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ABSTRACT

Neural network out-of-distribution (OOD) detection aims to identify when a
model is unable to generalize to new inputs, either due to covariate shift or anoma-
lous data. Most existing OOD methods only apply to classification tasks, as they
assume a discrete set of possible predictions. In this paper, we propose a method
for neural network OOD detection that can be applied to regression problems. We
demonstrate that the hidden features for in-distribution data can be described by
a highly concentrated, low dimensional distribution. Therefore, we can model
these in-distribution features with an extremely simple generative model, such
as a Gaussian mixture model (GMM) with 4 or fewer components. We demon-
strate on several real-world benchmark data sets that GMM-based feature detec-
tion achieves state-of-the-art OOD detection results on several regression tasks.
Moreover, this approach is simple to implement and computationally efficient.

1 INTRODUCTION

The success of deep neural networks in many domains (Krizhevsky et al., 2012; Lample et al.,
2016; Mnih et al., 2016) is due to their ability to learn complex functions that generalize to new
samples. However, this observed generalization only extends to data that are sufficiently similar to
the training data. If the neural network encounters data that deviates from the distribution of training
data, its predictions are likely to be erroneous or nonsensical (Guo et al., 2017; Jiang et al., 2012;
Begoli et al., 2019). This may occur if the model is used in scenarios that experience covariate shift
(Sugiyama et al., 2007) or if the model encounters previously-unseen categories of data (Yu et al.,
2017; Hassen & Chan, 2018). Such scenarios are examples of out-of-distribution (OOD) inputs.

Ideally we would like for neural networks to adapt to such shifts in the data distribution (Amodei
et al., 2016). In the absence of such adaptation, out-of-distribution detection should be used to
identify when a model is unable to generalize to a previously-unseen input. While there are sev-
eral proposed methods for neural network OOD detection (Hendrycks & Gimpel, 2017; Liang et al.,
2018; Lee et al., 2018b), many of these methods rely on architectural components specific to classifi-
cation neural networks. Consequentially, they cannot be applied to regression problems. Regression
neural networks typically output only a point prediction rather than a predictive distribution, and
thus the output does not indicate its uncertainty or reliability for a given input. This is illustrated in
Figure 1, which displays predictions from a network trained to predict prices of middle-class houses
in Kentucky. The network outputs a house price prediction for any possible input – even for out-
of-distribution images like a California mansion or chair. These predictions fall within the normal
range of possible prices, and therefore do not convey that the inputs are not valid for this model.

Because the predictions cannot identify OOD inputs, we must look for alternative signals. Previous
approaches perform regression OOD detection through ensembles (Gal & Ghahramani, 2016; Lak-
shminarayanan et al., 2017) or through an additional uncertainty prediction layer (Kendall & Gal,
2017; Malinin et al., 2017). In this paper, we instead turn to the space of hidden features. During
training a neural network learns to extract relevant features about the training data and discards ir-
relevant information. Whether or not a network generalizes to a given test sample depends on the
extracted features from that sample. Networks do not generalize to out-of-distribution data because
the distributional shift causes the network to extract the wrong information. For example, when the
housing neural network is applied to the California mansion in Figure 1, the network’s features do
not extract the relevant information that would indicate the true price of the house. (e.g. presence of
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Actual: $1,430,000
Pred: $270,000

OOD Score: 0.86

California Mansion
(Out-of-dist. input)

Actual: N/A
Pred: $140,000

OOD Score: 0.99

Chair
(Out-of-dist. input)

Kentucky House
(In-dist. Input)

Kentucky House
(In-dist. input) 

Actual: $130,000
Pred: $132,000

OOD Score: 0.05

Actual: $125,000
Pred: $156,000

OOD Score: 0.11 

Figure 1: A neural network trained to predict house prices in Kentucky from curb-side images.
Although the algorithm generalizes well to within-distribution test images (left two houses), it has
high error for (out-of-distribution) mansion from California and is forced to make a nonsensical
prediction for the armchair. Both latter cases are detected as out-of-sample with high OOD scores.

palm trees). In other words, the extracted features of the California mansion will differ significantly
from training data features and therefore the network does not generalize.

Based on this intuition, we investigate how to utilize the hidden features of regression neural net-
works for OOD detection. In particular, we make several contributions. First, we argue empirically
and theoretically that we cannot identify OOD inputs simply using only the networks’ predictions.
However, we then demonstrate that the features of in-distribution inputs lie on an intrinsically low-
dimensional portion of the feature space. It is unlikely that OOD inputs map to similar locations in
feature space because of this low-dimensionality. We additionally show that, because of this low-
dimensionality, it is possible to model the in-distribution features with simple generative models.

To evaluate our proposed approach, we develop new OOD detection tasks based on large-scale com-
puter vision regression datasets. We evaluate the OOD detection performance of several generative
models trained on in-distribution features. Surprisingly, we find that a simple mixture of Gaussians –
often with no more than 2 components – is better at OOD detection than more complex models such
as variational autoencoders. Finally, we demonstrate that GMM models of in-distribution features
are able to outperform other regression OOD methods across several benchmarks.

