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ABSTRACT

Spectral Graph Convolutional Networks (GCNs) are a generalization of convo-
lutional networks to learning on graph-structured data. Applications of spectral
GCNs have been successful, but limited to a few problems where the graph is
fixed, such as shape correspondence and node classification. In this work, we ad-
dress this limitation by revisiting a particular family of spectral graph networks,
Chebyshev GCNs, showing its efficacy in solving graph classification tasks with
a variable graph structure and size. Current GCNs also restrict graphs to have
at most one edge between any pair of nodes. To this end, we propose a novel
multigraph network that learns from multi-relational graphs. We explicitly model
different types of edges: annotated edges, learned edges with abstract meaning,
and hierarchical edges. We also experiment with different ways to fuse the repre-
sentations extracted from different edge types. We achieve state-of-the-art results
on a variety of chemical, social, and vision graph classification benchmarks.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have seen wide success in domains where data is restricted
to a Euclidean space. These methods exploit properties such as stationarity of the data distributions,
locality and a well-defined notation of translation, but cannot model data that is non-Euclidean in
nature. Such structure is naturally present in many domains, such as chemistry, social networks,
transportation systems, and 3D geometry, and can be expressed by graphs (Bronstein et al., 2017;
Hamilton et al., 2017b). By defining an operation on graphs analogous to convolution, Graph Con-
volutional Networks (GCNs) have extended CNNs to graph-based data. The earliest methods per-
formed convolution in the spectral domain (Bruna et al., 2013), but subsequent work has proposed
generalizations of convolution in the spatial domain. There have been multiple successful applica-
tions of GCNs to node classification (Velickovic et al., 2018) and link prediction (Schlichtkrull et al.,
2018), whereas we target graph classification similarly to Simonovsky & Komodakis (2017).

Our focus is on multigraphs, a graph that is permitted to have multiple edges. Multigraphs are im-
portant in many domains, such as social networks. Some data, such as images, have inherent hier-
archical structure, which we also represent as multigraphs, enabling us to exploit the hierarchy. The
challenge of generalizing convolution to multigraphs is to have anisotropic convolution kernels (such
as edge detectors). Anisotropic models, such as MoNet (Monti et al., 2017) and SplineCNN (Fey
et al., 2018), rely on coordinate structure, work well for vision tasks, but are suboptimal for non-
visual graph problems. Other general models exist (Battaglia et al., 2018), but making them efficient
for a variety of tasks is impeded by the “no free lunch theorem” (Goodfellow et al., 2016, § 5.2.1).

Compared to non-spectral GCNs, spectral models have filters with more global support, which is
important for capturing complex relationships. We rely on Chebyshev GCNs (ChebNet) (Defferrard
et al., 2016). Even though it was originally derived from spectral methods Bruna et al. (2013), it does
not suffer from their main shortcoming — sensitivity of learned filters to graph size and structure.

Contributions: We propose a scalable spectral GCN that learns from multigraphs by capturing
multi-relational graph paths as well as multiplicative and additive interactions to reduce model com-
plexity and learn richer representations. We also learn new abstract relationships between graph
nodes, beyond the ones annotated in the datasets. To our knowledge, we are the first to demonstrate
that spectral methods can efficiently solve problems with variable graph size and structure, where
this kind of method is generally believed not to perform well.
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2 MULTIGRAPH CONVOLUTION

While we provide the background to understand our model, a review of spectral graph methods is
beyond the scope of this paper. Section 6.1 of the Appendix reviews spectral graph convolution.

2.1 APPROXIMATE SPECTRAL GRAPH CONVOLUTION

A graph G = (V, E) consists of N nodes, V , and edges, E . Nodes vi ∈ V usually represent specific
semantic concepts such as atoms in a chemical compound or users in a social network. Nodes can
also denote abstract blocks of information with common properties, such as superpixels in images.
Edges eij ∈ E define the relationships and scope of which node effects propagate.

In spectral graph convolution (Bruna et al., 2013), the filter g ∈ RN is defined on an entire input
space. Although it makes filters global, which helps to capture complex relationships, it is also
desirable to have local support since the data often have local structure.

To address this issue, we can model this filter as a function of eigenvalues Λ (which is assumed to be
constant) of the normalized symmetric graph Laplacian L: g = g(Λ). We can further approximate
it as a sum of K terms using the Chebyshev expansion, where each term Tk(Λ) = 2ΛTk−1(Λ) −
Tk−2(Λ) contains powers Λk. Finally, we apply the property of eigendecomposition to eliminate
computationally inconvenient eigenvectors U ∈ RN×N from spectral graph convolution:

Lk = (UΛUT )k = UΛkUT . (1)

In general, for the input X ∈ RN×Xin with N nodes and Xin-dimensional features in each node,
the approximate convolution is defined as:

Y = X̄Θ, (2)

where X̄ ∈ RN×XinK are features projected onto the Chebyshev basis Tk(L̃) and concatenated for
all orders k ∈ [0,K − 1] and Θ ∈ RXinK×Xout are trainable weights, where L̃ = L− I .

