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ABSTRACT

We develop the Y-learner for estimating heterogeneous treatment effects in experi-
mental and observational studies. The Y-learner is designed to leverage the abilities
of neural networks to optimize multiple objectives and continually update, which
allows for better pooling of underlying feature information between treatment and
control groups. We evaluate the Y-learner on three test problems: (1) A set of six
simulated data benchmarks from the literature. (2) A real-world large-scale experi-
ment on voter persuasion. (3) A task from the literature that estimates artificially
generated treatment effects on MNIST didgits. The Y-learner achieves state of the
art results on two of the three tasks. On the MNIST task, it gets the second best
results.

1 OPENING REMARKS

We consider the problem of estimating the Conditional Average Treatment Effect (CATE) in random-
ized experiments and observational studies. The CATE is a desirable quantity to estimate, because it
allows us to measure how well a given treatment works for an individual conditioned on their observed
covariates. Thus, the CATE allows us to better understand the underlying causal mechanisms at play
and better personalize treatments at an individual level. Because of its promise, CATE estimation
appears across a wide range of disciplines including political science, medicine, economics, and
digital experiments (Henderson et al., 2016; Powers et al., 2018; Taddy et al., 2016; Athey & Imbens,
2016; Green & Kern, 2012; Tian et al., 2014; Johansson et al., 2016; Louizos et al., 2017).

CATE estimation has been an especially active area of research in the past year. In Künzel et al.
(2017), the authors develop the X-learner and the U-learner. Both of these methods are so-called
“meta-learners,” CATE estimation strategies that can be carried out with any sufficiently generic
function approximator as a base learner. The authors primarily consider Random Forests and Bayesian
Additive Regression Trees (BART) as base learners. In doing so, they are able to provide several
convergence guarantees that relate the size of the treatment and control groups to the efficiency of
the estimation strategy. Meanwhile, in Nie & Wager (2017) the R-learner is introduced. The authors
show that the R-learner delivers excellent performance on extant benchmarks, especially when it is
parameterized by deep neural networks. The paper also provides a “quasi-oracle” regret bound for
non-parametric regression problems, which they apply to the R-learner.

Motivated by these recent advances, we seek to answer the question: is there a more efficient
neural network architecture for CATE estimation? Recent work has been constrained, both by
its desire to incorporate formal guarantees and by its desire to work with any general function
approximator. While these are worthwhile goals, we are curious how much performance can be
improved by designing a CATE estimation strategy that takes advantage of the unique properties
of neural networks. In particular, deep neural networks can be continually optimized. This stands
in contrast to other estimators like RF and BART, which can not be meaningfully updated once
trained. While this distinction may seem small, it crucially allows a single neural networks to be
asynchronously optimized with respect to several distinct objectives. It also allows multiple networks
to “co-learn,” continually training on small amounts of data and staying in step with one another.
Ultimately, we show how one can leverage these properties of neural networks to create a learner that
achieves state of the art performance with only a fraction of the data on several CATE estimation
tasks. We call our new learner the Y-learner. Code for our experiments will be released at publication
and is available to reviewers upon request.

1



Under review as a conference paper at ICLR 2019

2 CATE ESTIMATION BACKGROUND AND RELATED WORK

2.1 BACKGROUND AND ASSUMPTIONS

Consider a randomized experiment. In this experiment, there is a population P . Each member of
the population shares a common feature space X . Denote by Xi ∈ Rd the features for population
member i. We are interested in how each of these population members responds to some treatment.
Let Wi ∈ {0, 1} be 0 if Xi is in the control group (does not receive treatment) and 1 if Xi does
receive treatment. Further, let Yi(1) ∈ R be the response of member i when receiving treatment and
Yi(0) ∈ R be the response of member i when not receiving treatment. Within the causal inference
literature, Yi(0) and Yi(1) are called potential outcomes and the above framework is called the
potential outcomes framework (Rubin, 1974).