2 RELATED WORK

Out-of-distribution detection and the related problems of outlier detection (Hodge & Austin, 2004;
Chalapathy & Chawla, 2019) and novelty detection (Pimentel et al., 2014) are well-studied in statis-
tics and machine learning. Arguably, the most straightforward method to these problems is genera-
tively modeling the distribution of inputs p(x) using a parametric distribution (Chow, 1970; Eskin,
2000) or a nonparametric density estimate (Kim & Scott, 2012). If p(x) is small for a given input,
then it is likely out-of-distribution or an anomaly. Several recent works (Choi et al., 2018; Nalisnick
et al., 2019; Pidhorskyi et al., 2018) have suggested identifying OOD inputs with deep generative
models (Goodfellow et al., 2014; Kingma & Welling, 2014; Rezende et al., 2014; Van Den Oord
et al., 2016). One challenge with these methods is that deep generative models cannot necessar-
ily model large-scale images or other complex distributions (Hendrycks et al., 2019) and may be
overconfident when modeling input data (Nalisnick et al., 2019).

Rather than directly modeling the input distribution, the approach proposed in this paper operates on
feature spaces using a mixture model to capture potentially anomalous inputs. This falls under the
category of model-dependent OOD detection methods, which are ideal when the input distribution is
too complex to model with generative methods (e.g. for high resolution images) (Hendrycks et al.,
2019). Several model-dependent methods have been proposed for classification neural networks.
The training procedure of a classification network can be modified to include uncertain samples
(Lee et al., 2018a) or to discourage overconfidence through an alternative loss function (Alemi et al.,
2018; Masana et al., 2018; Subramanya et al., 2017; Sensoy et al., 2018). Alternatively, OOD
metrics can be constructed for classification based on the softmax probability output (Hendrycks
et al., 2019; Liang et al., 2018) or related uncertainty scores (Schulam & Saria, 2019). In a similar
vein to our proposed approach, (Lee et al., 2018b) use a class-conditional Mahalanobis distance
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for classification OOD. All of these methods are designed specifically for multi-class classification
problems – typically relying on the discrete output space. Consequentially, there are typically no
straightforward extensions of these methods to regression problems.

There are fewer proposed methods for OOD detection on regression tasks. Most existing approaches
rely on an estimate of the neural network’s predictive uncertainty (Kuleshov et al., 2018). There are
several proposed approaches to obtain uncertainty estimates from regression neural networks. One
class of approaches is to add an additional output that predicts a confidence interval for the network’s
prediction (Lakshminarayanan et al., 2017; Kendall & Gal, 2017; Malinin et al., 2017). This layer
can be trained in conjunction with the predictive output to minimize the negative log likelihood
on the training set. Alternatively, Bayesian approaches to deep learning (Blundell et al., 2015;
Gal & Ghahramani, 2016; Gal et al., 2017; Kingma et al., 2015) can be used to estimate predictive
uncertainty on regression tasks. These approaches typically approximate the posterior distribution of
neural networks parameters through an ensemble of models. Non-Bayesian ensembling approaches
achieve can produce similar uncertainty estimates (Lakshminarayanan et al., 2017; Maddox et al.,
2019). In this paper we propose an orthogonal approach to regression OOD detection – using the
distribution of hidden features rather than the model’s predictive uncertainty.

3 CHARACTERIZING OOD PREDICTIONS ON REGRESSION TASKS
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Figure 2: A neural network is trained
to predict Kentucky housing prices. The
distribution of predictions on the valida-
tion data (black line) and the actual dis-
tribution of housing prices (dotted line).
Out-of-distribution data (blue and green
lines) obtain similar predictions.

In the classification setting, the output of a neural network
is a softmax score for each class. Because this output can
be interpreted as a probability distribution over classes,
it represents some notion of the neural network’s uncer-
tainty and therefore can be used to identify inputs that
are likely to be OOD (Hendrycks & Gimpel, 2017; Liang
et al., 2018). For most regression architectures however,
the output is typically a point prediction ŷ which does not
convey any notion of predictive uncertainty. Moreover,
in this section we show that these point predictions ŷ are
insufficient for differentiating between in-distribution and
out-of-distribution inputs.

To illustrate this, we train a neural network to predict
the price of homes in Kentucky based on a front facing
picture. Figure 2 (left) displays a histogram of the net-
work’s predictions ŷ on a withheld validation set (black
line). The distribution of these predictions corresponds
to the distribution of actual house prices (dotted line).
However, if the same network receives an OOD input,
it predicts price values that lie in the same range as the
in-distribution predictions. For example, if houses from
California are input into the neural network, the predicted
housing prices (blue line) are roughly the same as that of
Kentucky houses despite these houses costing up to 10 times as much. The network predicts simi-
lar values for Imagenet images (orange line) even though these images do not contain any houses.
Based on the ŷ alone, it is not possible to determine that these inputs are not valid.

The fact that the OOD predictions are similar to in-distribution predictions can be explained by a
simple curse-of-dimensionality argument. Let φ be a regression neural network that maps an input
x ∈ X to an output ŷ ∈ R. The last layer of φ produces a set of activations h(x) that are linearly
mapped to the one-dimensional prediction: ŷ = w>h(x). Let’s assume that the features h(x) for
some OOD inputs can be bounded within some Euclidean ball of radius r. If the dimensionality of
h(x) is large, then the probability of an extreme prediction becomes exponentially unlikely.
Remark 1. Let h(x) be features drawn from a uniform measure on a Euclidean ball of radius r.
Let d be the dimensionality of h(x). The probability of a large prediction |ŷ| > ε is bounded by

p(|ŷ| > ε) ≤ 2Γ(d/2 + 1)

πd/2rd
exp

( −dε2
2r2‖w‖22

)
.
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Figure 3: Left: The relative size of “discarded” feature information h⊥(x) decreases as the depth
of neural networks increases. Center: The intrinsic dimensionality of the feature vectors h(x), as
measured by spectrum of its principal components, decreases with weight decay. Right: Likelihood
of in-distribution and OOD features as measured by a Gaussian decomposed into the likelihood of
each principal component. The Gaussian was fit on (in-distribution) training set features. OOD
features have low likelihood on the small principal components, suggesting that they do not lie in
the same low-dimensional distribution.

(See Appendix B for proof). In practice it is not necessarily the case that OOD features will be uni-
formly distributed. Nevertheless, this remark illustrates that predictive outputs discard information
that would indicate whether a sample is OOD or not.

4 CHARACTERIZING THE DISTRIBUTION OF HIDDEN FEATURES

Although the network’s predictions look very similar for in-distribution and OOD inputs, we expect
that their hidden features h(x) are very different. Since ImageNet pictures do not contain front-
facing houses, the network will extract very different types of features. We similarly expect the
activations of California houses to be different since the network is unable to generalize these in-
puts. To that end, we hypothesize that a generative model of in-distribution features p(h(x)) will
distinguish between in- and out-of-distribution inputs. In this section we demonstrate that – despite
the high dimensionality of h(x) – the in-distribution features are very tightly concentrated. As a
result, it is possible to model in-distribution features with a simple generative model.

In-distribution features are intrinsically low dimensional. In the regression setting, the net-
work’s prediction is the inner product between the features and a weight vector: ŷ = w>h(x). Any
feature information that is orthogonal to the weight w will not contribute to the prediction and there-
fore is “discarded” information. We can describe a feature vector h(x) in terms of the prediction ŷ
and the discarded information h⊥(x):

h(x) = ŷw + h⊥(x), h⊥(x) =
(
I−ww>

)
h(x),

where h⊥(x) is the discarded information, computed using the orthogonal projection of w. Also, we
assume, without loss of generality, that ‖w‖2 = 1. It is worth emphasizing that “useful” predictive
information ŷw lies within a single dimension of the d-dimensional h(x) vector (where d is often
greater than 500). Though the “discarded” information h⊥(x) occupies d−1 dimensions, it typically
has low intrinsic dimensionality for in-distribution data as we demonstrate below. Consequentially,
the in-distribution features h(x) = h⊥(x) + ŷw can be described by a low-dimensional distribu-
tion. We identify two factors that are correlated with this low dimensionality: network capacity and
regularization.

Network capacity reduces the relative size of h⊥(x). As network capacity increases, we expect
that there will be less “discarded” information h⊥(x). To understand why this is the case, assume
there is a l-layer network in which there is some correlation between the discarded features and
the true labels. Now assume we add an additional layer before the linear layer which computes a
new set of hidden features h′(x). This new layer can improve the network’s predictions if it uses
information in h⊥(x) to augment the original prediction ŷ. Consequentially, this new network will
likely have less discarded information than the shallower network.
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While this is just an illustrative example, we can empirically demonstrate that network capacity does
in fact decrease the amount of discarded information. First, we introduce the following metric of
discarded information: let Σ be the empirical covariance matrix of h(x) for in-distribution data, and
let Σ⊥ be the covariance of h⊥(x). We measure the amount of discarded information by comparing
the maximum singular values of Σ and Σ⊥. If ‖Σ⊥‖2/‖Σ‖2 is close to 1, then the feature vectors
are comprised mostly of discarded information. Conversely, h(x) will consist primarily of predictive
information if ‖Σ⊥‖2/‖Σ‖2 is close to zero.

We apply this metric to a simple regression task using the MNIST dataset. Each input image is
rotated by an amount between −90 and 90 degrees. We train residual networks with increasing
depth to predict the amount of rotation in each image (details in Appendix C). Figure 3 (left) plots
the singular value ratio ‖Σ⊥‖2/‖Σ‖2 as a function of network depth. The ratio is quite large for
shallow networks, but decreases with depth. This suggests that, for deep networks, most of h(x)
lies on the one-dimensional subspace defined by the weight vector w.

