
Under review as a conference paper at ICLR 2020

SCELMO: SOURCE CODE EMBEDDINGS
FROM LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Continuous embeddings of tokens in computer programs have been used to support a variety of
software development tools, including readability, code search, and program repair. Contextual
embeddings are common in natural language processing but have not been previously applied in
software engineering. We introduce a new set of deep contextualized word representations for com-
puter programs based on language models. We train a set of embeddings using the ELMo (em-
beddings from language models) framework of Peters et al (2018). We investigate whether these
embeddings are effective when fine-tuned for the downstream task of bug detection. We show that
even a low-dimensional embedding trained on a relatively small corpus of programs can improve a
state-of-the-art machine learning system for bug detection.

1 INTRODUCTION

Learning rich representations for source code is an open problem that has the potential to enable software engineering
and development tools. Some work on machine learning for source code has used hand engineered features (Long &
Rinard, 2016, e.g.), but designing and implementing such features can be tedious and error-prone. For this reason, other
work considers the task of learning a representation of source code from data (Allamanis et al., 2018a). Many models
of source code are based on learned representations called embeddings, which transform words into a continuous
vector space (Mikolov et al., 2013). Currently in software engineering (SE) researchers have used static embeddings
(Harer et al., 2018; White et al., 2019; Pradel & Sen, 2018), which map a word to the same vector regardless of its
context. However, recent work in natural language processing (NLP) has found that contextual embeddings can lead
to better performance (Peters et al., 2018; Devlin et al., 2018; Yang et al., 2019; Liu et al., 2019). Contextualized
embeddings assign a different vector to a word based on the context it is used. For NLP this has the advantage that
it can model phenomena like polysemy. A natural question to ask is if these methods would also be beneficial for
learning better SE representations.

In this paper, we introduce a new set of contextual embeddings for source code. Contextual embeddings have several
potential modelling advantages that are specifically suited to modelling source code:

• Surrounding names contain important information about an identifier. For example, for a variable name,
surrounding tokens might include functions that take that variable as an argument or assignments to the
variable. These tokens provide indirect information about possible values the variable could take, and so
should affect its representation. Even keywords can have very different meanings based on their context. For
instance, a private function is not the same as a private variable or a private class (in the case of Java / C++).

• Contextual embeddings assign a different representation to a variable each time it is used in the program. By
doing this, they can potentially capture how a variable’s value evolves through the program execution.

• Contextual embeddings enable the use of transfer learning. Pre-training a large neural language model and
querying it for contextualized representations while simultaneously fine-tuning for the specific task is a very
effective technique for supervised tasks for which there is a small amount of supervised data available. As a
result only a small model needs to be fine-tuned atop the pre-trained model, without the need for task-specific
architectures nor the need of training a large model for each task separately.

In this paper, we highlight the potential of contextual code embeddings for program repair. Automatically finding bugs
in code is an important open problem in SE. Even simple bugs can be hard to spot and repair. A promising approach
to this end is name-based bug detection, introduced by DeepBugs (Pradel & Sen, 2018). The current state-of-the-art
in name-based bug detection relies on static representations from Word2Vec (Mikolov et al., 2013) to learn a classifier
that distinguishes correct from incorrect code for a specific bug pattern. We introduce a new set of contextualized

1

Under review as a conference paper at ICLR 2020

embeddings for code and explore its usefulness on the task of name-based bug detection. Our method significantly
outperforms DeepBugs as well as other static representations methods on both the DeepBugs dataset as well as a new
previously unused test set of JavaScript projects. We release our implementation and representations as they could
lead to improvements in a great variety of SE tasks.

2 RELATED WORK

Unsupervised static word embeddings have been extensively used to improve the accuracy of supervised tasks in NLP
(Turian et al., 2010). Notable examples of such methods are Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014). However, the above models learn only a single context-independent word representation. To overcome
this problem some models (Wieting et al., 2016; Bojanowski et al., 2017) enhance the representations with subword
information, which can also somewhat deal with out-of-vocabulary words. Another approach is to learn a different
representation for every word sense (Neelakantan et al., 2014) but this requires knowing the set of word senses in
advance. More recent methods overcome the above issues by learning contextualized embeddings. Melamud et al.
(2016) encode the context surrounding a pivot word using a bidirectional LSTM. Peters et al. (2018) use a deep
bidirectional LSTM, learning word embeddings as functions of its internal states, calling the method Embeddings
using Language Models (ELMo). We discuss ELMo in detail in Section 3. Devlin et al. (2018) introduced bidirectional
encoder representations from transformers (BERT). This method learns pre-trained contextual embeddings by jointly
conditioning on left and right context via an attention mechanism.