Let us consider a concrete example that is a favorite in introduction to economics courses. We would
like to measure the impact of going to college on future income. It is our intuition that individuals
who go to college should earn more. To verify this, we can measure the average treatment effect

ATE := E [Y (1)− Y (0)] .

While the ATE is a useful diagnostic, it only tells us the impact of treatment over an entire population.
It can tell us that, on average, going to college will improve future earnings. It can not recommend
whether individual i should go to college based on his profile Xi. As an additional problem, the
ATE is also susceptible to treatment and control group selection bias. On average, people with
greater academic skills tend to go to college. But then who’s to say whether their improved income is
because of their college education or because they were simply more skilled to begin with? To offer
more personalized recommendations, we need to consider the Conditional Average Treatment Effect
(CATE), defined by

CATE := E [Y (1)− Y (0)|X = x] := τ(x) (1)
Unfortunately, Equation (1) is difficult to estimate. For a given individualXi, it is not possible observe
both the outcome under treatment Y (1) and the outcome under control Y (0). You cannot clone a
college-bound individual and force the clone to skip college instead just so you can measure both
outcomes. While the situation may seem grim, if we are willing to make two strong assumptions then
we can make progress on estimating the CATE. The first assumption, called Ignorability, addresses
the selection bias issue we discussed above (Rosenbaum & Rubin, 1983). It prevents the existence of
a random variable that influences the probability of treatment and the potential outcomes. The second
assumption, called Overlap, ensures that no part of Xi lets you uniquely identify whether individual i
will be assigned to treatment or control (D’Amour et al., 2017). For example, it prevents a situation
wherein every individual under the age of 18 is automatically in the control group. These assumptions
are strong, but nevertheless standard. They are true by design in randomized experiments (D’Amour
et al., 2017; Künzel et al., 2017; Nie & Wager, 2017).

Assumption 1 (The treatment assignment Wi is unconfounded)
(Yi(1), Yi(0)) ⊥W |X.

Assumption 2 (Overlap) Then there exists constant 0 < emin, emax < 1 such that for all x ∈
Support(X),

0 < emin < e(x) < emax < 1.

Where e(x), the propensity score of x is defined by
e(x) := P(W = 1|X = x).

These two assumptions, plus regularity conditions, allow one to identify the CATE. We can estimate
the CATE by proceeding as follows. Define

µ0(x) = E[Y (0)|X = x]

µ1(x) = E[Y (1)|X = x],

where µ1 is the treatment response function. It denotes the outcomes of the units who received
treatment. µ0 is defined analogously for control units. To estimate τ(x) (the CATE), we compute
estimates µ̂0, µ̂1 for µ1 and µ0 and then subtract to get

τ̂(x) = µ̂1(x)− µ̂0(x) (2)
Below, we will discuss four common strategies for estimating τ̂ .
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T-LEARNER

In the T-Learner, we estimate µ̂0 and µ̂1 directly with any arbitrary function approximator. Let fi be
such a function approximator. Then

µ̂0(x) = f0(x)

µ̂1(x) = f1(x)

We then estimate the CATE by taking differences:

τ̂(x) = µ̂1(x)− µ̂0(x) (3)

Under strong assumptions, it is possible to provide convergence rate guarantees for the T-learner
(Künzel et al., 2017; Nie & Wager, 2017). In spite of its simplicity, the T-learner is almost always
insufficient because it does not share information across the treatment and control outcome estimators
(Athey & Imbens, 2015).

S-LEARNER

The S-learner tries to be more efficient than the T-learner by sharing information across the treatment
and control estimators. It uses only a single function approximator, f . In addition to the input features
xi, this function approximator also receives the binary treatment indicator w.

µ̂0(x) = f(x,w = 0)

µ̂1(x) = f(x,w = 1)

The CATE is then estimated as before.