Regularization reduces the dimensionality of h(x). Applying weight decay to a neural network
reduces the magnitude of the weights, which in turn reduces the magnitude of feature vectors. Re-
ducing the magnitude of h(x) while maintaining predictive power will result in feature vectors with
little discarded information h(x). Since all but one dimensions of the feature space are discarded, we
expect that the intrinsic dimensionality of features will decrease with increasing regularization. To
support this intuition we train the LeNet model on rotated MNIST with various amounts of weight
decay. In Figure 3 (center) we plot the spectrum of the in-distribution feature covariance matrix Σ
for these different models. We see that all covariance matrices are dominated by a few large singular
values. However, the spectra of the high regularization models decay much more rapidly, suggesting
that regularization simplifies the distribution of hidden features.

The fact that in-distribution inputs occupy a low-dimensional portion of high-dimensional feature
space is extremely advantageous. If we draw a random set of random features h(x) (e.g. from
a uniform measure on a Euclidean ball), it will be highly unlikely that these features occupy the
same low-dimensional space. Though OOD features are not truly random vectors in practice, we
find empirically that they do not occupy the same low dimensional subspace. To demonstrate this,
we fit a multivariate Gaussian to the training set features from the housing price network. We
can decompose the fit of this Gaussian as a product of its principle components and measure each
component’s likelihood for in- and out-of-distribution data. Figure 3 (right) displays the fits for
the housing price validation data (in-distribution) and ImageNet samples (OOD). We find that in-
distribution and OOD data are equally likely for the main principal components. However, OOD
features do not fit the smaller principal components well, and thus these small principal components
are able to distinguish in- and out-of-distribution data. In this case the curse-of-dimensionality
makes it possible to distinguish OOD and in-distribution features.

5 OOD DETECTION WITH GENERATIVE MODELS OF HIDDEN FEATURES

As we demonstrate in the previous section, the distribution of in-distribution hidden features h(x)
is intrinsically low dimensional. Since OOD data are unlikely to share the same low-dimensional
distribution, we propose using generative models of in-distribution h(x) to identify OOD inputs.

Possible generative model. While a simple Gaussian can model the distribution h(x), it is possi-
ble that a more complex generative model will fit better. There are several choices of generative mod-
els, arguably the simplest choice are parametric models such as Gaussian mixture models (GMMs),
which can approximate any distribution with enough mixture components Bishop (2006). Nonpa-
rameteric models, such as kernel density estimation (KDE), offer complexity that scales with the
number of observations. Deep generative models such as variational autoencoders (VAE) (Kingma
& Welling, 2014; Rezende et al., 2014) are arguably the most powerful class of generative models.

Model fitting. After training the predictive neural network, a generative model is fit to in-
distribution features. In all experiments, we use features extracted from the neural network’s training
data. However, we note that features from any (unlabeled) in-distribution data could be used instead.
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Model selection and hyperparameter tuning. Tuning hyperparameters can be challenging be-
cause one typically does not have access to OOD data. For our method we must determine 1) which
generative model to use and 2) the hyperparameters of the generative model. We select these hy-
perparameters using the generative model’s log-likelihood on the validation set: log p(Dvalid) =∑

x log p(h(x)). From a decision theoretic standpoint, the model with the largest likelihood fits the
validation data with the smallest distribution (Bishop, 2006). If the distribution is strongly peaked
then it has less support for samples that are not in-distribution, and therefore will be good for OOD
detection. Importantly, this criterion only requires access to in-distribution data.

Comparing the Performance of Generative Models. In Section A.1 we examine how the choice
of generative model affects OOD detection performance. We compare KDE models, VAEs, and
2-component GMMs on several benchmark OOD tasks (which are described in detail in the next
section). Surprisingly, we find that GMMs detects OOD inputs as well – if not better – than the other
models. This is especially surprising because GMMs tend not to perform well in high dimensional
spaces (Bishop, 2006), which further suggests that in-distribution features are highly concentrated.

6 EXPERIMENTS

In this section, we demonstrate the performance of our OOD detection method on several regression
tasks. We first illustrate the method on a 2D toy example, and then we evaluate the method on
two large-scale computer vision regression tasks. For experimental details, we refer the reader to
Appendix C. Based on the ablation study in Section A.1, we model the in-distribution features
with a GMM. The number of components in the GMM is chosen through model selection with the
validation dataset. (The effect of the GMM size is explored in Section A.2.)

Smoothed XOR. To illustrate how feature spaces can be used for detecting OOD samples, we
consider a simulated regression task. The goal is to approximate the smoothed XOR function from
noisy labeled data. In-distribution inputs consist of Uniform samples in [0, 1]2, while OOD inputs
come from an isotropic Gaussian distribution centered at [1.5, 1.5] with variance σ2 = 0.1. Figure 4
(left) depicts the proposed setting, i.e. the target XOR function and in-dist./OOD samples. Here,
we use multilayer perceptrons (MLP) as the predictive model. Figure 4 (middle) plots predictions
for both OOD and in-distribution (validation) samples. Note that this corresponds to the desired
scenario in which one cannot identify OOD inputs based on the predictions alone.
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ŷ

−1

0

1

y

Predictions vs. Targets

In-dist.