Program repair is an important task in software engineering and programming languages. For a detailed review see
Monperrus (2018); Gazzola et al. (2019). Many recent program repair methods are based on machine learning. Yin
et al. (2018) learn to represent code edits using a gated graph neural network (GGNN) (Li et al., 2016). Allamanis
et al. (2018b) learn to identify a particular class of bugs called variable misuse bugs, using a GGNN. Chen et al.
(2019) introduce SequenceR which learns to transform buggy lines into fixed ones via machine translation. Our work
is orthogonal to these approaches and can be used as input in other models.

Finally, our work is also related to code representation methods many of which have also been used in program repair.
Harer et al. (2018) learn Word2Vec embeddings for C/C++ tokens to predict software vulnerabilities. White et al.
(2019) learn Word2Vec embeddings for Java tokens and utilize them in program repair. Alon et al. (2019) learn code
embeddings using abstract syntax tree paths. A more detailed overview can be found in (Allamanis et al., 2018a; Chen
& Monperrus, 2019).

3 EMBEDDINGS FROM LANGUAGE MODELS (ELMO)

ELMo (Peters et al., 2018) computes word embeddings from the hidden states of a language model. Consequently,
the embeddings of each token depend on its context of the input sequence, even out-of-vocabulary (OOV) tokens have
effective input representations. In this section, we briefly describe the ELMo embeddings.

The first step is that a neural language model is trained to maximize the likelihood of a training corpus. The architecture
used by ELMo a bidirectional LSTM with L layers and character convolutions in the input layer. Let the input
be a sequence of tokens (t1, ...tN). For each token tk, denote by xLM

k the input representation from the character
convolution. Consequently, this representation passes through L layers of forward and backward LSTMs. Then

each layer j ∈ {1, ..., L} of the forward LSTM computes a hidden state
−−→
hLM
k,j , and likewise the hidden states of the

backward LSTM are denoted by
←−−
hLM
k,j . The parameters for the token representation and for the output softmax layer

are tied for both directions, while different parameters are learned for each direction of the LSTMs.

After the language model has been trained, we can use it within another downstream task by combining the hidden
states of the language model from each LSTM layer. This process is called ELMo. For each token tk of a sentence
in the test set, the language model computes 2L + 1 hidden states, one in each direction for each layer, and then the
input layer. To make the following more compact, we can write these as hLM

k,0 = xLM
k for the input layer, and then

hLM
k,j = [

−−→
hLM
k,j ,
←−−
hLM
k,j] for all of the other layers. The set of these vectors is

Rk = {hLM
k,j |j = 0, ..., L}. (1)

To create the final representation that is fed to downstream tasks, ELMo collapses the set of representations into a
single vector Ek for token tk. A simplistic approach is to only select the top layer, so that Ek = hLM

k,L . A more general
one, which we use in this work, is to combine the layers via fine-tuned task specific weights s = (s1 . . . sL) for every

2

Under review as a conference paper at ICLR 2020

layer. Then we can compute the embedding for token k as

Ek = γ

L∑
j=0

sjh
LM
k,j , (2)

where γ is an additional scalar parameter that scales the entire vector. In our experiments we did not performed fine-
tuning and thus used equal weights sj = 1/(L + 1) for each layer and γ = 1. However, our implementation also
supports all the aforementioned ways of collapsing the set of representations.

A potential drawback of the method is that it still utilizes a softmax output layer with a fixed vocabulary that does not
scale effectively and it still predicts UNK for OOV tokens which may have a negative effect on the representations.

4 SOURCE CODE ELMO

We describe Source Code ELMo (SCELMo), which trains ELMo on corpora of source code. However, we note that
normally ELMo models in other domains are able to effectively utilize much larger representations. The code was
tokenized using the esprima JavaScript tokenizer1. For training the ELMo model we used a corpus of 150,000
JavaScript Files (Raychev et al. 2016) consisting of various open-source projects. This corpus has previously been
used on several tasks (Raychev et al., 2016; Pradel & Sen, 2018; Bavishi et al., 2018). We applied the patch released
by Allamanis et al. (2018a) to filter out code duplication as this phenomenon was shown on this and other corpora
to result in inflation of performance metrics. This resulted in 64750 training files and 33229 validation files. Since
the validation set contains files from the same projects as the train the contained instances might be too similar and
unrealistic overestimating. To address this we also created a test set of 500 random JavaScript projects sampled from
the top 20,000 open-source JavaScript projects as of May 2019. The test corpus has not been previously utilized in
previous work and is a better reflection of the performance of the learned bug detectors. Lastly, it is important to know
what the performance of the method will be if we do not have access to training data from the projects on which we
would like to find bugs. This is common in practice for many real case scenarios. For training the ELMo model, we
use an embedding size of 100 features for each of the forward and backward LSTMs so that each layer sums up to 200
features.

5 CONTEXTUAL EMBEDDINGS FOR PROGRAM REPAIR

In this section, we describe how contextual embeddings can be incorporated within a recent machine learning-based
bug detection system, the DeepBugs system of Pradel & Sen (2018). In the first part of this section, we give background
about the DeepBugs system, and then we describe how we incorporate SCELMo within DeepBugs. DeepBugs treats
the problem of finding a bug as a classification problem. The system considers a set of specific bug types, which are
small mistakes that might be made in a program, such as swapping two arguments. For each bug type, DeepBugs
trains a binary classifier that takes a program statement as input and predicts whether the statement contains that type
of bug. At test time, this classifier can be run for every statement in the program to attempt to detect bugs.

