations in Figure 1.
Thus, a child model only has 43 = 64 possible choices, which makes it easy to have ground truth.
For convenience, we also name all the child models with three digits (each digit is in [1, 4]), denoting
the choice of O(0,1), O(0,2), O(1,2) respectively.

As introduced in the previous section, sharing a single copy of weights can be seen as training an
expanded super-net. To better understand the effect of weight sharing, we simplify the training
process. Specifically, we uniformly generate child models. Each mini-batch trains one child model
and only the weights of this model are updated by back-propagation. After training the shared weights
for a number of epochs, we use these shared weights to evaluate the performance of all child models
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on the validation set. On the other hand, the ground truth performance of each child model is obtained
by training each of them independently from scratch with the same setting as weight sharing, and
averaging over 10 runs with different random seeds for initializations. The lookup table can be found
in Appendix C.

For the rest of the experiments listed in this paper, if not otherwise specified, the models are trained
with the dataset of CIFAR-10 on an NVidia K80 GPU. We use SGD with momentum 0.9 and weight
decay 10−3 as our optimizer. The initial learning rate is set to 0.025 and annealed down to 0.001
following a cosine schedule without restart (Loshchilov & Hutter, 2016). The batch size is set to 256.
Number of epochs is 200. Detailed experiment settings are described in Appendix A.

3.2 VARIANCE OF WEIGHT SHARING

To measure stability and performance of weight sharing methods, we first need to measure a rank,
as weight sharing methods use the performance ranks of child models on validation set to choose
the final output child model. We leverage Kendall’s rank correlation coefficient, i.e., Kendall’s
Tau (Kendall, 1938), which provides a measure of correspondence between two ranks R1 and R2.
Intuitively, τ(R1, R2) can be as high as 1 if R1 and R2 are perfectly matched, or as low as −1 when
R1 and R2 are exactly inverted. We use instance to denote the procedure of training the super-net and
generating a rank Ri of child models on validation set. We then define the following three metrics.

• S-Tau: S-Tau is to measure the stability of generated ranks from multiple instances. For N
instances with ranks R1, R2, . . . , RN , S-Tau can be calculated as,

2

N(N − 1)

∑
1≤i<j≤N

τ(Ri, Rj) (2)

• GT-Tau: This metric is to compare the rank produced by an instance with ground truth rank. We
also use Kendall’s Tau to measure the correlation of the two ranks, i.e., τ(R,Rgt).

• Top-n-Rank (TnR): It is to measure how good an instance is at finding the top child model(s).
TnR is obtained by choosing the top n child models from the generated rank of an instance and
finding the best ground truth rank of these n child models.

Similar to a good deep learning model that could constantly converge to a point that has similar
performance, weight-sharing NAS is also expected to have such stability. If we use the same
initialization seed and the same sequence of child models for mini-batches in different instances,
they will produce the same rank after the same number of epochs. To measure the stability when
applying different seeds or sequences, we do several experiments and the results are shown in Table
1. For the first three rows, each of them is an experiment that runs 10 instances. The first one makes
initialization seed different in different instances while keeping other configurations the same. The
second one uses a random child model sampler with different seeds to generate different order of
the 64 child models for different instances, each instance repeats the order in mini-batch training,
and seeds for weight initializations are the same for those instances. The only difference between
the second and the third one is that after every 64 mini-batches a new order of the child models is
randomly generated for the next 64 mini-batches, we call it different order with shuffle.

From the numbers, we can see that different initialization seeds make the generated ranks very
different. Some instances generate high correlation ranks while some others even show negative
correlation. To give an intuitive understanding of the S-Tau values, we also show two baselines,
i.e., random rank which includes 10 randomly generated ranks and ground truth which trains the 64
child models independently and generate a rank in every instance. The rank generated by training
child models independently is much more stable. S-Tau of different orders with or without shuffle is
lower than 0.5. But S-Tau values of the three experiments under the same epoch are not comparable,
because S-Tau varies a lot in different epochs. For example, as shown in Figure 2, S-Tau of the 10
instances with different seeds varies in the range of 0.4 even in the last several epochs — it could be
as low as 0.3 or as high as 0.7, which, to some extent, explains inconsistent results from previous
works (Sciuto et al., 2019). Observation 1: The rank of child models on validation set is very
unstable in different instances.