OOD

0.0 0.5 1.0 1.5
h1

0.0

0.5

1.0

1.5

h
2

Log-likelihood log p(h)

In-dist.

OOD

AUROC: 1.0

Figure 4: Smoothed XOR regression task. Left: Target XOR function over in-dist. and OOD data.
Middle: Predictions for in-dist. and OOD inputs. Right: Gaussian fit on the in- and OOD features.

The proposed approach relies on the assumption that hidden features are informative, and their
distribution can be approximated using simple generative models. In this regard, Figure 4 (right)
shows the fit from a Gaussian on the activations at the last nonlinear layer of the prediction network.
There is virtually no overlap between in-distribution and OOD features. As a consequence, we
achieve perfect detection, as represented by an area under the ROC curve (AUROC) equals to 1.

Housing price prediction. We demonstrate our proposed method on a large-scale regression task:
predicting home prices from front-facing house pictures. We train a 121-layer DenseNet (Huang
et al., 2017) and a 50-layer ResNet (He et al., 2016) on a dataset of nearly 50,000 middle-income
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Table 1: OOD detection results for housing price prediction (top) and age estimation (bottom).
TNR at TPR 95% AUROC

Network OOD Dataset MCD Ens. Var. Var. + MCD GMM MCD Ens. Var. Var. + MCD GMM

KY Housing Price
(DenseNet-121)

ImageNet 0.223 0.537 0.757 0.200 0.999 0.825 0.909 0.940 0.764 0.999
KITTI 0.475 0.517 0.443 0.318 0.994 0.910 0.917 0.910 0.830 0.995

StreetView 0.280 0.395 0.348 0.238 0.936 0.847 0.877 0.849 0.779 0.982
CA Houses 0.282 0.304 0.454 0.207 0.568 0.832 0.832 0.874 0.757 0.928

KY Housing Price
(ResNet-50)

ImageNet 0.199 0.711 0.629 0.611 0.998 0.799 0.953 0.931 0.928 0.999
KITTI 0.518 0.731 0.691 0.687 0.932 0.922 0.961 0.954 0.955 0.983

StreetView 0.317 0.680 0.609 0.603 0.868 0.833 0.951 0.933 0.933 0.975
CA Houses 0.224 0.598 0.261 0.263 0.574 0.803 0.930 0.839 0.842 0.924

Adult Age Estimation
(DenseNet-121)

ImageNet 0.256 0.601 0.908 0.241 0.983 0.799 0.903 0.981 0.760 0.994
Streetview 0.420 0.625 0.963 0.361 0.984 0.873 0.916 0.981 0.809 0.995
Pedestrian 0.590 0.794 0.998 0.313 1.000 0.925 0.957 0.999 0.804 0.999
Child Age 0.189 0.201 0.338 0.125 0.477 0.670 0.689 0.844 0.610 0.866

Adult Age Estimation
(ResNet-50)

ImageNet 0.310 0.915 0.898 0.876 0.937 0.823 0.978 0.977 0.970 0.987
Streetview 0.240 0.987 0.998 0.990 0.908 0.826 0.987 0.996 0.993 0.979
Pedestrian 0.277 0.982 0.998 0.998 0.986 0.851 0.985 0.999 0.999 0.993
Child Age 0.150 0.234 0.183 0.148 0.434 0.656 0.627 0.540 0.553 0.867
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ŷ (years)

0

25

50

75

100

y
(y

ea
rs

)

Age
Predictions vs. Actual Age

Adults (In D)

Childen (OOD)

100 101
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Figure 5: Housing price predictions – (Left) Prediction vs. actual price for in-distribution and OOD
houses. (Middle-left) The OOD score p(h(x)) from the GMM correlates with the predictive error
and can identify the most erroneous housing predictions. Age estimations – (Middle-right) Predic-
tion vs. actual age for adults (in-distribution) and children (OOD). (Right) Similarly to housing, the
GMM’s OOD score identifies high-error predictions.

house images from Fayette County in Kentucky. The CNNs are pre-trained on ImageNet (Deng
et al., 2009) and the last layer is replaced with a linear layer that produces a single output. We
compare the GMM-based detector against methods that use ensemble or Bayesian model averages to
estimate predictive uncertainty. Monte-Carlo Dropout (MCD) (Gal & Ghahramani, 2016; Kendall
& Gal, 2017) creates a Bayesian ensemble of 10 neural networks, where each network is sampled
from a base network with dropout (p = 0.2). Deep Ensembles (Ens.) (Lakshminarayanan et al.,
2017) is an ensemble of 4 standard neural networks. For these two baselines, the variance of the
forward passes is used as a metric for detecting OOD inputs. Var. (Malinin et al., 2017) adds a
variance output to the neural network to predict uncertainty estimates. Var. + MCD (Kendall &
Gal, 2017) combines this variance estimate with MC-Dropout.