In order to train the model both examples of correct and incorrect (buggy) code are necessary. DeepBugs treats
the existing code as correct and randomly mutates it to obtain buggy code. To obtain training examples, we extract
all expressions from the source code which are either the function calls with exactly two arguments and all binary
expressions. To create instances of buggy code we mutate each of the correct instances. As such, arguments in
function calls are swapped, the binary operator in binary expressions is replaced with another random one, and finally
randomly either the left or the right operand is replaced by another random binary operand that appears in the same
file. Then the classification task is a binary task to predict whether the instance is correct, i.e., it comes from the
original code, or whether it is buggy, i.e. it was one of the randomly mutated examples. The validation and test sets are
mutated in the same way as the training set. The split between correct and buggy instances has 50/50 class distribution
as for each original code instance exactly one mutated buggy counterpart is created.

The architecture for the classifier is a feedforward network with a single hidden layer of 200 dimensions with Relu
activations and a sigmoid output layer. For both the input and hidden layers a dropout of 0.2. The network was trained
in all experiments for 10 epochs with a batch size of 50 and the RMSProp optimizer. We note that for maintaining
a consistent comparison with DeepBugs we kept all the above parameters as well as the optimizer’s parameters fixed
to the values reported in Pradel & Sen (2018). Tuning these parameters would probably result in at least a small
performance increase for our method.

1https://esprima.org/

3

https://esprima.org/

Under review as a conference paper at ICLR 2020

1 // Argument order is inversed.
2 var delay = 1000;
3 setTimeout(delay, function() { // Function should be first.
4 logMessage(msgValue);
5 });

Listing 1: Swapped Arguments Bug

1 // && instead of || was used.
2 var p = new Promise();
3 if (promises === null && promises.length === 0) {
4 p.done(error, result);
5 }

Listing 2: Incorrect Binary Operator

1 // Call to .length is missing.
2 if (index < matrix) {
3 do_something();
4 }

Listing 3: Incorrect Binary Operand

Figure 1: Bug type examples.

In our experiments, we consider three bug types that address a set of common programming mistakes: swapped argu-
ments of function calls, using the wrong binary operator and using an incorrect binary operand in a binary expression.
The methodology can easily be applied to other bug types. Figure 1 illustrates an example of each of the three bug
types.

5.1 INPUT TO THE CLASSIFIER

A key question is how a statement from the source code is converted into a feature vector that can be used within the
classifier. DeepBugs uses a set of heuristics that, given a statement and a bug type, return a sequence of identifiers
from the statement that are most likely to be relevant. For instance, for the call to setTimeout in Listing 1 the following
sequence of identifiers would be extracted: [setTimeout, delay, function]. A detailed description of the heuristics is
available in Appendix A.

These heuristics result in a sequence of program identifiers. These are converted to continuous vectors using word
embeddings, concatenated, and this is the input to the classifier. DeepBugs uses Word2Vec embeddings trained on a
corpus of code. In our experiments, we train classifiers using three different types of word embeddings. First, we kept
the 10,000 most frequent identifiers/literals and assigned to each of them a random embedding of 200 features. Second,
to reproduce the results of Pradel & Sen (2018), we use the CBOW variant of Word2Vec to learn representations
consisting of 200 features for the 10,000 most frequent identifiers/literals. Finally, we train a FastText embeddings
(Bojanowski et al., 2017) on the training set to learn identifier embeddings that contain subword information. The
subwords used by FastText are all the character trigrams that appear in the training corpus. Identifiers are therefore
composed of multiple subwords. To represent an identifier, we sum the embeddings of each of its subwords and
summing them up. This allows the identifier embeddings to contain information about the structure and morphology
of identifiers. This also allows the FastText embeddings, unlike the Word2Vec ones, to represent OOV words as a
combination of character trigrams.

Note that DeepBugs can detect bugs only in statements that do not contain OOV (out-of-vocabulary) identifiers, be-
cause its Word2Vec embeddings cannot extract features for OOV names. Instead our implementation does not skip
such instances. Since the original work discarded any instances that contain OOV identifiers we neither know how the
method performs on such instances nor how often those appear in the utilized dataset of DeepBugs. Moreover, Deep-
Bugs supported only a specific subset of AST nodes and skipped the rest. For example if a call’s argument is a complex
expression consisting of other expressions then the call would be skipped. However, we expanded the implementation
to support all kinds of AST nodes and to not skip instances with nested expressions as discussed in Appendix A. We
note that we still skip an instance if one of its main parts (e.g., a function call’s argument) is a complex expression
longer than 1,000 characters as such expressions might be overly long to reason about.

4

Under review as a conference paper at ICLR 2020

Table 1: Comparison of ELMo versus non-contextual embeddings for bug detection on a validation set of projects.
Data is restricted to expressions that contain only single names.

Random Word2Vec FastText No-Context ELMo SCELMo

Swapped Arguments 86.18% 87.38% 89.55% 90.02% 92.11%
Wrong Binary Operator 90.47% 91.05% 91.11% 92.47% 100.00%
Wrong Binary Operand 75.56% 77.06% 79.74% 81.71% 84.23%

5.2 CONNECTING SCELMO TO THE BUG DETECTOR

We investigated two variants of the bug detection model, which query SCELMo in different ways to get features for
the classifier. The first utilizes the heuristic of Section A to extract a small set of identifiers or literals that represent
the code piece. For example, for an incorrect binary operand instance we extract one identifier or literal for the left
and right operands respectively, and we also extract its binary operator. Then, those are concatenated to form a query
to the network. In the case of function calls we extract the identifier corresponding to the name of the called function,
one identifier or literal for the first and second argument respectively and an identifiers for the expression on which the
function is called. We also add the appropriate syntax tokens (a ’.’ if necessary, ’,’ between the two arguments, and left
and right parentheses) to create a query that resembles a function call. This baseline approach creates simplistic fixed
size queries for the network but does not utilize its full potential since the queries do not necessarily resemble actual
code, nor correct code similar to the sequences in the training set for the embeddings. We will refer to this baseline as
No-Context ELMo.

Our proposed method, we compute SCELMo embeddings to the language model all the tokens of the instances for
which we need representations. Valid instances are functions calls that contain exactly two arguments and binary
expressions. To create a fixed-size representation we extract only the features corresponding a fixed set of tokens.
Specifically, for functions calls we use the representations corresponding to the first token of the expression on which
the function is called, the function name, the first token of the first argument and the first token of the second argument.
While, for binary expressions we use those of the first token of the left operand, the binary operator, and the first token
of the right operand. Since the representations contain contextual information, the returned vectors can capture
information about the rest of the tokens in the code sequence.

6 RESULTS

We next discuss the experiments we performed and their corresponding results. We measured the performance of the
three baselines as well as those of non-contextual ELMO and SCELMO. Measuring the performance of non-contextual
ELMO allows us to evaluate how much improvement is due to specifics of the language model architecture, such as
the character convolutional layer which can handle OOVs, and how much is due to the contextual information itself.

6.1 PERFORMANCE ON VALIDATION SET

In our first experiment we evaluate the performance of the methods in tasks where training data from the same projects
are available. The evaluation performed in this experiment gives a good estimation of how our method performs com-
pared to the previous state-of-the-art technique of DeepBugs. One main difference however is that the evaluation now
also includes instances which contain OOV. As a consequence the bug detections tasks are harder than those presented
by Pradel & Sen (2018) as their evaluation does not include in both the training and validation set any instance for
which an extracted identifier is OOV. Table 1 illustrates the performance of the baselines and our models. As one would
expect the FastText baseline improves over Word2Vec for all bug types due to the subword information. Moreover,
our model SCELMo massively outperforms all other methods. Lastly, even no-context ELMo the heuristic version of
SCELMo that does not utilize contextual information at test time outperforms the baseline methods showcasing how
powerful the pretrained representations are.

6.2 INCLUDING COMPLEX EXPRESSIONS

In our next experiment we also included instances that contain elements that are complex or nested expressions. For
instance, in the original work if one the arguments of a function call or one of the operands of a binary expression is an
expression consisting of other expressions then the instance would not be included in the dataset. Several AST node

5

Under review as a conference paper at ICLR 2020

Table 2: Comparison of SCELMo versus static embeddings on bug detection on a validation set of projects. Complex
expressions are included in this validation set.

Random Word2Vec FastText No-Context ELMo SCELMo

Swapped Arguments 86.37% 87.68% 90.37% 90.83% 92.27%
Wrong Binary Operator 91.12% 91.68% 91.92% 92.75% 100.00%
Wrong Binary Operand 72.73% 74.31% 77.41% 79.65% 87.10%

Table 3: Comparison of SCELMo versus static embeddings on bug detection on an external test set of 500 JavaScript
projects.

Random Word2Vec FastText No-Context ELMo SCELMo

Swapped Arguments 75.79% 78.22% 79.40% 81.37% 84.25%
Wrong Binary Operator 82.95% 85.54% 83.15% 86.54% 99.99%
Wrong Binary Operand 67.46% 69.50% 72.55% 75.74% 83.59%

types such as a NewExpression node or an ObjectExpressionwere not supported. Figure 2 a few examples of
instances that would be previously skipped 2. Such instances were skipped by Pradel & Sen (2018) and not included
in their results. We do note though that we still skip very long expressions that contain more than 1000 tokens.

1 // First argument is binary expression
2 doComputation(x + find_min(components), callback);

1 // Second argument is an unsupported node
2 factory.test(simulator, new Car(’Eagle’, ’Talon TSi’, 1993));

Figure 2: Examples of instances that would be skipped by DeepBugs.

Similarly to the previous experiment SCELMo significantly outperforms all other models. This is evident in Table 2.
Lastly, we clarify that the results of this section should not be directly compared to those of the previous one as for
this experiment the training set is also larger.

6.3 EXTERNAL TEST EVALUATION

The last experiment’s objective is to showcase how the various models would perform on unseen projects as this better
illustrates the generalizability of the techniques. The configuration utilized is identical to that of the previous section.
By looking at Table 3 one can notice that the baselines have a major drop in performance. This is a common finding
in machine learning models of code, namely, that applying a trained model to a new software project is much more
difficult than to a new file in the same project. In contrast, SCELMo offers up to 15% improvement in accuracy
compared to Word2Vec baseline. In fact, impressively enough SCELMo on the external test set is better than the
evaluation set one of the baselines.

6.4 OOV STATISTICS

In order to better understand the above results we measured the OOV rate of the basic elements of the code instances
appearing in the dataset. Here the OOV rate is calculated based on the vocabulary of 10000 entries utilized by the
Word2Vec and random baseline models. These are illustrated in Tables 4 and 5. We measured the OOV rates for both
the version of the dataset used in Section 6.4, which we call Train and Validation, and that used in Section 6.2, which
we call Extended Train and Extended Validation.

Tables 4 and 5 describe the OOV rates for different parts of the expression types that are considered by the DeepBugs
bug detector. A detailed description of the identifiers extraction heuristic can be found in Appendix A. We first focus

2The AST is extracted using the acorn parser https://github.com/acornjs/acorn

6

https://github.com/acornjs/acorn

Under review as a conference paper at ICLR 2020

on the swapped arguments bug pattern and consider all of the method call that have exactly two arguments. Each
method call contains the function name, a name of the first argument, a name of the second argument, and a base object.
The base object is the identifier that would be extracted from the expression (if such an expression exists) on which
the function is called. For instance, from the following expression: window.navigator.userAgent.indexOf(”Chrome”),
userAgent would be extracted as the base object. Table 4 shows for each of the components how often they are OOV.
In the expanded version of the dataset if one of the arguments is a complex expression then it is converted into a name
based on the heuristic described in Section A. The resulting statistics contain valuable information as for instance, it
is almost impossible for the Word2Vec baseline to reason about a swap arguments bug if the identifiers extracted for
both arguments are OOV.

In a similar manner for the incorrect operand and operator bug patterns we consider all the binary operations. Each
binary expression consists of a left and right operand and a name is extracted for each of them. For each operand we
also measured the frequency with which the operand corresponds to certain common types such as identifier, literal or
a ThisExpression.

Table 4: OOV statistics for calls with exactly two arguments (Swapped arguments instances). The statistics are
calculated on variants of the DeepBugs dataset.

Train Expanded Train Validation Expanded Validation

Two Arguments Calls 574656 888526 289061 453486
Calls Missing Base Object 25.07% 28.63% 25.63% 28.80%
Base Object Missing or OOV 34.56% 37.38% 35.57% 38.07%
Function Name OOV 20.69% 17.07% 20.33% 16.94%
First Argument OOV 31.01% 36.99% 31.64% 37.15%
Second Argument OOV 27.25% 22.86% 27.94% 23.49%
Both Arguments OOV 11.33% 9.57% 11.96% 10.16%
Base and Function Name OOV 10.20% 8.32% 10.39% 8.61%
Base and Arguments OOV 4.21% 3.31% 4.88% 3.77%
Function Name and Arguments OOV 2.86% 2.26% 2.85% 2.28%
All Elements OOV 1.53% 1.18% 1.61% 1.27%

Table 5: OOV statistics for binary operations.

Train Expanded Train Validation Expanded Validation

Binary Operations 1075175 1578776 540823 797108
Left Operand OOV 25.40% 28.84% 26.04% 29.55%
Right Operand OOV 20.37% 23.98% 20.74% 24.55%
Both Operands OOV 7.82% 11.29% 8.24% 11.88%
Unknown Left Operand Type 83.36% 87.80% 83.14% 87.74%
Unknown Right Operand Type 48.48% 47.23% 48.47% 47.05%
Both Operand Types Unknown 33.34% 36.06% 33.20% 35.87%
All OOV or Unknown 3.59% 4.03% 3.81% 4.3%

7 IS NEURAL BUG-FINDING USEFUL IN PRACTICE?

Although related work (Pradel & Sen, 2018; Allamanis et al., 2018b; Vasic et al., 2019) has shown that there is great
potential for embedding based neural bug finders, the evaluation has mostly focused on synthetic bugs introduced by
mutating the original code. However, there is no strong indication that the synthetic bugs correlate to real ones, apart
from a small study of the top 50 warnings for each bug type produced by DeepBugs. A good example is the mutation
operation utilized for the incorrect binary operator bug. A lot of the introduced bug instances could result in syntactic
errors. This can potentially create a classifier with a high bias towards correlating buggy code to syntactically incorrect
code, thus hindering the model’s ability to generalize on real bugs. Ideally, in an industrial environment we would like
the resulting models to achieve a false positive rate of less than 10 % (Sadowski et al., 2015). Sadly, high true positive
rates are not to be expected as well since static bug detectors were shown to be able to detect less than 5% of bugs

7

Under review as a conference paper at ICLR 2020

Table 6: Real bug mined instances.