We also compared the generated ranks with the ground truth rank with GT-Tau as shown in Table 2.
Similar to S-Tau, GT-Tau values of the three experiments are also much lower than that of ground
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Table 1: Instability of multiple runs (i.e., instances)
measured with S-Tau. Max Tau means the maximum
value of the N(N−1)

2 Taus. Similarly, Min Tau is the
minimum value. The numbers are obtained at the 200-th
epoch.

Experiments S-Tau Max Tau Min Tau

Different seeds 0.5415 0.7977 0.2471
Different orders 0.3930 0.7021 −0.0129

Diff. orders (shuffle) 0.4403 0.7163 0.0764

Random rank 0.0382 0.2181 −0.1552
Ground truth 0.7120 0.8191 0.6650

Different epochs 0.5310 0.8752 0.0918
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Figure 2: S-Tau evaluated after every
epochs for “Diff. seeds”, “Diff. orders
(shuffle)” and “Ground truth”.

Table 2: Comparison with ground truth with GT-Tau and TnR. Each number is an average of 10
numbers, either from 10 instances or from 10 epochs of one instance. The subscript shows the
standard variance of these 10 numbers.

GT-Tau T1R T3R

Different seeds 0.4567±0.1478 18.5000±1.2042 17.6000±0.4899

Different orders 0.4625±0.0993 16.9000±5.7000 11.5000±5.3712

Diff. orders (shuffle) 0.5108±0.0665 15.6000±8.4758 11.2000±5.5462

Ground truth 0.7985±0.0257 4.8000±3.8419 1.6000±0.9165

Different epochs 0.5053±0.1399 15.2000±6.9828 13.2000±7.4404

truth, and the variance of GT-Tau across different instances is also high, which implies that the
generated rank is not qualified to guide the choosing of good-performing child models. This is further
proved by T1R and T3R. T1R ranges from 15 to 19, meaning that if choosing top 1 child model
it is unlikely to obtain a good-performing model. T3R is slightly better than T1R, but at the cost
of training more child models from scratch, which is usually not affordable for large search space.
Observation 2: Though weight sharing shows the trend of following ground truth (has correlation),
the generated rank is still far from the ground truth rank, seemingly having a hard limit.

Now that multiple instances have shown high variance, how about the stability of one single instance
near the end of the training? We then look into a single instance by measuring variance of the ranks
generated in consecutive epochs. Specifically, for each instances from the previous three experiments,
we obtain 10 ranks each from one of the last 10 epochs (i.e., 191 – 200), measure the stability of
the 10 ranks and compare them with ground truth rank. We calculate S-Tau to show the mutual
correlation among these 10 ranks. This value turns out to vary between 0.39 to 0.63 for different
orders (shuffle), which means there is high variance between epochs even within a single instance.
We show the median number among instances in Table 1. GT-Tau also varies a lot along epochs.
Taking one instance from “Diff. orders (shuffle)” with final GT-Tau 0.47, we found that, as shown
in Table 2, actually its GT-Tau varies between 0.1 to 0.7, with standard variance 0.14, in the last
10 epochs. Observation 3: The generated ranks in the last several epochs of the same instance are
highly unstable, indicating that picking a different epoch to generate the rank has great impact on the
finally obtained performance.