Following Hendrycks & Gimpel (2017), we use several external datasets as sources for out-of-
distribution inputs. Firstly, ImageNet (Deng et al., 2009) is a dataset of photos from 1,000 classes.
This dataset contains easily detectable out-of-distribution inputs, since most of the pictures do not
contain houses. KITTI (Geiger et al., 2013) is a dataset of self-driving car images. These images
may contain some houses, but any houses will be in the periphery of the image rather than being
centered. StreetView (Zamir & Shah, 2014) contains images from Google street view, which may
also contain some frontal house views. The most challenging dataset is CA Houses (Ahmed &
Moustafa, 2016), which consists of house images from California.

METRICS. We apply each detection method to the OOD datasets as well as a withheld test set of
in-distribution images. The methods assign an OOD score to each input. Similar to Hendrycks &
Gimpel (2017), we evaluate these scores based on two objectives: the true-negative detection rate at
a 95% true-positive rate (TNR) and the area under the ROC curve (AUROC).
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RESULTS. The results for housing price OOD detection are in Table 1 (first two sets of rows). We
observe several trends. Firstly, the GMM detector substantially outperforms Monte-Carlo dropout
and ensembles on the ImageNet, KITTI, and StreetView datasets. On ImageNet, the GMM detector
achieves nearly perfect OOD detection rates. These datasets contain invalid inputs (i.e. inputs that
do not contain houses), and therefore the out-of-distribution and in-distribution activations will be
extremely different. The CA Houses dataset is the most challenging dataset for all of the detection
methods. This is because this dataset represents covariate shifted data (i.e. inputs that contain
different houses), and therefore, the OOD activations will be similar to in-distribution activations.
Nevertheless, the GMM detector achieves a high TNR and AUROC that are comparable with the
performance of an ensemble. In Figure 5 (far left) we plot the network’s prediction and the actual
housing price for in-distribution houses and CA houses (log scale). Because the CA houses are
OOD, the predictions are over an order of magnitude different than the actual housing price. Figure 5
(middle-left) compares the error and the OOD score assigned by the GMM predictor. We see that
there is a correlation between the predictive error and the OOD score. If we threshold the OOD score
to obtain 95% true-positive-rate, then the most erroneous samples will be labeled out-of-distribution.

Age estimation. We evaluate GMM-based OOD detection on another large-scale regression task:
predicting a person’s age from a portrait image. We take 20,000 images of people ages 20 and older
from the UTKFace dataset (Zhang et al., 2017). 5,000 images are withheld for validation and testing.
Similar to the previous setup, the CNNs are pre-trained on ImageNet and the last layer is replaced
with a linear layer. We compare against the same baselines using the same metrics.

For out-of-distribution inputs, we use images from the ImageNet and StreetView datasets. While
both datasets do contain some images of people, most of the images are not portraits and therefore
are OOD. Additionally, we use 10,000 frames from the Caltech Pedestrian dataset (Dollár et al.,
2012). These images, which were taken from vehicle driving through an urban environment, contain
candid images of pedestrians. Finally, we generate a challenging OOD dataset using images of
children 10 and younger from the UTKFace dataset (Child).

RESULTS. The results for age estimation are in Table 1 (last two sets of rows). Similar to our
previous task, the GMMs achieve very high OOD detection performance on all datasets. The GMM
detector for DenseNet-121 outperforms Monte-Carlo dropout and ensembles on all benchmarks by
a significant margin. For ResNet-50, the GMM outperforms the other methods on all but one dataset
with respect to both the TNR and AUROC metrics. The child age dataset is the most challenging
OOD detection dataset for all methods. This is because the images are very similar to the training
data. In Figure 5 (middle-right) we plot the network’s prediction and the actual ages for adults (in-
distribution) and children (OOD). The network is unable to correctly predict the ages of children.
Figure 5 (right) shows that the GMM’s score can be used to identify the most potentially erroneous
predictions on this dataset.

Other considerations. Feature-based OOD detection is a computationally advantageous method.
Using a GMM for OOD detection requires a constant number of matrix-vector multiplications for
each input. This is a fraction of the cost of the neural network’s prediction. It is worth noting
that ensemble-based methods have benefits besides OOD detection, such as improved predictive
performance. However, ensembles require multiple forward passes, which can be quite expensive.

7 CONCLUSION

Regression neural networks, unlike classification networks, output a point prediction rather than a
distribution over possible predictions. From this prediction alone, we demonstrate that is nearly im-
possible to determine whether the network’s input is anomalous or out-of-distribution. In this paper,
we argue that the network’s hidden features indicate whether samples are in-distribution or not. We
demonstrate that the distribution of neural network features p(h(x)) are intrinsically low dimen-
sional and can be well-approximated by a simple generative model, such as mixture of Gaussians.
This is an simple approximation, especially considering that the feature space has more than 1,000
dimensions. Nevertheless, we find that this approach is incredibly accurate at identifying OOD
inputs, whether the inputs come from a nonsensical distribution or a slightly-shifted distribution.
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A ABLATION STUDIES

A.1 GENERATIVE MODELS

Here, we consider three methods for modeling hidden features: kernel density estimation (KDE),
Gaussian mixture models (GMM), and variational autoencoders (VAE). The GMM consists of a
2-component mixture (2-GMM) with full covariance matrices. The hyper-parameters for KDE and
VAE are selected using a withheld in-distribution validation set. The model that produces the highest
average log-likelihood is selected.

For KDE, we consider gaussian kernels with widthbands in {10−5, 10−4, . . . , 10−1}. Regarding
VAEs, we train encoder and decoder networks with 3 and 4 hidden layers. The largest architecture
consists of (800, 512, 256, 128) hidden units. We have also considered simpler architectures with
(64, 32, 16). The networks are trained over 800 epochs using Adam with learning rate of 10−3. We
also apply weight decay of 10−4 and batch normalization (batch size of 128).

Table 2 shows the performance of the generative models on housing price data. Overall, 2-GMM is
the best performing model. For the easiest task (ImageNet), VAE and 2-GMM achieve very similar
performances in terms of both TNR at TPR 95% and AUROC. Also, for all datasets the difference
between VAE and 2-GMM is not higher than 2% AUROC.

On the other hand, KDE performs poorly compared to VAE and 2-GMM. A possible explanation
for this erratic behavior lies in the fact that KDE is very sensitive to the choice of kernel bandwidth.
Since it uses an isotropic kernel, a large bandwidth may lead to underfitting. It is worth emphasizing
that by limiting the bandwidth to small values, KDE performance significantly increases, approxi-
mating those from VAE and GMM.

Table 2 (last two sets of rows) shows results on age estimation. Similar to the results on housing
prices, GMM outperforms both KDE and VAE. The accuracy gap is notably higher for the RestNet
network.

Table 2: Performance of generative models for OOD detection.
TNR at TPR 95% AUROC

Network OOD Dataset KDE 2-GMM VAE KDE 2-GMM VAE

KY Housing Price
(DenseNet-121)

ImageNet 0.645 0.999 0.997 0.781 0.999 0.999
KITTI 0.566 0.994 0.990 0.701 0.995 0.994

StreetView 0.529 0.931 0.846 0.678 0.982 0.972
CA Houses 0.387 0.553 0.550 0.640 0.923 0.915

KY Housing Price
(ResNet-50)

ImageNet 0.705 0.996 0.994 0.833 0.999 0.998
KITTI 0.530 0.908 0.878 0.688 0.981 0.977

StreetView 0.485 0.820 0.722 0.653 0.968 0.957
CA Houses 0.413 0.538 0.495 0.677 0.909 0.891

Adult Age Estimation
(DenseNet-121)

ImageNet 0.723 0.983 0.955 0.840 0.994 0.990
Streetview 0.734 0.984 0.957 0.839 0.995 0.987
Pedestrian 0.854 1.000 1.000 0.911 0.999 0.999
Child Age 0.297 0.477 0.456 0.642 0.866 0.854

Adult Age Estimation
(ResNet-50)

ImageNet 0.393 0.845 0.664 0.725 0.974 0.927
Streetview 0.297 0.758 0.513 0.721 0.958 0.899
Pedestrian 0.365 0.925 0.753 0.744 0.982 0.959
Child Age 0.336 0.475 0.471 0.662 0.878 0.873

A.2 NUMBER OF GMM MIXTURE COMPONENTS.

If we fit the distribution of training set features with a GMM, then the only hyperparameter is the
number of mixture components. We find that OOD detection performance is actually quite robust to
this hyperparameter.
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Table 3: OOD detection performance as a function of the GMM mixture size (1, 2, or 4). We
display the TNR and AUROC for each GMM, as well as the GMM’s log likelihood on in-distribution
features. Blue columns correspond to the model with the highest log likelihood (the model selection
criterion). Best results are in bold.

TNR at TPR 95% AUROC

Network OOD Dataset 1-GMM 2-GMM 4-GMM 1-GMM 2-GMM 4-GMM

KY Housing Price
(DenseNet-121)

Log Lik. (In-dist.) 2924 2970 2991 2924 2970 2991

ImageNet 0.998 0.999 0.999 0.999 0.999 0.999
KITTI 0.992 0.994 0.994 0.994 0.995 0.995

StreetView 0.914 0.931 0.936 0.980 0.982 0.982
CA Houses 0.510 0.553 0.568 0.918 0.923 0.928

KY Housing Price
(ResNet-50)

Log. Lik. (In-dist.) 3864 3838 3903 3864 3838 3903

ImageNet 0.997 0.996 0.998 0.999 0.999 0.999
KITTI 0.939 0.908 0.932 0.984 0.981 0.983

StreetView 0.844 0.801 0.868 0.973 0.967 0.975
CA Houses 0.482 0.538 0.574 0.904 0.908 0.924

Adult Age Estimation
(DenseNet-121)

Log Lik. (In-dist.) 2563 2589 2588 2563 2589 2588

ImageNet 0.986 0.983 0.964 0.996 0.994 0.993
Streetview 0.989 0.984 0.982 0.997 0.995 0.994
Pedestrian 1.000 1.000 1.000 1.000 0.999 0.999
Child Age 0.416 0.477 0.427 0.852 0.866 0.860

Adult Age Estimation
(ResNet-50)

Log Lik. (In-dist.) 2630 2552 1876 2630 2552 1876

ImageNet 0.937 0.845 0.830 0.987 0.974 0.971
Streetview 0.908 0.758 0.766 0.979 0.959 0.962
Pedestrian 0.986 0.924 0.906 0.993 0.982 0.981
Child Age 0.434 0.475 0.468 0.867 0.878 0.880

In Table 3 we display the OOD detection results for GMMs with 1, 2, and 4 mixture components.
In addition, we report the log likelihood of the GMM on the in-distribution validation data, which
we use as the selection criterion. The GMMs with the highest log likelihood for a given model are
displayed in blue.

From this figure, we can observe a number of trends. Firstly, we notice that more mixture compo-
nents does not always correspond to a better model. 4 mixture components achieves the highest log
likelihood on the housing price networks; however, fewer components is better for age estimation.
Nevertheless, the log likelihood functions as a good model selection criterion. The GMMs with the
highest log likelihood tend to achieve the best OOD detection performance (or comparable to the
best performance) both in terms of TNR and AUROC.

Surprisingly, we find the log likelihood is relatively robust to the number of mixture components. For
example, the housing price ResNet’s log likelihood values vary between 3838 and 3093. Similarly,
the age estimation DenseNet’s log likelihood values vary between 2563 and 2589. These similar
likelihoods correspond to similar OOD detection performance. On all OOD detection benchmarks,
the models achieve AUROCs that are within one percentage point of each other. The only exper-
iment with highly varying log likelihood is the age estimation ResNet. The 4-component GMM
obtains a significantly lower log likelihood than the 2- or 1-component mixtures. This low log
likelihood corresponds to worse OOD detection performance. The 2- and 1-component mixtures
perform significantly better on most OOD tasks than the 4-component mixture.

B PROOF OF REMARK 1

Proof. We assume that the features h(x) are drawn from a uniform measure on a Euclidean ball of
radius r. The prediction corresponding to these features is given by ŷ = wTh(x), where w is the
weight of the network’s linear layer. In order for ŷ > ε for some ε it must be the case that h(x) lies
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in the hyperspherical cap defined by the set of points wTh(x) > ε, ‖h(x)‖2 ≤ r. I.e.

p(ŷ > ε) =
Volume of cap
Volume of ball

.

The hypervolume of the Euclidean ball in a d dimensional space is given by πd/2rd

Γ(d/2+1) , where Γ

represents the gamma function. While there is an exact formula for the for the hypervolume of a
cap, we instead choose to use the more interpetable bound of Tkocz (2012):

Volume of cap < exp

( −dε2
2r2‖w‖22

)
.

Finally, by symmetry we have that p(ŷ > ε) = p(ŷ < ε). Putting this all together, we have that

p(|ŷ| > ε) ≤ 2Γ(d/2 + 1)

πd/2rd
exp

( −dε2
2r2‖w‖22

)
.

C EXPERIMENTAL DETAILS

C.1 ROTATED MNIST EXPERIMENTS

The amount of rotation applied to each input is drawn from the distribution N (0, π/4). As a result,
roughly 95% of the samples are rotated between −π/2 and π/2 degrees.

The ResNet architecture in the depth experiments is based on the architecture of He et al. (2016).
The first convolutional layer is reduced to accept single-channel inputs, and the ReLU activations
are replaced with tanh activations. The LeNet architecture follows that of LeCun et al. (1989). All
networks are trained with SGD for 50 epochs, using an initial learning rate of 0.1 that is dropped by
10 after 25 and 37. We compute the covariances matrices Σ and Σ⊥ using features extracted from
the training set.

C.2 TOY EXAMPLE

The training data consists of 29 input samples in [0, 1]2 and the corresponding outputs y = f(x)+ε,
where f(x) = sin(2πx1)sin(2πx2) and ε ∼ N (0, 0.12). OOD inputs are represented by 200 points
from the Gaussian distribution N ([1.5, 1.5], 0.1 ∗ I). An additional set of 200 in-distribution points
is used for validation.

The prediction network consists of an overparametrized MLP with 4 hidden layers —
MLP (2, 20, 32, 20, 2, 1) — and ReLu activation functions. The network is trained over 400 epochs
using Adam with learning rate of 10−3, and weight decay of 10−4. We also apply batch normaliza-
tion.

C.3 HOUSING PRICE

Each network is trained to minimize the mean-squared error loss for 100 epochs using SGD with a
learning rate of 0.001 and weight decay of 10−4. All networks achieve a scaled mean-squared error
between 0.28 and 0.29. Based on the validation log likelihood, we select a 4-component GMM to
model the DenseNet and ResNet features (see Section A.2).

C.4 AGE ESTIMATION

All networks achieve a scaled mean-squared error between 0.18 and 0.19. Based on the validation
log likelihood, we select a 2-component GMM to model the DenseNet features and a single Gaussian
to model the ImageNet features (see Section A.2).
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