Swapped Arguments Wrong Binary Operator Wrong Binary Operand

Mined Instances 303 80 1007

Table 7: Real bug identification task recall and false positive rate (FPR).

Word2Vec-Recall Word2Vec-FPR SCELMo-Recall SCELMo-FPR

Swapped Arguments 3.34% 0.33% 49.67% 33.78%
Wrong Binary Operator 8.95% 7.70% 0.00% 0.00%
Wrong Binary Operand 11.99% 12.11% 15.81% 14.34%

(Habib & Pradel, 2018) contained in the Defects4J corpus (Just et al., 2014) and less than 12% in a single-statement
bugs corpus (Karampatsis & Sutton, 2019). We note that in the second case the static analysis tool is given credit by
reported any warning for the buggy line, so the actual percentage might lower than the reported one.

We next make a first step on investigating the practical usefulness of our methods by applying the classifiers of the
previous section on a small corpus of real JavaScript bugs. However, we think that this is a very hard yet interesting
problem that should be carefully examined in future work. In order to mine a corpus of real bug changes we used
the methodology described in (Karampatsis & Sutton, 2019). We note that we adapted their implementation to utilize
the Rhino JavaScript parser3. Their methodology extracts bug fixing commits and filters them to only keep those that
contain small single-statement changes. Finally, it classifies each pair of modified statements by whether the fit a set
of mutation patterns. The resulting dataset is shown in Table 6. Upon acceptance of the paper we will release this
dataset along with our implementation, the rest of data used, and the learned representations.

Finally, we queried the DeepBugs and SCELMo with each buggy instance as well as its fixed variant and measured
the percentage of correctly classified instances for each of the two categories. We also ignored any instances for which
the JavaScript parser utilized for both failed to extract an AST. We classified as bugs any instances that were assigned
a probability to be a bug > 75%. In an actual system this threshold should ideally be tuned on a validation set.

Table 7 suggests that there might indeed be some potential for future practical applications of neural bug finding
techniques. Both are able to uncover some of the bugs. However, the results also suggest that careful tuning of the
predictions threshold might be necessary, especially if we take into account the industrial need to comply with a low
false positive rate (FPR). For instance, raising SCELMo’s prediction threshold to 80% for the swap arguments bug
results in finding only 3.34% of the bugs but correctly classifying 100% of the repaired function calls, thus achieving
0.0% false positive rate. Moreover, since SCELMo could not uncover any of the real binary operator bugs, future work
could investigate the effect of utilizing different mutation strategies for the purpose of artificial bug-induction. Future
work could also investigate if fine-tuning on small set of real bugs could result in more robust classifiers.

8 CONCLUSION

We have presented SCELMo, which is to our knowledge the first language-model based contextual embeddings for
source code. Contextual embeddings have many potential advantages for source code, because surrounding tokens can
indirectly provide information about tokens, e.g. about likely values of variables. We highlight the utility of SCELMo
embeddings by using them within a recent state-of-the-art machine learning based bug detector. The SCELMo em-
beddings yield a dramatic improvement in the synthetic bug detection performance benchmark, especially on lines of
code that contain out-of-vocabulary tokens and complex expressions that can cause difficulty for the method. We also
showed and discussed the performance of the resulting bug detectors on a dataset of real bugs raising useful insights
for future work.

3https://github.com/mozilla/rhino

8

https://github.com/mozilla/rhino

Under review as a conference paper at ICLR 2020

REFERENCES

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine learning for big
code and naturalness. ACM Comput. Surv., 51(4):81:1–81:37, July 2018a. ISSN 0360-0300. doi: 10.1145/3212695.
URL http://doi.acm.org/10.1145/3212695.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with graphs. In
International Conference on Learning Representations, 2018b. URL https://openreview.net/forum?
id=BJOFETxR-.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed representations of code.
Proc. ACM Program. Lang., 3(POPL):40:1–40:29, January 2019. ISSN 2475-1421. doi: 10.1145/3290353. URL
http://doi.acm.org/10.1145/3290353.

Rohan Bavishi, Michael Pradel, and Koushik Sen. Context2name: A deep learning-based approach to infer natural
variable names from usage contexts. CoRR, abs/1809.05193, 2018. URL http://arxiv.org/abs/1809.
05193.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with subword informa-
tion. Transactions of the Association for Computational Linguistics, 5:135–146, 2017. doi: 10.1162/tacl a 00051.
URL https://www.aclweb.org/anthology/Q17-1010.

Zimin Chen and Martin Monperrus. A literature study of embeddings on source code. CoRR, abs/1904.03061, 2019.
URL http://arxiv.org/abs/1904.03061.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys Poshyvanyk, and Martin Monperrus.
Sequencer: Sequence-to-sequence learning for end-to-end program repair. CoRR, abs/1901.01808, 2019. URL
http://arxiv.org/abs/1901.01808.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. CoRR, abs/1810.04805, 2018. URL http://arxiv.org/abs/1810.
04805.

L. Gazzola, D. Micucci, and L. Mariani. Automatic software repair: A survey. IEEE Transactions on Software
Engineering, 45(01):34–67, jan 2019. ISSN 1939-3520. doi: 10.1109/TSE.2017.2755013.

Andrew Habib and Michael Pradel. How many of all bugs do we find? a study of static bug detectors. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE 2018, pp. 317–328,
New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5937-5. doi: 10.1145/3238147.3238213. URL http:
//doi.acm.org/10.1145/3238147.3238213.

Jacob A. Harer, Louis Y. Kim, Rebecca L. Russell, Onur Ozdemir, Leonard R. Kosta, Akshay Rangamani, Lei H.
Hamilton, Gabriel I. Centeno, Jonathan R. Key, Paul M. Ellingwood, Marc W. McConley, Jeffrey M. Opper,
Sang Peter Chin, and Tomo Lazovich. Automated software vulnerability detection with machine learning. CoRR,
abs/1803.04497, 2018. URL http://arxiv.org/abs/1803.04497.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4j: A database of existing faults to enable controlled testing
studies for java programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pp. 437–440, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2645-2. doi: 10.1145/2610384.
2628055. URL http://doi.acm.org/10.1145/2610384.2628055.

Rafael-Michael Karampatsis and Charles Sutton. How Often Do Single-Statement Bugs Occur? The ManySStuBs4J
Dataset. arXiv preprint arXiv:1905.13334, 2019. URL https://arxiv.org/abs/1905.13334.

Yujia Li, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. Gated graph sequence neural networks. In Proceed-
ings of ICLR’16, April 2016. URL https://www.microsoft.com/en-us/research/publication/
gated-graph-sequence-neural-networks/.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining approach. CoRR, abs/1907.11692,
2019. URL http://arxiv.org/abs/1907.11692.

9

http://doi.acm.org/10.1145/3212695
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
http://doi.acm.org/10.1145/3290353
http://arxiv.org/abs/1809.05193
http://arxiv.org/abs/1809.05193
https://www.aclweb.org/anthology/Q17-1010
http://arxiv.org/abs/1904.03061
http://arxiv.org/abs/1901.01808
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://doi.acm.org/10.1145/3238147.3238213
http://doi.acm.org/10.1145/3238147.3238213
http://arxiv.org/abs/1803.04497
http://doi.acm.org/10.1145/2610384.2628055
https://arxiv.org/abs/1905.13334
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
https://www.microsoft.com/en-us/research/publication/gated-graph-sequence-neural-networks/
http://arxiv.org/abs/1907.11692

Under review as a conference paper at ICLR 2020

Fan Long and Martin Rinard. Automatic patch generation by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, pp. 298–312,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837617. URL http:
//doi.acm.org/10.1145/2837614.2837617.

Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic context embedding with bidirec-
tional LSTM. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pp.
51–61, Berlin, Germany, August 2016. Association for Computational Linguistics. doi: 10.18653/v1/K16-1006.
URL https://www.aclweb.org/anthology/K16-1006.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
26, pp. 3111–3119. Curran Associates, Inc., 2013. URL http://papers.nips.cc/paper/
5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
pdf.

Martin Monperrus. Automatic software repair: A bibliography. ACM Comput. Surv., 51(1):17:1–17:24, January 2018.
ISSN 0360-0300. doi: 10.1145/3105906. URL http://doi.acm.org/10.1145/3105906.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum. Efficient non-parametric estimation
of multiple embeddings per word in vector space. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 1059–1069, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics. doi: 10.3115/v1/D14-1113. URL https://www.aclweb.org/anthology/D14-1113.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–
1543, Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL
https://www.aclweb.org/anthology/D14-1162.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
Deep contextualized word representations. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2227–
2237, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.
URL https://www.aclweb.org/anthology/N18-1202.

Michael Pradel and Koushik Sen. Deepbugs: A learning approach to name-based bug detection. Proc. ACM Program.
Lang., 2(OOPSLA):147:1–147:25, October 2018. ISSN 2475-1421. doi: 10.1145/3276517. URL http://doi.
acm.org/10.1145/3276517.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy data. In Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pp. 761–774, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837671. URL
http://doi.acm.org/10.1145/2837614.2837671.

Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Söderberg, and Collin Winter. Tricorder: Building a program
analysis ecosystem. In Proceedings of the 37th International Conference on Software Engineering - Volume 1, ICSE
’15, pp. 598–608, Piscataway, NJ, USA, 2015. IEEE Press. ISBN 978-1-4799-1934-5. URL http://dl.acm.
org/citation.cfm?id=2818754.2818828.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple and general method for semi-
supervised learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
ACL ’10, pp. 384–394, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics. URL http:
//dl.acm.org/citation.cfm?id=1858681.1858721.

Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, and Rishabh singh. Neural program repair by jointly
learning to localize and repair. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ByloJ20qtm.

Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk. Sorting and transforming
program repair ingredients via deep learning code similarities. pp. 479–490, 02 2019. doi: 10.1109/SANER.2019.
8668043.

10

http://doi.acm.org/10.1145/2837614.2837617
http://doi.acm.org/10.1145/2837614.2837617
https://www.aclweb.org/anthology/K16-1006
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://doi.acm.org/10.1145/3105906
https://www.aclweb.org/anthology/D14-1113
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/N18-1202
http://doi.acm.org/10.1145/3276517
http://doi.acm.org/10.1145/3276517
http://doi.acm.org/10.1145/2837614.2837671
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=2818754.2818828
http://dl.acm.org/citation.cfm?id=1858681.1858721
http://dl.acm.org/citation.cfm?id=1858681.1858721
https://openreview.net/forum?id=ByloJ20qtm
https://openreview.net/forum?id=ByloJ20qtm

Under review as a conference paper at ICLR 2020

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen Livescu. Charagram: Embedding words and sentences via
character n-grams. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp. 1504–1515, Austin, Texas, November 2016. Association for Computational Linguistics. doi: 10.18653/v1/
D16-1157. URL https://www.aclweb.org/anthology/D16-1157.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le. XLNet:
Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237, 2019. URL http:
//arxiv.org/abs/1906.08237.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt. Learning to
represent edits. CoRR, abs/1810.13337, 2018. URL http://arxiv.org/abs/1810.13337.

11

https://www.aclweb.org/anthology/D16-1157
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1810.13337

Under review as a conference paper at ICLR 2020

A NAME EXTRACTION HEURISTIC

In order for DeepBugs to operate it is necessary to extract identifiers or literals for each expression part of the statement.
The bug detector for swapped arguments utilizes the following elements of the function call:

Base Object: The expression on which the function is called.
Callee: The called function.
Argument 1: The expression consisting the first argument of the called function.
Argument 2: The expression consisting the first argument of the called function.

Similarly the bug detectors for incorrect binary operators and operands utilize the following elements of the binary
expression:

Binary Operator: The binary operator utilized in the expression.
Left Operand: The left operand of the binary expression.
Right Operand: The right operand of the binary expression.

We next describe the extraction heuristic, which is shared by all the bug detectors. The heuristic takes as input a node
n representing an expression and returns name(n) based on the following rules:

• Identifier: return its name.
• Literal: return its value.
• this expression: return this.
• Update expression with argument x: return name(x).
• Member expression accessing a property p: return name(p).
• Member expression accessing a property base[p]: return name(base).
• Call expression base.callee(...): return name(callee).
• Property node n: If n.key does not exist return name(n.value). If name(n.key) does not exist return
name(n.value) . Otherwise randomly return either name(n.value) or name()n.key).

• Binary expression with left operand l and right operand r: Run the heuristic on both l and r to retrieve
name(l) and name(r). If name(l) does not exist return name(r). If name(r) does not exist return
name(l). Otherwise randomly return either name(l) ir name(r).

• Logical expression with left operand l and right operand r: Run the heuristic on both l and r to retrieve
name(l) and name(r). If name(l) does not exist return name(r). If name(r) does not exist return
name(l). Otherwise randomly return either name(l) ir name(r).

• Assignment expression with left operand l and right operand r: Run the heuristic on both l and r to re-
trieve name(l) and name(r). If name(l) does not exist return name(r). If name(r) does not exist return
name(l). Otherwise, randomly return either name(l) ir name(r).

• Unary expression with argument u : Return name(u).
• Array expression with elements li : For all li that name(li) exists randomly choose one of them and return
name(li).

• Conditional expression with operands c, l, and r: Randomly choose one out of c, l, r for which a name exists
and return its name.

• Function expression: return function.
• Object expression: return {.
• New expression with a constructor function call c: return name(c).

All random decisions follow a uniform distribution.

12

	Introduction
	Related Work
	Embeddings from Language Models (ELMo)
	Source Code ELMo
	Contextual Embeddings for Program Repair
	Input to the Classifier
	Connecting SCELMo to the Bug Detector

	Results
	Performance on Validation Set
	Including Complex Expressions
	External Test Evaluation
	OOV Statistics

	Is neural bug-finding useful in practice?
	Conclusion
	Name Extraction Heuristic