U-LEARNER/R-LEARNER

We first consider the U-Learner. Let M is the main treatment effect function defined by M(x) =
E[Y |X = x] and e be the treatment propensity given by P (W = 1|X = x]. The U-learner weights
the estimated treatment effect by an estimated treatment propensity to form the CATE estimator.
More concretely,

ûobs = fobs(Y
obs ∼ X)

ê = fe(W ∼ X)

Ri = (Yi − ûobs(Xi))/(Wi − ê(Xi)

fτ = fτ (R ∼ X)

The R-Learner learner was proposed in Nie & Wager (2017). It is an extension to the U-learner that
provides some regularization and breaks estimation into a two step process. The authors prove the
R-learner has several nice convergence guarantees. They also demonstrate that it achieves state of the
art performance on several problems. See Nie & Wager (2017) for more details on the R-Learner.

X-LEARNER

This procedure makes use of imputed treatment effects to transfer information between treatment
and control. Define µ̂0 and µ̂1 as in the T-learner. For each of these estimates, we can produce a
corresponding imputed treatment effect

D̂i,1 = Yi(1)− µ̂0(Xi,1)

D̂i,0 = µ̂1(Xi,0)− Yi,0
Note that this learner does in fact use the control estimator µ0 on the treatment data X1 and similarly
for µ1 and X0. This is the correct way to impute the treatment effect estimate from µ̂0 and µ̂1. From
here, we can get to the CATE by estimating the imputed treatment effects and then summing the
estimates

τ̂1 = f1(D̂1 ∼ X1)

τ̂0 = f0(D̂0 ∼ X0)

For a theoretically grounded justification of this procedure, including convergence rate analysis, see
Künzel et al. (2017).
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2.2 RELATED WORK

In addition to the work discussed above (Nie & Wager, 2017; Künzel et al., 2017; Athey & Imbens,
2015), there exists a variety of interesting work. We are particularly interested in work that develops
better CATE estimation strategies, and in work about estimating causal effects with neural networks.
In (Ramachandra, 2018), the author shows how to use autoencoders for generalized neighborhood
matching, which one method of generating contractuals for estimating individual and average
treatment effects. (Magliacane et al., 2017) is concerned with domain adaptation using causal
inference to handle shifts caused by measurements taken in different contexts. Meanwhile, in
(Johansson et al., 2016), representation learning via neural networks and domain adaptation are is
used to answer problems from counterfactural inference. (Louizos et al., 2017) considers the use
of deep latent variable models to handle confounders. In (Alaa et al., 2017), parallels are drawn
between causal inference and multi-task learning. Finally, in (Shalit et al., 2017) the authors develop
an Integral Probability Metric based algorithm for measuring the ITE. We are eager to hear about
more related work in this area, so please let us know if we have missed anything.

3 THE Y-LEARNER5/17/2018 y_learner

1/3

Figure 1: Architecture diagram for the Y-learner.

Our development of the Y-learner started by examining a deficiency in the X-learner. Recall that the
X-learner is a two step procedure. In the first stage, the outcome functions, µ̂0 and µ̂1, are estimated
and the individual treatment effects are imputed:

D1
i := Y (1)− µ̂0(Xi) and D0

i := µ̂1(Xi)− Yi(0).

In the second stage, estimators for the CATE are derived by regressing the features X on the imputed
treatment effects.

τ̂1 = fτ1(D̂1 ∼ X1) and τ̂0 = fτ0(D̂0 ∼ X0).

In the X-learner paper, random forests were used to obtain the estimates µ̂0 and µ̂1. However, suppose
we used neural networks instead. In fact, suppose fθ0 and fθ1 estimate µ0 and µ1. Then we can write

D1
i = Y (1)− fθ0(Xi) and D0

i = fθ1 − Yi(0).