This approximation scheme was proposed in Defferrard et al. (2016), and Eq. 2 defines the convo-
lutional layer in the Chebyshev GCN (ChebNet), which is the basis for our method. Convolution
is an essential computational block in graph networks, since it permits the gradual aggregation of
information from neighboring nodes. By stacking the operator in Eq. 2, we capture increasingly
larger neighborhoods and learn complex relationships in graph-structured data.

2.2 GRAPHS WITH VARIABLE STRUCTURE AND SIZE

The approximate spectral graph convolution (Eq. 2) enforces spatial locality of the filters by control-
ling the order of the Chebyshev polynomialK. Importantly, it reduces the computational complexity
of spectral convolution from O(N2) to O(K|E|). In this work, we observe an important byproduct
of this scheme: that learned filters become less sensitive to changes in graph structure and size due
to excluding the eigenvectors U from spectral convolution, so that learned filters are not tied to U .
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Figure 1: Histograms of eigenvalues of the rescaled graph Laplacian L̃ for the (a) ENZYMES,
(b) COLLAB and (c) MNIST (for 75 superpixels, see Section 3.2 for detail) datasets. Due to the
property of eigendecomposition (L̃k = U Λ̃kUT ) the distribution of eigenvalues shrinks when we
take powers of L̃ to compute the approximate spectral graph convolution (Eq. 2).
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The only assumption that still makes a trainable filter ĝ sensitive to graph structure is that we model
it as a function of eigenvalues ĝ(Λ). However, the distribution of eigenvalues of the normalized
Laplacian is concentrated in a limited range, making it a weaker dependency on graphs than the
spectral convolution via eigenvectors, so that learned filters generalize well to new graphs. More-
over, since we use powers of L̃ in performing convolution (Eq. 2), the distribution of eigenvalues Λ̃
further contracts due to exponentiation of the middle term on the RHS of Eq. 1. We believe that this
effect accounts for the robustness of learned filters to changes in graph size or structure (Figure 1).

2.3 GRAPHS WITH MULTIPLE RELATION TYPES

In the approximate spectral graph convolution (Eq. 2), the graph Laplacian L̃ encodes a single
relation type between nodes. Yet, a graph may describe many types of distinct relations. In this
section, we address this limitation by extending Eq. 2 to a multigraph, i.e. a graph with multiple
(R ≥ 1) edges (relations) between the same nodes encoded as a set of graph Laplacians {L̃(r)}R1 .
Extensions to a multigraph can also be applied to early spectral models (Bruna et al., 2013) but, since
ChebNet was shown to be superior in downstream tasks, we choose to focus on the latter model.

Two dimensional Chebyshev polynomial. The Chebyshev polynomial used in Eq. 2 (see Sec-
tion 6.1 in Appendix for detail) can be extended for two variables (relations in our case) similarly to
bilinear models, e.g., as in Omar et al. (2010):

Tij(L̃
(r1), L̃(r2)) = Ti(L̃

(r1))Tj(L̃
(r2)), i, j = 0, ...,K − 1, (3)

and, analogously, for more variables. For R = 2, the convolution is then defined as:

Y = [X̄0,0, X̄0,1, ..., X̄i,j , ..., X̄K−1,K−1]Θ, (4)

where X̄i,j = Ti(L̃
(r1))Tj(L̃

(r2))X . In this case, we allow the model to leverage graph paths
consisting of multiple relation types (Figure 2). This flexibility, however, comes at a great com-
putational cost, which is prohibitive for a large number of relations R or large order K due to
exponential growth of the number of parameters: Θ ∈ XinK

RXout. Moreover, as we demonstrate
in our experiments, such multi-relational paths do not necessary lead to better performance.

Multiplicative and additive fusion. Motivated by multimodal fusion considered in the Visual Ques-
tion Answering literature (e.g. Kim et al., 2016), we propose the multiplicative operator:

Y = [f0(X̄(0)) ◦ f1(X̄(1)) ◦ ... ◦ fR−1(X̄(R−1))]Θ. (5)

In this case, node features interact in a multiplicative way. The advantage of this method is that
the model can learn separate transformations fr for each relation type r and has fewer trainable
parameters preventing overfitting, which is especially important for large K and R. The element-
wise multiplication ◦ in Eq. 5 can be replaced with summation to perform additive fusion.