3.3 EXPLOITABLE FROM VARIANCE

Though the generated ranks show high variance, there is some statistical information that can be
extracted from the variance. For the “Diff. orders (shuffle)” experiment, we have 10 ranks on the
200th epoch of the 10 instances. For each child model, we retrieve its rank values in the 10 ranks, and
show the distributions in Figure 3a. The child models are ordered with their ground truth accuracy,
the left ones are better than the right ones. We can see that bad-performing models are more likely
ranked as bad ones (also observed by Bender et al. (2018)), while it is almost not possible to tell
which one is better from the good-performing ones. Furthermore, we evaluate the ranks generated

5



Under review as a conference paper at ICLR 2020

from the last 10 epochs of the same instance in the same way. The result is shown in Figure 3b,
which is a almost same result as the multi-instance experiment, implying that we can simply run one
instance and generate multiple ranks from different epochs, these ranks can be used to quickly filter
out bad-performing models. Insight 1: Though weight sharing is unstable, the generated ranks can
be leveraged to quickly filter out bad-performing child models, and potentially used to do search
space pruning, e.g., progressively discarding the bottom-ranked child models and only further training
the top ones.
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(b) Rank of last 10 epochs

Figure 3: Distribution of rank achieved for each child model, ordered from the ground-truth-best to
worst. Each box extends from the lower to upper quartile values of its corresponding data, with a line
marking the median. The whiskers show the range of the data. Outliers are marked with circles.
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(b) Accuracy, finetune at epoch 200
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(c) GT-Tau, finetune at epoch 100
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(d) GT-Tau, finetune at epoch 200

Figure 4: For the solid line part, all the child models share one copy, while the dotted lines represent
the part where each child model training independently. The accuracies are evaluated after each
mini-batch, and GT-Tau is calculated correspondingly.

As shown in the previous experiment, a single instance can converge to a state that the performance
of some child models can no longer be distinguished, which can be seen as a kind of stable state. In
this state, further training of the super-net does not improve the quality of ranks (also proved in § 4.1).
We propose to finetune each child models independently by inheriting the weights from a snapshot of
the super-net. Specifically, in Figure 4a, we train the super-net for 100 epochs and then finetune the
child models for 64 mini-batches. We can see from Figure 4c that GT-Tau quickly increases up to 0.6
with only 10 mini-batches. Finetuning from the 200-th epoch shows even better results in Figure 4b:
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the convergence is faster (using 5 mini-batches) and GT-Tau is more stable (close to 0.8, Figure 4d).
Insight 2: Weight sharing super-net could act as a good pretrained model. Finetuning child models
with limited mini-batches could greatly improve the quality of the rank.

4 UNDERSTANDING VARIANCE OF WEIGHT SHARING

Understanding the source of variance is the key to better leverage the power of weight sharing. In
this section, we measure more numbers and design different experiments to understand where the
variance comes from and how to reduce the variance.

4.1 SOURCE OF VARIANCE

The first step is to find out the reasons why there is high variance in consecutive epochs of a single
instance. We pick an instance from the “Diff. seeds” experiment. In this instance we evaluate the
performance of the 64 child models on the validation set after every mini-batch near the end of
training. The result is shown in Figure 5a. The curves has obvious periodicity with the length of
64 mini-batches, i.e., the number of child models. Curves with light colors are mainly located at
the upper of the figure, but they are not always the better ones. In some mini-batches the curves
with darker colors perform better. In Figure 5, if the i-th mini-batch trains child model c, we use a
diamond marker to label c’s curve. We can see that in most of mini-batches training a child model
makes this child model performs the best. Some bad-performing child models can also become the
best one by training them in mini-batches. It implies that training a child model can easily perturb the
rank of the previous mini-batch.
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(a) Ordered
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(b) Shuffled

Figure 5: The validation performance of all child models, evaluated after each of the last 128
mini-batches. Each curve corresponds to one child model. Markers are marked on the child model
trained in the current mini-batch. Lighter colors correspond to higher ground truth ranks. The
difference between ordered and shuffled is “shuffled” generate a new order of child models every 64
mini-batches. Each figure shows a window of 128 mini-batches. It’s clear that in Figure 5a a pattern
is repeated twice and the periodicity is 64 mini-batches.

To further verify this phenomenon, we show the result of an instance with shuffled sequence of child
models in Figure 5b. There is no periodicity, but other results are very similar. Though curves with
light colors generally perform better than the other curves, it is still hard to tell which one of them is
better than others. The instability of rank during the last mini-batches in Figure 5 also implies the
instability of GT-Tau, which means GT-Tau retrieved at the end of the training can also be highly
unreliable. In fact, for the instance shown in Figure 5a, GT-Tau varies between 0.0 and 0.6 in the last
128 mini-batches.

In the rest of this section, we decrease the degree of weight sharing with different approaches. To
faithfully reveal their effectiveness, we calculate the average GT-Tau for an instance in the last k
mini-batches due to the variance among mini-batches. We call it GT-Tau-Mean-k. To see the stability
of GT-Tau, we also obtain the standard variance of these k GT-Taus, which we call GT-Tau-Std-k.
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Table 3: GT-Tau-Mean-64 and GT-Tau-Std-64, averaged over 10 instances. The subscript is the
standard variance corresponding to the average.

(a) Group Sharing

Grouping By Random Grouping By Similarity

m Mean-64 Std-64 Mean-64 Std-64

1 0.4988±0.0320 0.1497±0.0455 0.4988±0.0320 0.1497±0.0455

2 0.4577±0.0424 0.1371±0.0233 0.3425±0.0490 0.1442±0.0424

4 0.2736±0.0216 0.1340±0.0235 0.7075±0.0137 0.0702±0.0156

8 0.2539±0.0463 0.1462±0.0172 0.6917±0.0267 0.0457±0.0088

16 0.1658±0.0316 0.1255±0.0155 0.7200±0.0213 0.0411±0.0098

32 0.2903±0.0256 0.1104±0.0087 0.7360±0.0164 0.0364±0.0096

64 0.8032±0.0255 0.0151±0.0036 0.8032±0.0255 0.0151±0.0036

(b) Prefix Sharing

k Mean-64 Std-64

0 0.6960±0.0193 0.0129±0.0066

1 0.4837±0.0822 0.0939±0.0545

2 0.4159±0.0504 0.1925±0.0362

3 0.4448±0.0689 0.1881±0.0468

4 0.5174±0.0340 0.1592±0.0163

4.2 GROUP SHARING: REDUCE VARIANCE

4.2.1 GROUPING BY RANDOM

Trying to reduce variance, we divide the child models into groups, each of which is trained indepen-
dently and maintains one copy of weights. We first, naively, randomly divide all the child models in a
search space into m groups. Therefore, for a search space of n child models, m = 1 corresponds to
fully weight sharing and m = n corresponds to no weight sharing.

We conduct experiments on our search space of 64 child models. m is chosen from 1, 2, 4, 8, 16,
32 and 64. For each m, we repeat the experiment for 10 instances, with the same group partition,
but different seeds for initialization of weights. We run each group for 200 epochs and evaluate the
validation accuracy of every child model at each of the last 64 mini-batches to obtain GT-Tau-Mean-
64, GT-Tau-Std-64, and average them over instances, as shown in Table 3a.

Actually, breaking down the complexity through random grouping does not increase stability but
actually backfires. From m = 16, the worst performing case, we take an instance for case study. We
calculate GT-Tau-Mean-64 for each group, i.e., the including child models. The average GT-Tau-
Mean-64 of the 16 groups is as low as 0.2570. To compare, We partition the ranks generated by an
instance from m = 1 into those 16 groups, and calculate GT-Tau-Mean-64 for each group in the same
way, the average GT-Tau-Mean-64 is 0.5610 which is much higher than 0.2570. Thus, we argue that
the downgrading of GT-Tau on the full rank mainly comes from internal instability inside groups.
By examining the accuracy and rank of child models in each group, we find that interference among
child models commonly exists in almost all the groups, even for m = 32 where there are only 2 child
models per group. Such interference causes a drastic reordering of the rank of child models.
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(a) Group 8 when m = 16
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Figure 6: Validation accuracy of a group with 4 child models. Markers are marked on child models
trained in the current mini-batch.

To dive deeper, we plot the accuracy of the child models from a group in the instance of m = 16, as
shown in Figure 6a. Some child models facilitate each other, while some others degrade each other.
Specifically, the child models 143, 144 and 344 go up and down consistently, while the child model
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424 acts exactly the opposite. Note that, 424 is the best-performing one in ground truth but performs
the worst in this group, which indicates that properly choosing the child models for co-training (i.e.,
weight sharing) is the key to obtain a good rank. This is further supported by Figure 6b which shows
the accuracy of these four child models when m = 1. With more other child models joining in for
co-training, the four child models’ curves become very different from that in Figure 6a. For example,
the curves of 344 and 424 become very similar.

On the other hand, from the first column in Table 3a, we can see that GT-Tau-Mean-64 first decreases
then increases when m changes from 1 to 64. A possible explanation is that when many child models
share a single copy of weights, a single child model cannot bias the group a lot, while when each
group becomes very small, the child models share less weights with each other, thus also not easy
to bias each other too much. Observation 1: Two child models have (higher or lower) interference
with each other when they share weights. A child model’s validation accuracy highly depends on the
child models it is jointly trained with.

4.2.2 GROUPING BY SIMILARITY

According to the observations above, we further explore how it works by grouping child models based
on similarity. We sort the child models lexicographically from 111 to 444, then slice the sequence
into m groups. For example, when m = 8, group 1 has the child models from 111 to 124, group 2 is
from 131 to 144, group 3 is from 211 to 224, and so on. The results are shown on the right of Table 3a.
We can see that there is a global trend of stabilization from m = 1 to 64, i.e., GT-Tau-Mean-64 goes
higher and GT-Tau-Std-64 gets lower. Observation 2: A smart grouping can generally improve the
stability of training.

In our case, “smart” means “similar”. However, this might not be the case for more complex search
space, where “similar” can be poorly defined, or the range of the space is too large, or even infinite.
Admittedly, for larger and more complex search space, such smart grouping has to be found by other
means, e.g., correlation matrix among child models. We leave it in future work.

4.3 PREFIX SHARING

Inspired by the great success of transfer learning (Caruana, 1995; Mesnil et al., 2011; Kornblith et al.,
2019), we try to do a similar thing by sharing one copy of “backbone” network while keeping a
separated copy of “head” for each child model. In particular, we use k to denote the number of cells
shared. When k = 0, only the first two conv layers are shared. When k = 4, all the layers except the
final fully-connected layers are shared. In the experiments, we increase the total epochs from 200 to
2000, as the models require more computation to reasonably converge.

The results are shown in Table 3b. Obviously, sharing fewer cells improves the GT-Tau and accuracy
(more experiment numbers can be seen in Appendix B). The performance becomes better but at
the cost of consuming more computation power. For example, though a high and stable GT-Tau is
obtained when k = 0, it takes over 1000 epochs for it to climb up to above 0.6. But still, this cost is
much lower than ground truth, which takes 64× 200 = 12800 epochs in total.

5 CONCLUSION

Neural architecture search is becoming a feasible way to explore new models, but its excessive
computation cost impels researchers to resort to the power of weight sharing. In this paper we use
comprehensive experiments to have a close look at weight sharing, and illustrate many interesting
insights. By designing more sophisticated experiments, we further dig out the reasons of high variance
of weight sharing. To further improve NAS, we believe the key is to figure out how to smartly leverage
shared weights. This paper suggests controlling the degree of weight-sharing, either model-based and
rule-based, evaluating them on the small search space and providing deeper insights. We hope to
inspire the community to find more stable yet efficient approaches.
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A EXPERIMENT SETTINGS

A.1 OVERVIEW

Since our network architecture is very similar with that introduced in DARTS Liu et al. (2018c), we
basically follow the settings in DARTS, with a few modifications.

1. Batch size: We following the settings from a PyTorch implementation of DARTS2 and set batch
size to 256. The current batch size divides one epoch into 196 mini-batches.

2. Number of epochs: Previous works Liu et al. (2018c); Li & Talwalkar (2019) all set the number
of epochs as a constant number. We follow the similar settings and set it to 200. Empirically,
we experiment with epochs from 50 to 2000, though they show different final accuracies, all
our Tau’s reported in this paper seems insensitive to the number of epochs trained, except when
the number of epochs is too small for the instance to reach a plateau. See Appendix A.2.1 and
Appendix B for more information.

3. Learning rate: Following DARTS, we use an initial learning rate 0.025, annealing down to 0.001
following a cosine schedule depending on the total number of epochs.

4. Optimizer: We use SGD as our optimizer to train graphs. Weight decay is set to be 10−3 as
smaller networks often needs larger weight decays. The momentum is set to be 0.9, and the
velocities (momentum buffer) for parameters shares if the corresponding parameter shares.

5. Network: The first 2 conv layers of the entire network expand the 3-channel image into 48
channels. Each of the following 4 cells will first compress the input into 16 channels and feeds
into the DAG and concat the output of nodes (32 channels in our settings). The momentum of
batch normalization is set to be 0.4 (under the semantics of PyTorch3).

For reproducibility, we set a certain seed before running all the experiments, and we removed the
non-deterministic behavior in CuDNN.

A.2 EFFECTS OF HYPERPAMETERS

In order to justify results of this paper are not just any coincidence of a carefully picked set of
hyperparameters. We compare some of the results here with those with difference choices.

A.2.1 NUMBER OF EPOCHS

To show that the phenomenon in Figure 5a is not just a result of training too few epochs, we repeat
the same experiment with the same experiment settings, with number of epochs set to 2000, obtaining
Figure 7, which shows similar periodicity and instability, despite the overall accuracy is higher.

A.2.2 MOMENTUMS

Larger momentums help preserve the information from previous mini-batches, during which other
child models are training, thus, presumably stabilize the training.

Batch norm Following the definitions in PyTorch, higher BN momentum indicates that the mean
and variance in the current mini-batch have a higher weight. We compare accuracy curves for
BN momentum is lower (0.1) and higher (0.9), each repeating 3 times with different seeds for
initializations. Experiments show that lower BN momentum helps stabilize the training in a short
term, but it’s still trembling in the long term, see Figure 8.

SGD momentum We compare the results of accuracy curves when SGD momentum is set to 0
with 0.9. Results are shown as in Figure 9. The accuracy seems to vary in a greater range, compared
to Figure 5a, and GT-Tau varies between −0.1 and 0.5, which is more unstable.

2https://github.com/khanrc/pt.darts
3The momentum here is different from that used in optimizers. Mathematically, it’s x̂new = (1−momentum)·

x̂ + momentum · xt. Reference: https://pytorch.org/docs/stable/_modules/torch/nn/
modules/batchnorm.html
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Figure 7: Validation accuracy for all child models for each of the last 128 mini-batches of 2000
epochs.
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(a) BN momentum = 0.1
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(b) BN momentum = 0.9

Figure 8: GT-Tau curves over last 128 mini-batches. Each color represents one instance.

39080 39100 39120 39140 39160 39180 39200
Mini-batches

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

Figure 9: Validation accuracy for all child models for each of the last 128 mini-batches, when SGD
momentum is set to 0.
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B PREFIX SHARING: DETAILS

Table 4: Supplementary to Table 3. GT-Tau-Mean-64 and GT-Tau-Std-64 follow the same scheme.
Similar to these two metrics, accuracy of each child model in each instance is first averaged over
64 mini-batches, and then mean and std of all child model accuracies in an instance are calculated.
Finally we average mean and std from each instance over 10 instances. The subscript is the standard
variance of the corresponding average.