Suppose we also want to use neural networks for the second stage. Then we can write

τ̂1 = fτ1([Y (1)− fθ0(Xi)] ∼ X1) and τ̂0 = fτ0([fθ1 − Yi(0)] ∼ X0).
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When written in this way, it is clear that we should at least try to jointly optimize fτ and fθi . That
is, when we are optimizing fτ1 , we should also backprop through the netwowk fθ0 and similarly
for fτ0 and fθ1 . If we were using random forests, capturing this dependence would not be possible
since random forests are largely fixed once trained. However, with neural networks this presents
no problem. Neural networks also allow us to do some additional housekeeping. For instance, we
only need to keep a single neural network to output the imputed treatment effects under this joint
optimization strategy. Further, a two-stage estimation procedure is no longer necessary. We can
simply train the imputation networks and the CATE estimation networks concurrently on the same
data. The algorithm is presented as Algorithm 1 and also as a diagram in Figure 1.

Algorithm 1 Y-Learner Pseudo Code
1: if Wi == 0 then
2: Update the network fθ0 to predict Y obsi

3: Update the network fθ1 to predict Y obsi + fτ (Xi)
4: Update the network fτ to predict fθ1(Xi)− Y obsi
5: end if
6: if Wi == 1 then
7: Update the network fθ0 to predict Y obsi − fτ (Xi)
8: Update the network fθ1 to predict Y obsi

9: Update the network fτ to predict Y obsi − fθ0(Xi)
10: end if
This process describes training the Y-Learner for one step given a data point (Y obs

i , Xi,Wi)

CO-LEARNING NETWORKS AND THE Y-LEARNER

While testing the Y-learner, we made an curious discovery. We noticed that it almost always obtained
much better performance than the X-learner. This was not surprising, because we figured the joint
optimization strategy of backpropgating through fθ1 and fθ0 in lines 4 and 9 of Algorithm 1 would
allow those estimators to more directly benefit the final CATE estimation network fτ . However, if we
stopped gradients from going through fθ0 and fθ1 when backpropogating through fτ , we saw there
was no major loss in performance. The Y-learner still outperformed the X-learner by a large amount.

This seemed strange to us, since the Y-learner is structurally quite similar to the X-learner. One key
difference between the two is that the Y-learner updates fθ0 , fθ1 , and fτ continuously and in-step
with one another, whereas in the X-learner the imputation networks D0 and D1 are fixed before
training the CATE estimation networks fτ1 and fτ0 . We hypothesized that perhaps this continual ‘
‘co-learning” process may help improve training. In other problems, such as generative adversarial
networks, it is well known that the learning rate for co-learning networks is important. If one network
learns too fast or too slow, it will make the other network unstable Goodfellow et al. (2014). In certain
imitation learning algorithms, there is a more direct analogy. In these algorithms, one co-learns two
networks: One critic network to tell the agent what to do and another action network to actually do it.
Suppose this algorithm is run to completion. Subsequently we use the fully trained critic network to
train a new action network from scratch. This seems like it should work, but it will usually fail (Ho &
Ermon, 2016).

To test the effect of co-learning on the Y-learner, we ran the following experiment. On one of the
simulated datasets from Section 4.1, we ran 4 learners. First, the standard X-learner with neural
networks. Second, the Y-learner with full backpropogation through fθ0 , fθ1 when training fτ . This is
labeled ‘Y.’ Third, the Y-learner with no backpropogation through fθ0 , fθ1 when training fτ . This is
labeled ‘Y no backprop.’ For the final learner, we train a Y-learner to completion. We then hold the
trained fτ fixed and use the same dataset to train a new fθ1 and fθ2 from scratch. Finally, we hold
the fθ1 and fθ2 that we just trained fixed and use them to train a new fτ from scratch. The goal of the
last learner is to test the importance of co-learning fθ1 , fθ2 , and fτ for the Y-learner. We label this
experiment ‘no co-learning.’ To our surprise, the no co-learning experiment performed much worse
than the standard y-learner and the y-learner no backprop experiments. This is evidence supporting
our conjecture that co-learning is an important component of the Y-learner. Further research in this
area is likely needed to draw more definitive conclusions.
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Figure 2: Testing the importance of co-learning in the Y-learner.