Concatenating edge features. A more straightforward approach is to concatenate features X̄(r) for
all R relation types and learn a single matrix of weights Θ ∈ RXinKR×Xout :

Y = [X̄(0), X̄(1), ..., X̄(R−1)]Θ. (6)
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Figure 2: Comparison of (a) the fusion method based on a two-dimensional Chebyshev polynomial
(Eq. 3, 4) to (b) other proposed methods in case of a 2-hop filter (a filter averaging features of nodes
located two edges away from the filter center - v1 in this case). Note that (a) can leverage multi-
relational paths and the filter centered at node v1 can access features of the node v3, which is not
possible for other methods (b). In this work, edge type r1 can denote annotated or spatial relations,
while r2 denotes hierarchical or learned ones. We also allow for three and more relation types.
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This method, however, does not scale well for large R, since the dimensionality of Θ grows linearly
with R. Note that even though multi-relational paths are not explicit in Eq. 5 and 6, for a multi-
layer network, relation types will still communicate through node features. In Figure 2, node v2 will
contain features of node v3 after the first convolutional layer, so that in the second layer the filter
centered at node v1 will have access to features of node v3 by accessing features of node v2. Com-
pared to the 2d polynomial convolution defined by Eq. 4, the concatenation-based, multiplicative
and additive approaches require more layers to have a larger multi-relational receptive field.

3 MULTIGRAPH CONVOLUTIONAL NETWORKS

A popular assumption of current GCNs is that there is at most one edge between any pair of nodes in
a graph. This restriction is usually implied by datasets with such structure, so that in many datasets,
graphs are annotated with the single most important relation type, for example, whether two atoms
in a molecule are bonded (Duvenaud et al., 2015). Meanwhile, data is often complex and nodes tend
to have multiple relationships of different semantic, physical, or abstract meanings. Therefore, we
argue that there could be other relationships captured by relaxing this restriction and allowing for
multiple kinds of edges, beyond those annotated in the data.

3.1 LEARNING EDGES

Prior work (e.g. Schlichtkrull et al., 2018; Bordes et al., 2013), proposed methods to learn from
multiple edges, but similarly to the methods using a single edge type (Kipf & Welling, 2016), they
leveraged only predefined (annotated) edges in the data. We devise a more flexible model, which,
in addition to learning from an arbitrary number of predefined relations between nodes (see Sec-
tion 2.3), learns abstract edges jointly with a GCN. We propose to learn a new edge e(r)ij between
any pair of nodes vi and vj with features Xi and Xj using a trainable similarity function:

e
(r)
ij =

exp (fedge (Xi, Xj))∑
k∈[1,|V|] exp (fedge (Xi, Xk))

, (7)

where the softmax is used to enforce sparse connections. This idea is similar to Henaff et al. (2015),
built on the early spectral convolution model (Bruna et al., 2013), which learned an adjacency matrix,
but targeted classification tasks for non graph-structured data (e.g. document classification, with each
document represented as a feature vector). Moreover, we learn this matrix jointly with a more recent
graph classification model (Defferrard et al., 2016) and, additionally, efficiently fuse predefined and
learned relations. Eq. 7 is also similar to that of Velickovic et al. (2018), which used this functional
form to predict an attention coefficient αij for some existing edge eij . The attention model can
only strengthen or weaken some existing relations, but cannot form new relations. We present a
more general model that makes it possible to connect previously disconnected nodes and form new
abstract relations. To enforce a symmetry of predicted edges we compute an average: (e

(r)
ij +e

(r)
ji )/2.

3.2 HIERARCHICAL EDGES FOR IMAGES

Image classification was recently formulated as a graph classification problem in Defferrard et al.
(2016); Monti et al. (2017); Fey et al. (2018), who considered small-scale image classification prob-
lems such as MNIST (LeCun et al., 1998). In this work, we present a model that scales to more
complex and larger image datasets, such as PASCAL VOC 2012 (Everingham et al., 2010). We
follow Monti et al. (2017) and compute SLIC (Achanta et al., 2012) superpixels for each image and
build a graph, in which each node vi corresponds to a superpixel and edges eij are computed based
on the Euclidean distance between the coordinates pi and pj of their centers of masses:

eij = exp(−||pi − pj ||
2

2σ2
). (8)

Next, we introduce a novel hierarchical graph model (Figure 3). We compute superpixels at several
different scales and create children-parent relations based on intersection over union (IoU) between
superpixels vi and vj at different scales encoded as an adjacency matrix A(rhier):

A
(rhier)
ij = IoU(vi, vj), (9)
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Figure 3: Top row: We compute superpixels at several scales and combine all of them into a single
set. We then build a graph, where each node corresponds to a superpixel from this set and has
associated features, such as mean RGB color, coordinates of center of masses or convolutional
VGG-16 features. Bottom row: Using Eq. 8 and 9, we compute spatial (a) and hierarchical (c) edges
between nodes represented as scaled graph Laplacians L̃. Nodes 0 to 300 correspond to the first
level of hierarchy (first scale of superpixels), and 300 to 400 corresponds to the second level, and so
forth. Notice that spatial edges (a) are created both within and across the levels, while hierarchical
(c) edges exist only between hierarchical levels. (c, d) Powers of these graph Laplacians L̃K=7 allow
edges to diffuse over the graph making it possible to learn filters with more global support.

where A(rhier)
ij = 0 for superpixels at the same scale. Spatial relations are computed as in flat models

using Eq. 8, treating superpixels at different scales as a joint set of superpixels.

3.3 LAYER POOLING VERSUS GLOBAL POOLING

Inspired by convolutional networks, previous works (Bruna et al., 2013; Defferrard et al., 2016;
Monti et al., 2017; Simonovsky & Komodakis, 2017; Fey et al., 2018) built an analogy of pooling
layers in graphs, for example, using the Graclus clustering algorithm (Dhillon et al., 2007). In
CNNs, pooling is an effective way to reduce memory and computation, particularly for large inputs.
It also provides additional robustness to local deformations and leads to faster growth of receptive
fields. However, we can build a convolutional network without any pooling layers with similar
performance in a downstream task (Springenberg et al., 2014) — it just will be relatively slow,
since pooling is extremely cheap on regular grids, such as images. In graph classification tasks,
the input dimensionality, which corresponds to the number of nodes N = |V|, is often very small
(∼ 102) and the benefits of pooling are less clear. Graph pooling, such as in Dhillon et al. (2007),
is also computationally intensive since we need to run the clustering algorithm for each training
example independently, which limits the scale of problems we can address. Aiming to simplify the
model while maintaining classification accuracy, we exclude pooling layers between conv. layers
and perform global maximum pooling (GMP) over nodes following the last conv. layer. This fixes
the size of the penultimate feature vector regardless of the number of nodes (Figure 4).

4 EXPERIMENTS

We evaluate our model on chemical, social, and image-based graph classification datasets. For each
dataset, there is a set of graphs with an arbitrary number of nodes N = |V| and undirected edges
|E| of a single type (R = 1) and each graph G has a single, categorical label that is to be predicted.
Dataset statistics are presented in Table 3 of the Appendix.

4.1 DATASET DETAILS

Chemical compounds. We consider five chemical compound datasets frequently used in previous
work: NCI1 and NCI109 (Wale et al., 2008), MUTAG (Debnath et al., 1991), ENZYMES (Schom-
burg et al., 2004), and PROTEINS (Borgwardt et al., 2005). Every graph represents some chemical
compound labeled according to its functional properties.
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Figure 4: Graph classification pipeline for images. Each lth convolutional layer in our model takes
the graph Gl = (Vl, E(r)) and returns a graph with the same nodes and edges. Node features become
increasingly global after each subsequent layer as the receptive field increases, while edges are
propagated without changes. As a result, after several graph convolutional layers, each node in the
graph contains information about its neighbors and the entire graph. By pooling over nodes we
summarize the information collected by each node. Fully-connected layers follow global pooling to
perform classification. For chemical/social datasets we use a similar pipeline, but the input graph G
is provided by the dataset rather than built from images and does not have hierarchical edges.

Social networks. We experiment with three social network datasets. COLLAB (Leskovec et al.,
2007; Shrivastava & Li, 2014) is a scientific collaboration dataset of researchers publishing in dif-
ferent subfields of physics. IMDB-B (Yanardag & Vishwanathan, 2015) is a movie collaboration
dataset of actors/actresses appearing in different genres of movies. IMDB-M is similar to IMDB-B,
but has more graphs and more genres. Each graph in the social datasets corresponds to an ego-
network of a researcher or actor/actress and the task is to predict the subfield of physics for COL-
LAB or a genre of movies for IMDB. Graph nodes are featureless, i.e. each example (ego-network)
in the dataset is defined only by an adjacency matrix A. To add features to some ith node, we use
the square root of node degree

√
Di, which was shown to be a strong feature in Simonovsky &

Komodakis (2017), despite its simplicity.

The chemical and social datasets vary in the number of graphs (188 - 5000) and class labels (2 -
6) and, thereby, represent a comprehensive benchmark for our method. We follow the standard
approach to evaluation (Shervashidze et al., 2011; Yanardag & Vishwanathan, 2015) and perform
10-fold cross-validation on these datasets reporting average classification accuracies.

Images. To demonstrate the scalability of our model and its ability to leverage hierarchical edges, we
experiment with three image datasets. MNIST (LeCun et al., 1998) consists of 70k grayscale 28×28
px images of handwritten digits. CIFAR-10 (Krizhevsky, 2009) has 60k colored 32×32 px images
of 10 categories of animals and vehicles. PASCAL Visual Object Classes 2012 (Everingham et al.,
2010) is a more challenging dataset with realistic high resolution images (up to 500× 500 px) of 20
object categories (people, animals, vehicles, indoor objects). We use standard classification splits,
training our model on 5,717 images and reporting results on 5,823 validation images. We note that
CIFAR-10 and PASCAL have not been previously considered for graph-based image classification,
and in this work we scale our method to these datasets. In fact, during experimentation we found
some other graph convolutional methods unable to scale (see Section 4.3).

4.2 ARCHITECTURAL DETAILS AND EXPERIMENTAL SETUP

In all experiments, we train a ChebNet with three graph convolutional layers followed by global max
pooling (GMP) and 1-2 fully-connected layers (Figure 4). Batch normalization (BN) and the ReLU
activation are added after each layer, whereas dropout is added only before the fully-connected
layers. Projections fr(X̄(r)) in Eq. 5 are modeled by a single layer neural network with C = 128
hidden units and the tanh activation. The edge prediction function fedge (see Eq. 7, Section 3.1) is a
two layer neural network with 128 hidden units, which acts on concatenated node features. Detailed
network architectures are presented in Table 3 of the Appendix.

We train all models using the Adam optimizer (Kingma & Ba, 2014) with learning rate of 0.001,
weight decay of 0.0001, and batch size of 32. For chemical and social datasets, the learning rate is
decayed after 25, 35, and 45 epochs and the models are trained for 50 epochs as in Simonovsky &
Komodakis (2017). For visual datasets, the learning rate is decayed after 17 epochs and the models
are trained for a total of 25 epochs, similar to Monti et al. (2017).
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Table 1: Chemical (left five columns) and social (right three columns) graph classification results
(accuracy in %). Multigraph ChebNet obtains better results by leveraging two types of edges: an-
notated and learned, whereas all other models use only annotated edges. *We implemented MoNet,
GCN and ChebNet. To make a fair comparison to Multigraph ChebNet, we use the same net-
work architectures, batch-normalization, global max pooling and node degree features (for the social
datasets). For MoNet, coordinates are defined using node degrees as in Monti et al. (2017). The top
result across all methods for each dataset is underlined and bolded, second from the top is bolded.

Model NCI1 NCI109 MUTAG ENZYMES PROTEINS COLLAB IMDB-B IMDB-M

WL1 84.6 84.5 83.8 59.1 − − − −
structure2vec2 83.7 82.2 88.3 61.1 − − − −
DGK3 80.3 80.3 87.4 53.4 75.7 73.1 67.0 44.6
PSCN4 78.6 − 92.6 − 75.9 72.6 71.0 45.2
DGCNN5 74.4 − 85.8 − 76.3 73.8 70.0 47.8
MoNet6 - ours* 69.9 69.9 86.1 38.3 71.2 63.7 69.8 44.9
GCN7- ours* 75.9 72.8 77.7 39.7 74.4 70.2 72.5 47.9
ChebNet8 - ours* 83.1 82.0 85.7 58.7 75.7 76.0 72.3 48.4

Multigraph ChebNet 84.0 82.2 91.5 64.7 76.4 78.6 73.7 49.7
1 Shervashidze et al. (2011); 2 Dai et al. (2016); 3 Yanardag & Vishwanathan (2015); 4 Niepert et al. (2016);
5 Zhang et al. (2018); 6 Monti et al. (2017); 7 Kipf & Welling (2016); 8 Defferrard et al. (2016)

For chemical and social datasets, we run cross-validation for different fusion methods (Section 2.3)
and Chebyshev orders K in range from 2 to 6 (Section 2.1), while for image datasets, we train
the models for K = 7 for superpixels in case of MNIST and CIFAR-10 and for K = 15, 20, 25
(respectively for each convolutional layer) for full grid MNIST.

Graph formation for images. For MNIST, we compute a hierarchy of 75, 21, and 7 SLIC super-
pixels and use mean superpixel intensity as node features, X ∈ RN×1. For CIFAR-10, we add two
more levels of 300 and 150 superpixels and add coordinates features, X ∈ RN×5, because images
are more complex. For PASCAL, due to its even more challenging images, we further add one more
level of 1,000 superpixels and add features from the last convolutional layer of VGG-16 (Simonyan
& Zisserman, 2014) pre-trained on ImageNet (Russakovsky et al., 2015). We feed images of original
resolution to VGG-16 and add a bilinear upsampling layer on top of the last convolutional layer to
obtain feature maps of the same spatial size as the input images. We then use superpixel masks to
extract features for each superpixel and average features inside each mask, so that we have a fixed
512 dimensional vector for each superpixel. These are concatenated with the superpixel coordinates
and fed to the graph convolutional model, i.e. X ∈ RN×515. VGG-16 features are very descriptive
and local features already contain global image features, which are usually captured with higher
orders of K (more global filters) in our model, so we found K = 2 to be optimal.

4.3 RESULTS

Chemical and social graph classification: on five chemical compounds datasets, previous works
typically show strong performance on one or two datasets (Table 1). In contrast, the Multigraph
ChebNet, leveraging two relation types (annotated and learned, see Section 3.1), shows high ac-
curacy across all datasets. On two chemical datasets, ENZYMES and PROTEINS, we outperform
all previous methods. We also obtain competitive accuracy on NCI1 outperforming all but one
prior work (Shervashidze et al., 2011). Importantly, the Multigraph ChebNet with two edge types,
i.e. predefined dataset annotations and the learned edges (Section 3.1) consistently outperforms the
baseline ChebNet with a single edge, which shows efficacy of our approach and demonstrates the
complementary nature of predefined and learned edges. Lower results on NCI1 and NCI109 can
be explained by the fact that the node features in the graphs of these datasets are imbalanced with
some features appearing only a few times in the dataset. This is undesirable for our method, which
learns new edges based on features and the model can predict random values for unseen features.
On MUTAG we surpass all but one method Niepert et al. (2016). But in this case the dataset is tiny,
consisting of 188 graphs and the margin from the top method is not statistically significant. On the
three social datasets, COLLAB, IMDB-B and IMDB-M, we win by a large margin compared to pre-
vious works (Table 1). This high performance can be partially explained by using degree features,
but we still observe a further boost by using learned edges in a Multigraph ChebNet.
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Figure 5: Comparison of edge fusion methods on chemical and social datasets for 10 folds.
We observe that some methods perform well for lower order K, such as 2d Chebyshev convo-
lution winning in 21/80 cases for K = 2, while others perform better for higher K, such as
Multiply-shared. Multiply generally performs well across different K. All fusion meth-
ods, except for Sum-shared, outperform the Single-edge baseline. We also show the number
of parameters in Θ for the Chebyshev convolution layer depending on the number of input features
Xin, number of output features Xout, number of relation types R, order K and some constant C
(number of hidden units in a projection layer fr in Eq. 5). *Single-edge denotes using only an-
notated edges. All other methods additionally use the second edge, learned based on node features.

Evaluation of edge fusion methods. For the chemical and social datasets, we train a model us-
ing each of the edge fusion methods proposed in Section 2.3 and report the summary of results in
Figure 5. We count the number of times each method outperforms the others treating all 10 folds in-
dependently. As expected, graph convolution based on the two-dimensional Chebyshev polynomial
is better for lower orders of K, since it exploits multi-relational graph paths, effectively increasing
the receptive field of filters. However, for larger K, the model complexity becomes too high due to
quadratic growth of the number of parameters and performance degrades. Sharing weights for mul-
tiplicative or additive fusion generally drops performance with a few exceptions for social datasets
in the multiplicative case. This implies that predefined and learned edges are of a different nature. It
would be interesting to validate these fusion methods on a larger number of relation types.

Image classification. For image classification tasks, we observe several interesting results (Ta-
ble 2). First, by adding batch-normalization and global max pooling, and increasing the learning
rate to 0.001 compared to 0.0001 in Monti et al. (2017), accuracies surge both for MoNet (Monti
et al., 2017) and ChebNet (Defferrard et al., 2016) (to 98.59% and 97.12% respectively from the
reported 91.11% and 75.62%) reducing the gap between the two methods (from 15.49% to 1.47%).
It supports our claim that spectral methods, in particular ChebNet, can efficiently perform graph
classification for arbitrary sized graphs. Here, the arbitrariness is due to the number of superpixels
being the upper bound in all cases, since SLIC often returns fewer superpixels.

Next, we observe that the hierarchical connections modeled by Hierarchical ChebNet are important
for MNIST and CIFAR-10, substantially improving accuracy. Learned connections implemented by
Multigraph ChebNet also provide a boost in performance, but in a less consistent way. For MNIST,
they contribute almost 1% in the case of full grid, while only ∼0.3% in the case of superpixels.
Combining hierarchical connections and multiple edge types (Hierarchical Multigraph ChebNet),
we observe a further gain in performance, however, it is less pronounced and less consistent.

For PASCAL VOC, we obtain the best performance using Multigraph ChebNet with R = 2 relation
types. Interestingly, our results are better in this case compared to the baseline ConvNet. The
baseline results were obtained by stacking and training three convolutional layers (with the same
number of filters as in ChebNet) on top of the last convolutional layer in VGG-16 to make a more
fair comparison to our graph network, so that both the ConvNet and ChebNet take the same input.
The ChebNet, however, uses coordinates as additional features, which can explain the phenomenon.

5 RELATED WORK AND DISCUSSION

Our method relies on a fast approximate spectral graph convolution known as ChebNet (Defferrard
et al., 2016)), which was designed for graph classification. A simplified and faster version of this

8
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Table 2: Image classification results. *Compared to tne implementation of ChebNet in Defferrard
et al. (2016); Monti et al. (2017), our implementation has GMP without any pooling between con-
volutional layers, BN, a different learning rate and filter order K. R is the number of relation types.
† LeCun et al. (1998) for MNIST, Hinton et al. (2012) for CIFAR-10, VGG-16 (Simonyan & Zis-
serman, 2014) pre-trained on ImageNet for PASCAL. ‡On 3× GTX Titan Black GPUs in PyTorch.

Model R MNIST CIFAR-10 PASCAL
Node features mean color mean color + coord vgg16 + coord

Graph Full grid 75 sp Full grid 300 sp 1000 sp

ConvNet† − 99.33 − 84.40 − 85.88
GCN (Kipf & Welling, 2016)-ours* 1 79.28 80.35 43.94 45.51 84.25
MoNet (Monti et al., 2017)-ours* 1 > 7 days‡ 98.59 > 7 days‡ 75.23 80.05
ChebNet (Defferrard et al., 2016)-ours* 1 98.45 97.12 72.15 69.95 86.41

Multigraph ChebNet 2 99.36 97.43 72.98 70.96 86.78
Hierarchical ChebNet 2 99.09 97.79 74.39 73.15 86.55
Hierarchical Multigraph ChebNet 3 99.24 98.16 75.67 73.35 86.43

model, Graph Convolutional Networks (GCN) Kipf & Welling (2016), which is practically equiv-
alent to the ChebNet with order K = 1, has shown impressive node classification performance on
citation and knowledge graph datasets in the transductive learning setting. In all our experiments,
we noticed that using more global filters (with larger K) is important (Tables 1, 2). Other recent
works Hamilton et al. (2017a); Velickovic et al. (2018) also focus on node classification and, there-
fore, are not empirically compared to in this work.

Closely related to our work, Monti et al. (2017) formulated the generalized graph convolution
model (MoNet) based on a trainable transformation to pseudo-coordinates, which led to learning
anisotropic kernels and excellent results in visual tasks. In some cases, it outperforms our model
in image classification (Table 2). However, in non-visual tasks, when coordinates are not naturally
defined, the performance gain is less pronounced (Table 1). Notably, the computational cost (both
memory and speed) of MoNet is higher than for ChebNet due to the patch operator in Monti et al.
(2017, Eq. (9)-(11)). The argument in favor of MoNet against ChebNet was the sensitivity of spec-
tral convolution methods, including ChebNet, to changes in graph size and structure. We contradict
this argument and show comparable performance on visual tasks and better performance on chemi-
cal and social graph classification datasets. SplineCNN (Fey et al., 2018) is similar to MoNet and is
good at classifying both graphs and nodes, but it is also based on pseudo coordinates and, therefore,
has the same shortcoming of MoNet. So, its performance on general graph classification problems
where coordinates are not well defined is expected to be inferior.

6 CONCLUSION

In this work, we address several limitations of current graph convolutional networks and show su-
perior graph classification results on a number of chemical, social, and image-based datasets. First,
we revisit the spectral graph convolution model based on the Chebyshev polynomial, commonly be-
lieved to inherit shortcomings of earlier spectral methods, and demonstrate its ability to learn from
graphs of arbitrary size and structure. Second, we design and study edge fusion methods for multi-
relational graphs, and show the importance of validating these methods for each task to achieve
optimal performance. Third, we propose a way to learn new edges in a graph jointly with a graph
classification model. Our results show that the learned edges are complimentary to edges already
annotated, providing a significant gain in accuracy. Finally, we show that by adding hierarchical
edges for images and fusing them with spatial and learned edges, we can further improve results.
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APPENDIX

6.1 OVERVIEW OF SPECTRAL GRAPH CONVOLUTION AND ITS APPROXIMATION

Following the notation of Defferrard et al. (2016), spectral convolution on a graph G havingN nodes
is defined analogously to convolution in the Fourier domain (the convolution theorem) for some one-
dimensional features over nodes x ∈ RN and filter g ∈ RN as (Bruna et al., 2013; Bronstein et al.,
2017):

y = g ? x = U(UT g ◦ UTx) = Udiag(ĝ)UTx, (10)
where, U are the eigenvectors of the normalized symmetric graph Laplacian, L = I −
D−1/2AD−1/2, where A is an adjacency matrix of the graph G, D are node degrees. L = UΛUT

follows from the definition of eigenvectors, where Λ is a diagonal matrix of eigenvalues. The op-
erator ◦ denotes the Hadamard product (element-wise multiplication), ĝ = UT g and diag(ĝ) is a
diagonal matrix with elements of ĝ in the diagonal.

The spectral convolution in (10) can be approximated using the Chebyshev expansion, where
Tk(Λ) = 2ΛTk−1(Λ) − Tk−2(Λ) with T0(Λ) = 1 and T1(Λ) = Λ (i.e. Tk(Λ) terms contain
powers Λk) and the property of eigendecomposition:

Lk = (UΛUT )k = UΛkUT . (11)

Assuming eigenvalues Λ are fixed constants, filter ĝ can be represented as a function of eigenvalues
ĝ(Λ), such that (10) becomes:

g ? x = Uĝ(Λ)UTx. (12)

Filter ĝ(Λ) can be further approximated as a Chebyshev polynomial of degree K (a weighted sum
of Tk(Λ) terms). Substituting the approximated ĝ(Λ) into Eq. 12 and exploiting Eq. 11, the approx-
imate spectral convolution takes the form of (see in Defferrard et al. (2016); Kipf & Welling (2016)
for further analysis and Hammond et al. (2011) for derivations):

y = g ? x ≈ U

[
K−1∑
k=0

θkTk(Λ̃)

]
UTx =

K−1∑
k=0

θkTk(L̃)x = [x̄0, x̄1, ..., x̄K−1]θ, (13)

where L̃ = 2L/λmax − I is a rescaled graph Laplacian with λmax as the largest eigenvalue
of L, x̄k = Tk(L̃)x ∈ RN are projections of input features onto the Chebyshev basis and
θ = [θ0, θ1, ..., θK−1] are learnable weights shared across nodes. In this work, we further sim-
plify the computation and fix λmax = 2 (λmax varies from graph to graph), so that L̃ = L − I =
−D−1/2AD−1/2 and assume no loops in a graph. L̃ has the same eigenvectors U as L, but its
eigenvalues are Λ̃ = Λ− 1.
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6.2 DATASET STATISTICS AND NETWORK ARCHITECTURES

Table 3: Dataset statistics and graph network architectures. For chemical and social datasets these
statistics can also be found in Kersting et al. (2016) along with the datasets themselves. N - number
of nodes in a graph. GC - graph convolution layer, FC - fully connected layer, D - dropout.

Dataset # graphs Nmin Nmax Navg Architecture

NCI1 4110 3 111 29.87 GC32-GC64-GC128-D0.1-FC256-D0.1-FC2
NCI109 4127 4 111 29.68 GC32-GC64-GC128-D0.1-FC256-D0.1-FC2
MUTAG 188 10 28 17.93 GC32-GC32-GC32-D0.1-FC96-D0.1-FC2
ENZYMES 600 2 126 32.63 GC32-GC64-GC512-D0.1-FC256-D0.1-FC6
PROTEINS 1113 4 620 39.06 GC32-GC32-GC32-D0.2-FC48-D0.2-FC2

COLLAB 5000 32 49 74.49 GC32-GC32-GC32-D0.2-FC48-D0.2-FC3
IMDB-B 1000 12 136 19.77 GC32-GC32-GC32-D0.2-FC48-D0.2-FC2
IMDB-M 1500 7 89 13.00 GC32-GC32-GC32-D0.1-FC64-D0.1-FC3

MNIST 70,000 40 75 70.57 GC32-GC64-GC512-D0.5-FC10
CIFAR-10 60,000 192 300 272.33 GC32-GC64-GC512-D0.5-FC10
PASCAL 11,540 57 1000 822.09 GC32-GC64-GC512-D0.7-FC20
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