Epochs k GT-Tau-Mean-64 GT-Tau-Std-64 Accuracy Mean Accuracy Std

2000 0 0.6960±0.0193 0.0129±0.0066 0.7793±0.0036 0.0245±0.0010

2000 1 0.4837±0.0822 0.0939±0.0545 0.7691±0.0089 0.0378±0.0040

2000 2 0.4159±0.0504 0.1925±0.0362 0.6972±0.0159 0.0640±0.0081

2000 3 0.4448±0.0689 0.1881±0.0468 0.6636±0.0178 0.0823±0.0113

2000 4 0.5174±0.0340 0.1592±0.0163 0.6639±0.0166 0.0995±0.0166

200 0 0.0441±0.1348 0.0145±0.0044 0.6083±0.0065 0.0173±0.0020

200 1 0.3895±0.0731 0.0989±0.0339 0.6435±0.0114 0.0298±0.0058

200 2 0.4104±0.0496 0.1801±0.0418 0.6035±0.0138 0.0535±0.0105

200 3 0.4545±0.0581 0.1570±0.0385 0.6081±0.0181 0.0667±0.0086

200 4 0.4899±0.0501 0.1622±0.0534 0.6177±0.0171 0.0800±0.0181

As shown in Table 4, in the case of 200 epochs, accuracy is much lower than that after 2000 epochs.
Also, GT-Tau shows an ascending trend, which is quite the opposite of the phenomenon observed in
larger epochs. We argue that this is due to the insufficient training for smaller k. Prefix sharing causes
the networks to having multiple copies and these copies cannot be trained independently (as opposed
to parallelizing the groups in §4.2). Running 2000 epochs in prefix sharing is fair and necessary, with
acceptable time cost (about 2 days on a GPU for one instance).

C GROUND TRUTH LOOKUP TABLE

Shown in Table 5 is a table containing accuracies of all 64 child models, along with their ranks.
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Table 5: Accuracies of child models when they are trained independently. The three digits of child
model labels correspond to O(0,1), O(0,2) and O(1,2) respectively. Evaluations are repeated 10 times
with different seeds of weight initialization, and averages and standard variances are calculated.
Ranks are based on the average values. The higher, the better.

Child Model Acc Mean Acc Std Rank Child Model Acc Mean Acc Std Rank

111 70.13 0.23 64 311 81.78 0.20 53
112 78.23 0.75 62 312 83.52 0.25 27
113 81.06 0.42 57 313 83.31 0.34 32
114 79.98 0.40 59 314 83.48 0.26 28
121 77.77 0.37 63 321 82.91 0.25 41
122 81.77 0.50 54 322 84.24 0.22 18
123 83.10 0.21 39 323 84.33 0.29 13
124 82.58 0.43 49 324 84.62 0.19 11
131 81.14 0.21 56 331 82.91 0.22 42
132 83.15 0.36 38 332 83.98 0.13 25
133 83.21 0.28 34 333 84.70 0.53 10
134 82.77 0.19 48 334 84.47 0.41 12
141 79.62 1.04 60 341 83.39 0.18 29
142 82.86 0.17 46 342 84.32 0.51 14
143 82.87 0.31 43 343 84.23 0.35 19
144 82.07 0.38 51 344 84.32 0.49 15
211 78.67 0.49 61 411 80.43 0.73 58
212 81.86 0.37 52 412 82.94 0.44 40
213 83.31 0.28 31 413 82.87 0.19 43
214 82.81 0.30 47 414 83.21 0.53 34
221 81.42 0.15 55 421 83.27 0.21 33
222 83.20 0.30 36 422 84.76 0.56 8
223 84.22 0.31 20 423 84.73 0.33 9
224 84.17 0.32 22 424 84.77 0.57 7
231 82.87 0.44 45 431 83.39 0.25 30
232 83.81 0.43 26 432 84.80 0.42 6
233 84.28 0.28 16 433 84.84 0.57 5
234 84.19 0.50 21 434 85.23 0.17 1
241 83.20 0.31 37 441 82.19 0.26 50
242 84.28 0.14 17 442 84.87 0.59 3
243 84.03 0.19 24 443 84.93 0.23 2
244 84.08 0.36 23 444 84.85 0.35 4
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