4 EVALUATION

4.1 EXPERIMENTS ON SIMULATED DATA

The first task we consider consider is a synthetic data benchmark used in Künzel et al. (2017). This
benchmark has six different data generating process. Each synthetic dataset is designed to present
some difficulty in estimating the CATE. For example, the treatment propensity might be unbalanced,
the relationship between the treatment effect and the outcome might be complex, or there might be
confounding variables. See Künzel et al. (2017) for a full description of all of the data generating
processes.

Figure 3: Performance of R, X, Y, S, and T learners on six simulated data benchmark tasks. The data
is synthetically generated to make estimating the CATE difficult. We see that the Y-learner delivers
the best performance on simulations 1, 2, and 4. On simulations 3, 5, and 6 it delivers comparable
final performance to all extant methods. On most simulations, the Y-learner requires the least data to
learn a good CATE estimate.

.
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Figure 4: Total training time in seconds for the S, T, R, X, and Y-learners on simulated dataset 2. We
see that the X and Y learners are roughly twice as expensive as the simpler T learners. The S-learner
requires about half the compute of the T-learner, making it the cheapest option. Due to the R-learner’s
two step estimation procedure, it takes an order of magnitude longer.

4.2 GET-OUT-THE-VOTE EXPERIMENTS

This experiment was designed to measure the impact of social pressure on voter turnout in US
elections (Gerber et al., 2017). The experiment was carried out by sending a mailer to individuals
during the 2014 midterm election season. The mailer contained information about the individual’s
voting history in past elections, as well as information about the expected voter turnout for people with
similar demographics to the recipient. The inputs, X are the individuals demographic information.
The outcome Y is a binary indicating whether or not the individual cast a vote. The individual
treatment effect µ1(x) measures the impact of receiving a flier on voter turnout. The control outcome
µ0 can be thought of as the impact of not receiving a flier on an individual’s propensity to vote. Since
encouraging strong voter turnout is an important problem for democracy, it would be valuable to
know what kinds of voter encouragement work best across different populations.

Figure 5: Learning curves for the GOTV task. The R, T, and X learners end with final MSEs of 0.8,
1.5, and 2.0 respectively. The Y-learner achieves the best performance. The S-learner also does quite
well.

4.3 MNIST EXPERIMENTS

This first version of this task was developed in Nie & Wager (2017), though it was later removed
from that paper for unknown reasons. A newer version was proposed in Künzel et al. (2018). In this
task, MNIST digits are given a treatment effect. The value of the treatment effect is a function of the
number depicted in the image. The task is interesting because the input data is an image. Traditional
CATE estimation strategies were not capable of learning treatment effects from raw image inputs.
However, when CATE estimators are parameterized by neural networks, image inputs present no
special challenges.

5 CLOSING REMARKS

In this paper, we proposed the Y-learner for CATE estimation. The Y-learner was designed specifically
with neural networks in mind. It takes advantage of the ability of neural networks to continually
optimize against multiple objectives. We noted that the Y-learner was differentiated from the X-
learner by its co-learning strategy. The Y-learner achieves excellent performance on three benchmark

7



Under review as a conference paper at ICLR 2019

Figure 6: Results on the MNIST task. The X, R, and T learners have fairly flat learning curves and
end with MSEs of 12.8, 8.6, and 14.1 respectively, so they are omitted here. The S-learner does much
better than the Y-learner until there are around 14,000 points in the training set.

problems, including one simulated data benchmark, one real data benchmark, and one benchmark
that estimated CATEs over images.

We are left with several open questions. While we did not perform a theoretical analysis on the
convergence rate of the Y-learner, it seems likely that the tools from (Nie & Wager, 2017; Künzel et al.,
2017) would allow us to do so. There exists a body of related work on imputing or otherwise handling
missing counterfacturals using deep learning techniques. The Y-learner too provides a technique for
imputing the missing counterfacturals needed for CATE estimation. It would be investigate the links
between our scheme and the the recently proposed methods surveyed in this paper. As always, the
problem of dealing with confounding variables remains an interesting one. It would be interesting to
adapt the Y-learner so that it can tackle this problem more directly.
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