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ABSTRACT

In this paper, we are interested in two seemingly different concepts: adversarial
training and generative adversarial networks (GANs). Particularly, how these
techniques help to improve each other. To this end, we analyze the limitation of
adversarial training as a defense method, starting from questioning how well the
robustness of a model can generalize. Then, we successfully improve the gener-
alizability via data augmentation by the “fake” images sampled from generative
adversarial network. After that, we are surprised to see that the resulting robust
classifier leads to a better generator, for free. We intuitively explain this interesting
phenomenon and leave the theoretical analysis for future work. Motivated by these
observations, we propose a system that combines generator, discriminator, and
adversarial attacker together in a single network. After end-to-end training and fine
tuning, our method can simultaneously improve the robustness of classifiers, mea-
sured by accuracy under strong adversarial attacks, and the quality of generators,
evaluated both aesthetically and quantitatively. In terms of the classifier, we achieve
better robustness than the state-of-the-art adversarial training algorithm proposed
in (Madry et al., 2017), while our generator achieves competitive performance
compared with SN-GAN (Miyato and Koyama, 2018). Source code is publicly
available online at https://github.com/anonymous.

1 INTRODUCTION

Deep neural networks have been very successful in modeling images, texts, and audios. Nonetheless,
their characters have not yet been fully understood (Szegedy et al., 2013), leaving a big hole for
malicious attack algorithms. In this paper, we start from adversarial attacks and defense but try to find
the connection with Generative Adversarial Network (GAN) (Goodfellow et al., 2014a). Superficially,
the difference between them is that the adversarial attack is the algorithm that finds a highly resembled
image to cheat the classifier, whereas the GAN algorithm at its core is a generative model where
the generator learns to convert white noise to images that look like authentic to the discriminator.
We show in this paper that they are indeed closely related and can be used to strengthen each other:
to accelerate and stabilize the GAN training cycle, the discriminator is expected to stay robust to
adversarial examples; at the same time, a well trained generator provides a continuous support in
probability space and thus improves the generalization ability of discriminator, even under adversarial
attacks. That is the starting point of our idea to associate generative networks with robust classifiers.

Contributions: We find a novel way to make a connection between GAN and adversarial training.
More importantly, we develop a system called AdvGAN to combine generator, discriminator, and
adversarial attacker in the same network. Through the proposed “co-training” and “fine-tunning”
steps, we are able to simultaneously improve the quality of generated images and the accuracy
of discriminator under strong adversarial attacks. For example, when applying state-of-the-art
adversarial training technique (Madry et al., 2017), the accuracy of ResNet18(+CIFAR10) drops from
81.5% to 29.6%; whereas the accuracy of our discriminator network drops from 81.1% to 36.4%
(keeping all the hyperparameters and network structure unchanged). For the generator side, we are
able to match or even beat the inception score of state-of-the-art method (Miyato & Koyama, 2018)
on medium scale datasets (see Sec. 4 for details), with significantly fewer iterations. Lastly, we
modify the loss of AC-GAN and our experiments confirm the superiority over the original one.
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Notations Throughout this paper, we denote the (image, label) pair as (xi, yi), i is the index of
data point; The classifier parameterized by weights w is f(x;w), this function includes the final
Softmax layer so the output is probabilities. We also define D(x) and G(z) as the discriminator
and generator networks respectively. The adversarial example xadv is crafted by perturbing the
original input, i.e. xadv = x + δ, where ‖δ‖ ≤ δmax. For convenience, we consider `∞-norm in
our experiments. The real and fake images are denoted as xreal/fake, readers should differentiate the
“fake” images with “adversarial” images1. The training set is denoted as Preal, this is the empirical
distribution. Given the training setPreal, we define empirical loss function 1

Ntr

∑Ntr
i=1 `(f(xi;w), yi) =

E(x,y)∼Preal `(f(x;w), y).

2 RELATED WORKS

Generative adversarial network. This is a kind of algorithm that learns to model distribution
either with or without supervision (Goodfellow et al., 2014a), which is often considered as a hard
task especially for high dimensional data (images, texts, audios, etc.). In recent years, GANs keep
to be intensively studied, toghther with other competitive generative models such as variational
autoencoder or VAE, which learns the latent representation of data via prior knowledge (Kingma &
Welling, 2013), and auto-regressive model that models the conditional distribution given previous
states (e.g. PixelCNN (van den Oord et al., 2016)). One advantage of GANs over other methods is
that they are able to generate high quality images directly from certain distributions, whereas the
other methods are either slow in generation, or yield blurry images.

A GAN has two competing networks with different objectives: in the training phase, the generator
G(z) and the discriminator D(x) are evolved in a minimax game, which can be denoted as a unified
loss:

min
G

max
D

{
Ex∼Preal

[
logD(x)

]
+ Ez∼Pz

[
log(1−D(G(z))

]}
. (1)

Unlike traditional machine learning problems where we typically minimize the loss, (1) is hard to
optimize and that is the focus of recent literature. Among them, a guideline for the architectures
of G and D is summarized in (Radford et al., 2015). Other training techniques, including feature
matching (similar to MMD-GAN (Li et al., 2015; 2017)) and mini-batch discrimination are proposed
in (Gulrajani et al., 2017a) to improve the stability and quality of networks. For high resolution and
photo-realistic image generation, currently the standard way is to first learn to generate low resolution
images as the intermediate products, and then learn to refine them progressively (Denton et al., 2015;
Karras et al., 2017), this turns out to be more stable than directly generate high resolution images
through a gigantic network. To reach the equilibrium efficiently, alternative loss metrics (Arjovsky
& Bottou, 2017; Arjovsky et al., 2017; Berthelot et al., 2017; Gulrajani et al., 2017b; Unterthiner
et al., 2017) are applied and proven to be effective. Among them, (Arjovsky & Bottou, 2017)
theoretically explains why training the DCGAN is highly unstable — since the image manifold is
highly concentrated towards a low dimensional manifold, and if two distributions Preal and Pfake
are supported on two low dimensional manifolds that do not perfectly align, then there exists an
“optimal discriminator D(x)” that tells apart two distributions with probability one. Moreover, under
that situation, the gradient of discriminator ∇D(x) closes to zero and thus the training process
is halted. Closely following that theorem, (Arjovsky et al., 2017) proposes to use Wasserstein-1
distance to measure the distance between real and fake data distribution. The resulting network,
namely “Wasserstein-GAN”, largely improves the stability of GAN training. Another noteworthy
work inspired by WGAN/WGAN-GP is spectral normalization (Miyato et al., 2018), the idea is to
estimate the operator norm σmax(W ) of weights W inside layers (convolution, linear, etc.), and then
normalize these weights to have 1-operator norm through dividing weight tensors by operator norm:
W̃ = W/σmax(W ). Because ReLU non-linearity is already 1-Lipschitz, if we stack these layers
together the network as a whole would still be 1-Lipschitz, that is exactly the prerequisite to apply
Kantorovich-Rubinstein duality to estimate Wasserstein distance.

Despite the success of aforementioned works, we want to address one missing part of these models:
to the best of our knowledge, none of them consider the robustness of discrimination network
D(x). This overlooked aspect can be problematic especially for high resolution images and large
networks, this will be one of the central points of this paper.

1The fake images are generated by generator, while adversarial images are made by perturbing the natural
images.
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Adversarial attacks and defenses: Apart from GAN, another key ingredient of our method is
adversarial examples, originated in (Szegedy et al., 2013) and further studied in (Goodfellow et al.,
2014b). They found that machine learning models can be easily “fooled” by slightly modified images
if we design a tiny perturbation according to some “attack” algorithms. In this paper we apply a
simple yet efficient algorithm, namely PGD-attack (Madry et al., 2017), to generate adversarial
examples. Given an example x with ground truth label y, PGD computes adversarial perturbation δ
by solving the following optimization with Projected Gradient Descent:

δ := argmax
‖δ‖≤δmax

`
(
f(x+ δ;w), y

)
, (2)

where f(·;w) is the network parameterized by weights w, `(·, ·) is the loss function and for conve-
nience we choose ‖ · ‖ to be the `∞-norm in accordance with (Madry et al., 2017; Athalye et al.,
2018), but note that other norms are also applicable. Intuitively, the idea of (2) is to find the point
xadv := x + δ within an `∞-ball such that the loss value of xadv is maximized, so that point is
most likely to be an adversarial example. In fact, most optimization based attacking algorithms (e.g.
FGSM (Goodfellow et al., 2014b), C&W (Carlini & Wagner, 2017)) shares the same idea as PGD
attack.

Opposite to the adversarial attacks, the adversarial defenses are techniques that make models resistant
to adversarial examples. It is worth noting that defense is a much harder task compared with attacks,
especially for high dimensional data combined with complex models. Despite that huge amount of
defense methods are proposed (Papernot et al., 2016; Madry et al., 2017; Buckman et al., 2018; Ma
et al., 2018; Guo et al., 2018; Dhillon et al., 2018; Xie et al., 2018; Song et al., 2018; Samangouei
et al., 2018), many of them rely on gradient masking or obfuscation, which provide an “illusion” of
safety (Athalye et al., 2018; Athalye & Carlini, 2018). They claimed that the most effective defense
algorithm is adversarial training (Madry et al., 2017), formulated as

min
w
ρ(w), where ρ(w) := E

(x,y)∼Preal

[
max

‖δ‖≤δmax

`
(
f(x+ δ;w), y

)]
, (3)

where (x, y) ∼ Preal is the (image, label) joint distribution of real data, f(x;w) is the network
parameterized by w, `

(
f(x;w), y

)
is the loss function of network (such as the cross-entropy loss).

We remark that the data distribution Preal is often not available in practice, which will be replaced by
the empirical distribution.

3 PROPOSED APPROACH

3.1 MOTIVATION I: THE GENERALIZATION GAP OF ADVERSARIAL TRAINING — HOW CAN
GAN HELP?

In Sec. 2 we listed some of the published works on adversarial defense, and pointed out that adversarial
training is the most effective method to date. However, until now this method has only been tested on
small dataset like MNIST and CIFAR10 and it is an open problem as to whether it scales to large
dataset such as ImageNet. To our knowledge, there are two significant drawbacks of this method
that restrict its application. First and most obviously, the overhead to find adversarial examples in
each iteration is about 10x of the normal process (this can be inferred by #Iterations in each PGD
attack2). Moreover, we noticed that the trained model performs significantly worse on the test set
than training set, i.e. the generalization gap is large under adversarial attacks (Fig. 1 (Left)). This
indicates it is hard to find an adversarial example near the training data, yet much easier to find one
close to testing data. We discuss the reason behind this huge generalization gap, and later we will
alleviate this problem using GAN. From statistical learning theory, it is known that the generalization
ability of model relies on the convergence of empirical risk to population risk, formally:

sup
h∈F

∣∣∣ 1
n

n∑
i=1

h(Xi)− EX [h(X)]
∣∣∣ a.s.−→ 0, when n→∞, (4)

where F is the set of functions that are L-Lipschitz continuous, X can be any sub-Gaussian random
variabl. Apart from that, to make our model robust to adversarial distortion, it is desirable to enforce a
small local Lipschitz value (LLV) around data manifold Preal. This idea includes many of the defense

2We refer readers to the source code in https://github.com/MadryLab/cifar10_challenge.
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Figure 1: Left: Accuracy under different levels of attack. The model (VGG16) is obtained by
adversarial training on CIFAR-10, we set δmax = 0.03125 in (3). The horizontal axis is the attack
strength δ which is equivalent to δmax in (2). Note that δmax in (2) and (3) have different meanings —
one is for attack and the other is for defense. Notice the increasing accuracy gap when δ < 0.03125.
Right: The local Lipschitz value (LLV) measured by gradient norm ‖ ∂

∂xi
`
(
f(xi;w), yi

)
‖2, data pairs

(xi, yi) are chosen from the training and testing set respectively. During the training process, LLV on
the training set stabilizes at a low level, whereas LLV on the test set keeps growing.

methods such as (Cisse et al., 2017). In essence, restricting the LLV can be formulated as a composite
loss minimization problem:

min
w

E(x,y)∼Preal

[
`
(
f(x;w), y

)
+ λ ·

∥∥ ