
Under review as a conference paper at ICLR 2019

CONTINUAL LEARNING VIA EXPLICIT STRUCTURE
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite recent advances in deep learning, neural networks suffer catastrophic for-
getting when tasks are learned sequentially. We propose a conceptually simple and
general framework for continual learning, where structure optimization is consid-
ered explicitly during learning. We implement this idea by separating the struc-
ture and parameter learning. During structure learning, the model optimizes for
the best structure for the current task. The model learns when to reuse or modify
structure from previous tasks, or create new ones when necessary. The model pa-
rameters are then estimated with the optimal structure. Empirically, we found that
our approach leads to sensible structures when learning multiple tasks continu-
ously. Additionally, catastrophic forgetting is also largely alleviated from explicit
learning of structures. Our method also outperforms all other baselines on the
permuted MNIST and split CIFAR datasets in continual learning setting.

1 INTRODUCTION

Learning different tasks continuously is a common and practical scenario that happens all through
the course of human learning. The learning of new skills from new tasks usually does not have
negative impact on the previously learned tasks. Furthermore, with learning multiple tasks that are
highly related, it often helps to advance all related skills. However, this is commonly not the case in
current deep learning models. When presented a sequence of learning tasks, the model experiences
so called “catastrophic forgetting” problem (McCloskey & Cohen, 1989; Ratcliff, 1990), where
the model “forgets” the previous learned task while learning the new task. This is an interesting
phenomenon that has attracted lots of research recently.

Many efforts have been tried to overcome catastrophic forgetting. Common approaches such as
Elastic weight consolidation (EWC Kirkpatrick et al., 2017) and synaptic intelligence (Zenke et al.,
2017) focuses on alleviating catastrophic forgetting by applying constraints on the update of the
parameters. However, forgetting is still non-negligible with these approaches, especially when
the number of tasks increases. Forgetting could also be alleviated with memory-based methods,
where certain information regarding learned tasks are stored to help retaining the performance of
the learned tasks (see Lopez-Paz et al., 2017; Sener & Savarese, 2018, for example). Additionally,
there are also methods (Mallya & Lazebnik, 2018; Rebuffi et al., 2017a; 2018; Mancini et al., 2018)
that could learn multiple domains and completely avoid forgetting by adding a small portion of pa-
rameters while the original weights is kept fixed. However, these kind of models rely on a strong
base network and knowledge can only be transferred from one task to another.

Most of the current approaches in continual learning employ a model with a fixed structure, and
apply the same model to learn all tasks. We believe that a more intuitive and sensible approach is
to learn task specific model structure explicitly along with learning of the model parameters1. Since
each task may require different architecture. In case two tasks are not quite relevant, it may not make
much sense to employ the same structure for learning. For example, in case of learning digit and
face recognition models, the lower level features required is likely to be drastically different, and
similarly for the required structure. Forcing the same structure for these tasks is likely to prevent

1The structure that referred here is more fine-grained, such as number of layers, type of operations at each
layer, etc. It does not refer to generic structure names like convolutional nerual networks or recurrent neural
networks.

1

Under review as a conference paper at ICLR 2019

Input

Reused weight

New weight

Adapter

Task specific
layer (prev)

Task specific
layer (current)

S1

S2

S3

S4

TBTA

S1

S2

S3

S4

TBTA

S3

TBTA

S1

S2

S4 S4
,

 (a) (b) (c)

Figure 1: Illustration of different approaches for continuous learning. a) All but the task specific
layer are shared, catastrophic forgetting is countered by techniques that prevents parameters to move
to lower energy regions of previous tasks. b) Each task will add some fixed task specific parameters,
all layers’ original weights are not tuned, and thus prevents forgetting. c) Our approach, where
network structure is determined by architecture search. In this example, the search results decide
to “reuse” the first two layer, do “adaptation” for the third layer and allocate “new” weight for the
fourth layer.

sharing, since very less information is relevant between the tasks. On the other hand, if tasks were
allowed to use different structure, it has the potential to encourage information sharing. This is
because now the irrelevant part can be handled by the new/different structure.

Therefore, in this work we propose a framework that explicitly separate the learning of model struc-
ture and model parameters. In particular, we employ architecture search for each of the sequential
tasks to find the optimal structure for the current task. The search considers various options, such as
share previous layer’s parameter, spawn new parameters, and so on. The model parameters are then
learned correspondingly. We found that 1) qualitatively, the learned structure is sensible – similar
tasks tends to share more parameters and structure, whereas distant tasks share less; 2) quantita-
tively, separating the structure and parameter learning significantly reduced catastrophic forgetting.
Additionally, we propose a new approach for doing continuous learning with architecture search.

2 EXPLICIT STRUCTURE LEARNING

The continual learning task that we are concerned with in this work is defined as follows. N tasks
T1, T2, . . . , TN forms a task sequence T = (T1, T2, ..., TN). Each task Ti is composed of dataset
Di = {(x(i)1 , y

(i)
1), (x

(i)
2 , y

(i)
2), . . . , (x

(i)
NTi

, y
(i)
NTi

)}, where each dataset is of size NTi
. The model

gets to observe tasks from 1 to N sequentially. After the model finished learning on task Ti, the
model can no longer access this task, i.e. all data from Di will not be available when learning tasks
Ti+1 to TN .

Ideally, we would like to minimize the following loss function in this continuous learning setting

L(θ) =
N∑
i=1

Li(θ) (1)

Li(θ) =
1

NTi

NTi∑
n=1

`i(fθ(x
(i)
n), y(i)n) (2)

where fθ is the model and `i is the loss function for task Ti. However, since we do not have access
to all dataset at the same time, the above loss in equation 1 is very hard to minimize. In case we
ignore the access issue and train each task separately, this will result in catastrophic forgetting. Ad-
ditionally, the above loss definition clearly does not account for structure changes explicitly in the

2

Under review as a conference paper at ICLR 2019

formulation. As motivated earlier, we believe explicit learning of structure is important for continu-
ous learning. The key intuition for explicit learning structures for new tasks is that in case there is
high dissimilarity between the current and previously seen tasks, optimizing model parameter may
inevitably cause forgetting. This is because the model is asked to function very differently, and it
is very unlikely that the new optimal parameters will also be a good solution for the previous tasks.
Even in case where the tasks are similar, it may not be ideal to share all of the structure, as there
might be fine grained details in tasks that make the part of the model focus on extracting different
types of representations. Therefore, we introduce here si(θ) to indicate the structure for task Ti. The
updated loss for individual task is then

Li(θ) =
1

NTi

NTi∑
n=1

`i(fsi(θ)(x
(i)
n), y(i)n) (3)

Now the structure is explicitly taken into consideration when learning all the tasks. When optimizing
the updated loss in equation 3, one needs to determine the optimal parameter based on the structure
si. This loss can be viewed in two ways. One can interpret the above loss as selecting a task specific
network from a ‘super network’ that has parameter θ using si, or for each task we train a new model
with parameter si(θ). There is a subtle difference between this two views. The former one has an
constraint on the total model size, where as the latter one does not. So in worst case scenario, the
model size will grow linearly as we increase the number of tasks. This would lead to a trivial solution
– training completely different models for different tasks and is no longer continuous learning! To
address this problem, we propose the following loss

Li(θ) =
1

NTi

NTi∑
n=1

`i(fsi(θ)(x
(i)
n), y(i)n) + βiRsi (si) + λiRpi (θ) (4)

where βi > 0, λi ≥ 0,Rsi andRpi indicate regularizer for structure and parameter, respectively. For
instance, one can use `2 regularization for Rpi when optimizing model parameters, and Rsi can be
as simple as the (log) number of parameters. In this way, the total number of parameters are upper
bounded, and the degenerate case is thus avoided.

3 OUR IMPLEMENTATION

It is a challenging problem to optimize the loss described in equation 4, since it involves explicit
optimization of the structure of the model. In our implementation, we choose to separate this opti-
mization problem to two steps: structure optimization and model parameter learning. In particular,
we employ neural architecture search to deal with structure optimization, and then gradient based
method for learning model parameters after the structure is fixed. We explain our implementation in
detail in the following section.

3.1 STRUCTURE OPTIMIZATION

We employ neural architecture search for structure optimization. Before we move on to further
details, we make a further simplification, where we assume that one already have in mind a global
structure that may work for all tasks, and we are only selecting connectivity pattern between layers
and their corresponding operator. It is straight forward to adapt this to more complicated cases, we
make the simplification because: 1) it is common in a multi-task continual learning scenario that
one has some rough clue regarding the overall model structure; 2) this simplifies the optimization
problem significantly.

Let’s define a certain network with L shareable layers and one task-specific layer (i.e. last layer)
for each task. A super network S is maintained so that all the new task-specific layers and new
shareable layers will be stored into S.

The goal of search is trying to find out the optimal choice for each of the L layers, given the current
task data Di and all the shareable layer’s weights stored in S. The candidate choices for each layer
could be “reuse”, “adaptation” and “new”. The reuse choice will make new task use the same
parameter as the previous task. The adaptation option adds a small parameter overhead that trains
an additive function to the original layer output. The new operator will spawn new parameters of

3

Under review as a conference paper at ICLR 2019

S1

 (a) (c)

S1

S2 S2

S3

S4 S4S4

T

 (b)

S1

S3

Tk

S4

S2

S1

 (d)

S1

S2 S2

S4 S4S4

T

S3 S3

S2

S1S1 S1

S2S2 S2S2

S4 S4S4 S4S4 S4S4

Tk

α1

S3S3 S3

,

α2

,,, ,

,
α3

,, ,, ,,,, ,
α4

,

,,

,

, ,,

,

,

, ,,

Input

Reused weight

New weight

Adapter

Task specific
layer (prev)

Task specific
layer (current)

Figure 2: Illustration of the training pipeline of our framework. a) Current state of super model. In
this example, the 1st and 3rd layers have single copy of weight, while the 2nd and 4th has two and
three respectively. b) During search, each copy of weight for each layer will have a “reuse” and an
“adaptation” options plus a “new” option, thus totally 2|Sl|+ 1 choices. α is the weight parameters
for the architecture. c) Parameter optimization with selected architecture on the current task k. d)
Update super model to add the newly created S′3.

exactly the size of the current layer parameters. Here, we denote the size of the lth layer in super
network S as |Sl|. The total number of choices in the lth layer Cl is 2|Sl|+1, because we will have
|Sl| ”reuse”, |Sl| ”adaptation” and 1 ”new”. Thus, the total search space is

∏L
l Cl. One potential

issue here is that, in worst case, the search space may grow exponentially with respect to the number
of tasks. One way of dealing with this is to limit the total number of possible choices, and make
use a priority queue for managing the options. However, we do not find this necessary in all of our
experiments.

Similar to DARTS (Liu et al., 2018), to make the search space continuous, we relax the categorical
choice of the lth layer as a softmax over all possible Cl choices:

xl+1 =

Cl∑
c=1

exp(αlc)∑Cl

c′=1 exp(α
l
c′)
glc(xl) (5)

Here, the vector αl of dimension Cl is the architecture weights that are used for mixing the choices
for each sharable layer. And glc here is the operator for the choice c at layer l which is expressed as:

glc(xl) =

Slc(xl) if c ≤ |Sl|,
Slc(xl) + γlc−|Sl|(xl) if |Sl| < c ≤ 2|Sl|,
ol(xl) if c = 2|Sl|+ 1

(6)

Here, γ is the adapter operator and o is the new operator training from scratch. After this relaxation,
the task of discrete search become optimizing a set of continuous weights α =

{
αl
}

. After finishing
the searching, the optimal architecture could be obtained by taking the index with the largest weight
αlc for each layer l, i.e. cl = argmaxαl.

Adopting the training strategy from DARTS. We use validation loss Lval to update the architecture
weights α, while the operator weights are optimized by the training loss Ltrain. The architecture
weights and operator weights are updated alternately during the search process. Because it is a
nested bi-level optimization problem, the original DARTS provide a second-order approximation
for more accurate optimization. In this work, we find it is sufficient to use the simple alternately
update approach, which was referred as the first-order approximation in (Liu et al., 2018).

To make it clear how “reuse”, “adaptation” and “new” operator works, we walk through a concrete
example in the following. Let us take a convolutional neural network (CNN) with all the layers using
3x3 kernel size as an example. The choice of “reuse” is just using the existing weight and keep it
fixed during learning, thus there is no additional parameter cost. For “adaptation”, it could be a 1x1
conv layer added to the original 3x3 conv layer in parallel (i.e. similar to the adaptor used in paper
(Rebuffi et al., 2017a)). During training, the weight of the original 3x3 conv is kept fixed, while
the parameters of the 1x1 conv adapter is modified. In this case, the additional parameter cost is

4

Under review as a conference paper at ICLR 2019

only 1/9 of the original parameter size. In case of “new”, it is literally start with a new operator that
initialized randomly and train from scratch. We make use of the loss function Lval to implement the
regularizer Rsi (si). The value of the regularizer is set proportional to the product of the additional
parameter size zlc and its corresponding weight αlc (i.e. Rsi (si) =

∑
c,l α

l
cz
l
c). The architecture

weights α is optimized in terms of both accuracy and parameter efficiency at the same time.

3.2 PARAMETER OPTIMIZATION

After we get the optimal choices for each layer from the search procedure, we retrain the optimal
architecture on the current task. There are two strategies to deal with “reuse”, we can either fix it
unchanged during retraining just as in search, or we can tune it with some regularization – simple
`2 regularization or more sophisticated regularizations like elastic weight consolidation (Kirkpatrick
et al., 2017). The former strategy could avoid forgetting completely, however it will lose the chance
of getting positive backward transfer, which means the learning of new tasks may help previous
tasks’ performance. When the search process select “reuse” at layer l, it means that the lth layer
tends to learn very similar representation as it learned from one of the previous tasks. This is an
indication of semantic similarity learned at this layer l between the two tasks. Thus, we conjecture
that tuning the lth layer with some regularization could also benefit the previous tasks, or at least
reduce catastrophic forgetting due to the semantic relationships. In the experiment section, we
investigate this hypothesis in more detail. Finally, after retrained on the current task, we need to
update/add the created and tuned layers, task-specific adapters and classifiers in the maintained
super network. It will be used for model inference and also can be the basis for future architecture
search on new tasks.

4 HOW EXPLICIT STRUCTURE LEARNING AFFECTS CONTINUOUS
LEARNING

In this section, we test two main hypothesis that leads to our framework. First, does making struc-
ture learning explicit leads to discovery of sensible model architectures for corresponding tasks?
Second, if so, does this leads to better continuous learning? We test these two hypothesis on two
datasets: permuted MNIST and the visual domain decathlon dataset (Rebuffi et al., 2017a). The
permuted MNIST dataset is a simple image classification problem that derived from the MNIST
handwritten digit dataset (Yann LeCun, 1998), which is commonly used as benchmark in continual
learning literature (Kirkpatrick et al., 2017; Lopez-Paz et al., 2017; Zenke et al., 2017). For each
task, a unique fixed random permutation is used to shuffle the pixels of each image, but the label
corresponding to the image is kept fixed. The visual decathlon dataset consists of 10 image classifi-
cation tasks – ImageNet, CIFAR100, Aircraft, DPed, Textures, GTSRB, Omniglot, SVHN, UCF101
and VGG-Flowers. The images of all the tasks are resized to lower-edge be 72 pixels. And the
tasks are across multiple domains and dataset sizes are highly imbalanced, which makes it a good
candidate to investigate the continual learning problem with potential inter-task transfer.

For all MNIST experiments, we use a 4-layer fully-connected neural networks with 3 feed-forward
layers and the 4th layer is the shared softmax classification layer accross all tasks, as shown in
Figure 3(a). This corresponds to the so called ‘single head’ setup (Farquhar & Gal, 2018). We
choose to use this setting because for permuted MNIST dataset the semantic of all tasks are all the
same, and we think sharing is a more reasonable design choice. We apply our implementation of
the framework for learning 10 permuted MNIST tasks in sequence. For simplicity, we only use two
choices, “reuse” and “new”, during the structure optimization.

For experiments on visual decathlon dataset, we use a 26-layer ResNet (He et al., 2016) as the base
network to learn the first task. This network consists of 3 residual blocks, each output 64, 128, 256
channels. Each residual block contains 4 residual units, each of which consists of two convolutional
layers with 3 × 3 kernels and a skip connection. At the end of each residual block, the feature
resolution is halved by average pooling. We adopt three type of choices during the search, i.e.
“reuse”, “adaptation” and “new”. For “adaptation”, a 1 × 1 convolution layer with channels equal
to the current layer output channels is added for the corresponding layer. The convolved results are
then added back to the convolution output. During training, the weight of the original layer is kept
fixed, while the 1× 1 layer is adjusted.

5

Under review as a conference paper at ICLR 2019

4.1 DOES EXPLICIT STRUCTURE LEARNING LEADS TO SENSIBLE STRUCTURES?

We first experimented on the permuted MNIST dataset. One would expect a sensible architecture
for these tasks tends to share higher level structures but differs at lower layers. This is because the
high level semantic information of digits is identical throughout, which should imply similar high
level structures. However, since the input pixels are all shuffled differently, the lower level features
would need to be different. This implies different parameter values should be used in lower layers.
Interestingly, our experiments show that the structure optimization chooses the same configuration
that make brand new first layer and reuse all of the following layers in all the 10 tasks (see Figure
3 b). This exactly confirms the prediction that we had before, which is a good indication that the
structure optimization is working properly.

To further demonstrate that the learned structure indeed make sense, we performed additional exper-
iments. Since during the search process on each new task, our model always trying to “new” the first
layer and “reuse” the other layers. So, the simple question could be raised here is that what if we
use new parameters for other layers? Because the feed-forward layers has similar input and output
dimensions, it’s fair to compare the five setups that the ith layer is “new” and others are “reuse”. In
the results, we found that using new parameters in the first layer is actually the best choice compared
with other situations (see Fig. 3 d). Making the second layer as “new” also results in less forgetting
compared with making one of the last three layers as “new”.

S1

S2

S3

Out

“new”

“reuse”

“reuse”

Out
(d)(c)

(b)(a)

Figure 3: Results on permutated MNIST dataset. a) The base network structure with 3 fully-
connected layers and 1 output layer. b) The searched architecture results from running 10 permutated
MNIST sequentially. The first layer always choose to “new”, while other layers choose to “reuse”.
c) Comparing our method (fix, tune reuse with and without regularization) with SGD and EWC on
the average accuracy over the seen tasks. d) Ablation experiments of ”new” different layers in terms
of average accuracy over the seen tasks.

Next, we run experiments on the visual decathlon dataset, which is a more realistic image dataset.
To see if the results from structure optimization is consistent with what we have previously, we
did two experiments. We first test on a similary task pair, i.e. ImageNet and CIFAR-100. In this
case, the images are all natural images, although the size of objects are largely different, most of
the representation should still be very similar. Indeed, as we can see from left of Fig. 5, most of
the layers are shared for these two tasks. Next, we tested on two drastically different tasks, i.e.
ImageNet and Omniglot. Since these are two very different visual tasks, we would expect minimal
sharing in the resulting structure. As can be see from right of Fig. 5, most of the resulting structure
leads to use option “new”.

The above experiments suggest that structure optimization does result in sensible task specific struc-
tures. The learned task structure tends to share when the semantic representation of corresponding
layers are similar, and spawn new parameters when the required information is very different.

4.2 DOES EXPLICIT STRUCTURE LEARNING AFFECTS FORGETTING?

With first hypothesis confirmed, the next natural question is – do sensible structures lead to better
continuous learning capability. More specifically, will explicit structure learning help catastrophic
forgetting in any way?

6

Under review as a conference paper at ICLR 2019

Figure 5: Visualization of searched architecture
with learning two tasks sequentially. The search
are based on the super model obtained by train-
ing ImageNet as first task. (a) and (b) shows
searched architecture on CIFAR100 and Om-
niglot task respectively.

 ImNet GTSR
C100 DPed
SVHN Flwr
UCF Airc
OGlt DTD

 Baseline (Shared)

Ours (Search)

Figure 6: Comparison catastrophic forgetting
effect between our proposed approach and base-
line on visual decathlon dataset.

First, we run experiments on the permuted MNIST dataset. As mentioned in Section 3.2, we have
two strategies when the search result gives “reuse” for a certain layer. We can either fix the reused
weight during retraining without the risk forgetting, or we can apply tuning on the “reused” layers.
As a baseline, we shown that simply updating all the layers with stochastic gradient descent (SGD)
results in catastrophic forgetting (see Fig. 3 c). After training 10 tasks, the average accuracy dropped
from 97.9% to 63.0%. With the elastic weight consolidation (EWC) (Kirkpatrick et al., 2017), the
forgetting was alleviated to 96.8% average accuracy over 10 tasks. For our approach, we found that
tuning the “reuse” layers by using simple `2 based regularization on previous task parameter (i.e.
‖θi−θj‖22, where θi is the parameter for current task and θj is the jth task parameter that selected to
reuse) is safe enough in terms of forgetting and both strategies can keep the overall accuracy as high
as training each task individually (see Fig. 3 c). Encouraged by the above result, we additionally
run experiments by tuning the “reuse” layers without using any regularization. In other words, we
do not add any regularization to the parameters to mitigate forgetting among different tasks. The
results is shown in Fig.3 c. As can be observed, here we almost have the same behavior as compared
to using the `2 based regularization. This may suggests that the learned architecture actually make
sense, and the reused parameter is close to optimal for specific tasks.

2 4 6 8
Task ID

0.2

0.4

0.6

0.8

1.0

2 d
ist

an
ce

Baseline
Ours

2 4 6 8
Task ID

0

1

2

3

2 d
ist

an
ce

Baseline
Ours

(a) (b)
Figure 4: Distance between the tuned parameter at each task
and the parameter of the very first task on VDD dataset. a)
First layer parameter distance, and b) Last layer parameter
distance. Baseline indicates the result from tuning all layers
using SGD.

We would like to note that simple `2
based regularization employed above
is not capable of preventing forget-
ting in general. This is because us-
ing too strong regularization would
leads to model parameters that are
very close to the original task, which
would then prevent the model from
learning new tasks. Smaller regular-
ization helps, however, as the num-
ber of tasks increase, the distance
between the last model parameter
and the very first could be signif-
icant, even though each successive
distances are small. For baseline
model we need to use relatively large
regularizations, and thus leads to worse performance of new tasks. Using smaller regularization in
baseline leads to significant forgetting. Observing significantly less forgetting in the above experi-
ment may suggests that the model parameters does not move much, or moved on the same level set
of the loss surface.

7

Under review as a conference paper at ICLR 2019

Next we run a similar experiment on the visual decathlon dataset. All ten tasks are trained in order
of ImageNet, CIFAR-100, SVHN, UCF101, Omniglot, GTSR, DPed, Flower, Aircraft and Textures.
As a baseline we also train a model that shares all parts of the structure. Both models are trained
with similar setting as in previous permuted MNIST experiments, except in our method we choose
not to use any regularization this time due to the positive results we got from last experiment. As
can be seen from figure 6, the performance from our approach with explicit learning of structure
constantly out performs the baseline, suggests a lot less forgetting when transfer between different
tasks.

To see if the ‘reuse’ layers are almost at an optimal position for current task to use, we perform an
additional experiment. We calculate the `2 distance between the original parameter and the tuned
parameter after each tasks on the VDD dataset. Fig.4 shows `2 distance between the parameters
from the very first task to each of the tuned parameters in following tasks from the first and last
layers. It is clear that the parameter does not move much from the original location as compared to
the baseline, which explains why we observe less forgetting2. In addition, the moved distance from
our methods is more or less the same scale across all layers. This may also attribute to the fact that
the selection of utilization of parameters (i.e. structure) is explicitly learned, and thus the selected
ones are more compatible with current task. Therefore, less tuning is required for the new task and
hence smaller distance.

Experiments in this section indicates that learning structure is important. With the right structure
all the relevant parameters from previous tasks can be used. Additionally, since the way to uti-
lize these parameters are learned through structure learning, much less tuning is required for better
performance on the new task, and forgetting can thus be minimized.

4.3 COMPARISON WITH OTHER METHODS

In this section, we compare our methods with other recent continuous learning methods – Lee et al.
(2017b, DEN), Serrà et al. (2018, HAT), Kirkpatrick et al. (2017, EWC), Lee et al. (2017b, IMM),
Rusu et al. (2016, ProgressiveNet), Fernando et al. (2017, PathNet), Nguyen et al. (2018, VCL). We
compare the performance of various methods on the permuted MNIST dataset with ten different per-
mutations. Since our model adds more parameters, for fair comparison we also train other methods
with as many or more parameters as compared to our model. In particular, since our model tends
to add new parameters at the first layer, for all methods we enlarge the first layer hidden size by
ten times, so that theoretically they could learn exactly the same structure as our model. We ensure
that all methods use similar amount of parameters, and the parameter usage of our methods does not
exceed any of the other methods that we compare. We also tried to compare with Shin et al. (2017),
however, we are unable to get reasonable performance, and thus, the result is not included. More
details regarding this experiment can be found in appendix. The results are shown in Fig. 7a. It is
clear that our method (either tuned with or without regularization) performs competitive or better
than other methods on this task. This result suggests that although theoretically, structure can be
learned along with parameter, in practice, the current optimization have a hard time achieving this.
This in turn indicates the importance of explicit taking structure learning into account when learning
tasks continuously.

Although both DEN and our method dynamically expand the network, our performance is much
better, which is attributed to the ability of learning the new structure for different tasks. Additionally,
our model performs competitive or better as compared to methods that completely avoids forgetting
by fixing the learned weights, such as ProgressNet and PathNet, without having such restrictions.

Additionally, we performed experiments on split CIFAR-100 dataset (Lopez-Paz et al., 2017), where
we randomly partition the classes of CIFAR-100 into 10 disjoint sets, and regard learning each of the
10-class classification as one task. Different from permuted MNIST, the split CIFAR-100 presents
a sequential task where the input distribution is similar whereas the output distribution is different.
We choose to use Alexnet as the network structure, and all methods are constrained to use similar
number of parameters. This network structure contains three convolution and max pooling layers
and two fully connected layers before the last classification layer. Comparative results with other

2Similar trend regarding the distance between parameters from tasks was found for all layers. In general, the
higher up the layer the more the parameter moves for the baseline, whereas for our method the moved distance
is typically very small

8

Under review as a conference paper at ICLR 2019

1 2 3 4 5 6 7 8 9 10
Task ID

93

94

95

96

97

98

ac
cu

ra
cy

EWC
IMM-mode
VCL
PN
PG
HAT
DEN
Ours (w/o reg)
Ours

1 2 3 4 5 6 7 8 9 10
Task ID

55

60

65

70

75

80

ac
cu

ra
cy EWC

IMM-mode
PN
PG
HAT
Ours (w/o reg)
Ours

(a) (b)

Figure 7: Comparative performance on a) permuted MNIST and b) split CIFAR-100 dataset. Meth-
ods include Kirkpatrick et al. (2017, EWC), Lee et al. (2017b, IMM), Fernando et al. (2017, PathNet
(PN)), Rusu et al. (2016, Progressive Net (PG)), Serrà et al. (2018, HAT), Lee et al. (2017b, DEN),
Nguyen et al. (2018, VCL), ours (w/o reg) denotes the case where finetuning for current tasks is
done without using any regularization to prevent forgetting, and ous represents the case where the
`2 regularization is used.

methods is shown in Fig 7b. Similar trend as the MNIST experiment is observed in this experiment.
Interestingly, for all tasks, our method always find structure that use new parameters for the last
convolution layer and reuse the rest of the network parameters. It make sense that the lower layer
features get shared, and the higher ones needs to be specific for different tasks, since the input
data distribution has a lot of commonality. The fully connected layers are all selected to be “reused”
instead of “new”, and this may because of the relatively large capacity that is already flexible enough
to fit the latter tasks.

5 RELATED WORK

Continual learning (Thrun & Mitchell, 1995) is a challenging problem, as models have the ten-
dency to forget previously learned knowledge when learning on new information (Thrun & Mitchell,
1995; McCloskey & Cohen, 1989). This is referred as catastrophic forgetting problem in the litera-
ture. Early attempts to alleviate catastrophic forgetting often consists of memory system that store
previous data and replay the sampled old examples with the new data (Robins, 1995), and similar
approaches are still used today (Rebuffi et al., 2017b; Li et al., 2018; Lopez-Paz et al., 2017). Shin
et al. (2017) learns a generative model from to capture the data distribution of previous tasks, and
both generated samples and real samples from the current task is used to train the new model so that
the forgetting can be alleviated for continual learning.

Another class of common method for mitigating catastrophic forgetting is through regularization
which imposes constraints on the update of neural weights. Kirkpatrick et al. (2017) proposed elastic
weight consolidation (EWC), which tries to minimize the change of weights that are important to
previous tasks through the use of a quadratic constraint. Zenke et al. (2017) proposed to alleviate
catastrophic forgetting by allowing individual synapse to estimate their importance for solving a
learned task, then penalize the change on the important weights. Schwarz et al. (2018) divided the
learning to two phases – progress and compress. During progress phase, the model make use of the
previous model for learning the new task. In compression phase, the newly learned model is distilled
into the old model by using EWC to alleviate forgetting. Serrà et al. (2018) proposed method that
use attention mechanism to preserve previous’ tasks performance. One could also completely avoid
forgetting by preventing changes to previous task weights (see for example Rusu et al., 2016; Mallya
& Lazebnik, 2018; Fernando et al., 2017).

Another class of methods for continuous learning is allowing the model to expand. Dynamically
expandable networks (Lee et al., 2017a) select whether to expand or duplicate based on certain
criteria on the new task. However, the model on the new task is forced to use the old structure
from previous tasks. Similarly for progressive networks (Rusu et al., 2016). Our framework is more

9

Under review as a conference paper at ICLR 2019

flexible, as it allows model to choose whether to use previous structures. Pathnet (Fernando et al.,
2017) select paths between predefined modules, and tuning is allowed only when an unused module
is selected. Our method has more granularity, and does not have any restriction on tuning parameters
from previous tasks.

Our work also relates to neural architecture search (Stanley & Miikkulainen, 2002; Zoph & Le,
2016; Baker et al., 2017; Liu et al., 2018), as we employ search methods for the implementation
of structure optimization. In particular, DARTS (Liu et al., 2018), where a continuous relaxation
for architecture search is proposed. This allowed more efficient structure optimization, and hence
employed in our work.

6 CONCLUSION

In this work, we propose to explicit take into account structure optimization in a continuous learning
setting. Empirically, we found that explicit learning of structure does lead to learning of sensible
structures for each of the tasks. In particular, lower level features are shared more in case the
input representations are more similar, and higher level representations tends to share when the high
level semantic has commonality. Additionally, the catastrophic forgetting problem gets alleviated
with structure optimization. We achieved reasonable performance on all tasks, and simultaneously
minimized forgetting by only use simple `2 based regularization. Further, we show that forgetting
is small even without using any regularization on the selected reuse parameters. This suggests
that structure learning plays a significant role in the catastrophic forgetting problem. Moreover,
we achieved competitive or better performance as compared to all other methods on the permuted
MNIST and split CIFAR-100 datasets.

REFERENCES

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv preprint
arXiv:1805.09733, 2018.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
pp. 201611835, 2017.

Jeongtae Lee, Jaehong Yun, Sungju Hwang, and Eunho Yang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017a.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pp. 4652–4662, 2017b.

Yu Li, Zhongxiao Li, Lizhong Ding, Peng Yang, Yuhui Hu, Wei Chen, and Xin Gao. Supportnet:
solving catastrophic forgetting in class incremental learning with support data. arXiv preprint
arXiv:1806.02942, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

10

Under review as a conference paper at ICLR 2019

Arun Mallya and Svetlana Lazebnik. Piggyback: Adding multiple tasks to a single, fixed network
by learning to mask. arXiv preprint arXiv:1801.06519, 2018.

Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and Samuel Rota Bulò. Adding new tasks to a
single network with weight trasformations using binary masks. arXiv preprint arXiv:1805.11119,
2018.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learn-
ing. In International Conference on Learning Representations, 2018.

Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. Psychological review, 97(2):285, 1990.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple visual domains with
residual adapters. In Advances in Neural Information Processing Systems, pp. 506–516, 2017a.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proc. CVPR, 2017b.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient parametrization of multi-
domain deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 8119–8127, 2018.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. arXiv preprint arXiv:1805.06370, 2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. 2018.

Joan Serrà, Dı́dac Surı́s, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. arXiv preprint arXiv:1801.01423, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
gies. Evolutionary computation, 10(2):99–127, 2002.

Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. In The biology and technology of
intelligent autonomous agents, pp. 165–196. Springer, 1995.

Corinna Cortes Yann LeCun. The mnist database of handwritten digits. 1998.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
arXiv preprint arXiv:1703.04200, 2017.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

11

Under review as a conference paper at ICLR 2019

Appendices
A ADDITIONAL EXPERIMENTAL DETAILS FOR PERMUTED MNIST

For all MNIST experiment, we use fully connected layer with three hidden layer, each with 300
hidden units, and one shared output layer for our method. For all other methods except pathnet
and progressive net we used 3000 units in the first layer and 300 for the rest. For pathnet, each
module in the first layer has 300 units, and the result layers has 30 units. We use 16 modules per
layer, and 5 layers for pathnet, and restrict each mutation to only use 3 modules besides the output
layer. For progressive net, the first layer has 300 units for each task, and the rest layers each has 30
units. Therefore, all competitive methods are having more or the same number of parameters as our
methods.

For variational continual learning (VCL Nguyen et al., 2018), we used the official implementa-
tion at https://github.com/nvcuong/variational-continual-learning. For
fair comparison with other methods, we set the coreset size to zero for VCL.

For (Shin et al., 2017) we used implementation from https://github.com/kuc2477/
pytorch-deep-generative-replay. We tried various hyper-parameter settings, however,
we are unable to get reasonable results on permutated MNIST. Performance was reasonable when
the number of tasks is within five (average performance at around 96%). When number of tasks go
beyond five, performance drops on previous tasks is quite significant. Reaching 60%

For DEN we use the official implementation at https://github.com/jaehong-yoon93/
DEN, and we used Serrà et al. (2018) implementation of HAT, EWC, and IMM at https://
github.com/joansj/hat. We used our own implemention for for Progressive Network and
PathNet. All methods are trained using the same permutations and same subset of training data.

B ADDITIONAL EXPERIMENTAL DETAILS FOR SPLIT CIFAR-100

For all CIFAR-100 experiment, we use an Alexnet like structure. It contains three convolution and
max pooling layers followed by two fully connected layers. The convolution layers are of size (4,4),
(3,3) and (2,2) with 64, 128 and 256 filters, respectively. All convolution layers are followed by max
pooling layer of size (2,2) and rectified linear activations. The two fully connected layers each have
2048 hidden units.

C ADDITIONAL EXPERIMENTS ON VISUAL DECATHLON DATASET

In the multi-task continual learning experiments, the 10 tasks was trained in a random sequence
except the first task was fixed to be ImageNet. This is just for fair comparison with other works such
as Rebuffi et al. (2017a) and Mallya & Lazebnik (2018), they are all using a light weight module
to adapt ImageNet pretrained model to other of the 9 tasks. In real case, the tasks can come in any
order, thus our framework would be much more flexible. As the tasks are trained in sequence, a
super model is maintained that all the newly created weights and task-specific layers are stored. In
this ResNet-26 model, all the Batch Normalization (BN) layers are treated as task-specific, which
means each task has its own sets of BNs. Here, we fixed the weight during retraining when ”reuse”
is selected in the search phase. This means that the results of previous tasks would not be affected,
i.e. no forgetting. We leave the evaluation of forgetting in the context of VDD dataset as future
work.

In Table 1, we compare the results using our approach with other baselines. ”Individual” means
that each task is trained individually and weights are initialized randomly. ”Classifier” means that
only the last layer classifier could be tuned while the former 25 layers are transfer from ImageNet
pretrained model and kept fixed during training. In this case, each task only adds a task-specific
classifier and BNs, thus the overall model size is small. ”Adapter” add a 1x1 conv layer besides
each 3x3 conv layer, and the outputs will be added before proceed to the next layer. Due to the
lightweight 1x1 conv layer, each task will add approximately 1/9 of the whole model size. As
shown in table 1, the results achieved by our framework is better than other baselines and the total

12

https://github.com/nvcuong/variational-continual-learning
https://github.com/kuc2477/pytorch-deep-generative-replay
https://github.com/kuc2477/pytorch-deep-generative-replay
https://github.com/jaehong-yoon93/DEN
https://github.com/jaehong-yoon93/DEN
https://github.com/joansj/hat
https://github.com/joansj/hat

Under review as a conference paper at ICLR 2019

model size is similar to ”Adapter” case. We can see that our approach gives best results in five out
of nine tasks. Especially in task with small data size, e.g. VGG-Flowers and Aircraft, our method
outperforms other baselines by a large margin.

Due to each choice has different parameter cost, we add a parameter loss function to Lval to penalize
the choices that cost additional parameters. And the value of the loss function is proportional to the
product of the additional parameter size and its corresponding weight value αlc. In table 2, we test
it with three different scaling factor β of the parameter loss. We found that the scaling factor β can
control the additional parameter size for each task. And we find that β = 0.1 gives the best average
accuracy and can control the total model size approximate 2.3× compared with the original model
size.

Model ImNet C100 SVHN UCF OGlt GTSR DPed Flwr Airc. DTD avg. #params
Individual 69.84 73.96 95.22 69.94 86.05 99.97 99.86 41.86 50.41 29.88 71.70 58.96
Classifier 69.84 77.07 93.12 62.37 79.93 99.68 98.92 65.88 36.41 48.20 73.14 6.68
Adapter 69.84 79.82 94.21 70.72 85.10 99.89 99.58 60.29 50.11 50.60 76.02 12.50
Search (Ours) 69.84 79.59 95.28 72.03 86.60 99.72 99.52 71.27 53.01 49.89 77.68 14.46

Table 1: Results of the (top-1) validation classification accuracy (%) on Visual Domain Decathlon
dataset. The total model size (“#params”) is the total parameter size (in Million) after training the
10 tasks.

ImNet C100 SVHN UCF OGlt GTSR DPed Flwr Airc. DTD Tot.

β = 0.01
acc 69.84 78.50 95.33 72.50 86.41 99.97 99.76 66.01 51.37 50.05 76.97

#params 6.07 0.15 2.74 2.28 6.17 3.59 1.02 0.19 4.15 0.13 26.49

β = 0.1
acc 69.84 79.59 95.28 72.03 86.60 99.72 99.52 71.27 53.01 49.89 77.68

#params 6.07 0.34 1.19 1.32 3.19 0.02 0.27 0.16 1.86 0.04 14.46

β = 1.0
acc 69.84 78.00 93.40 63.83 84.30 99.78 99.01 65.77 39.27 48.77 74.20

params 6.07 0.04 0.03 0.12 0.66 0.02 0.01 0.02 0.35 0.02 7.34

Table 2: Comparison of (top-1) validation classification accuracy (%) and total model size (in Mil-
lion) on Visual Domain Decathlon dataset with parameter loss factor β of 0.01, 0.1, 1.0.

13

	Introduction
	Explicit Structure Learning
	Our Implementation
	Structure Optimization
	Parameter Optimization

	How Explicit Structure Learning Affects Continuous Learning
	Does Explicit Structure Learning Leads to Sensible Structures?
	Does Explicit Structure Learning Affects Forgetting?
	Comparison with Other Methods

	Related Work
	Conclusion
	Additional Experimental Details for permuted MNIST
	Additional Experimental Details for Split CIFAR-100
	Additional Experiments on Visual Decathlon Dataset

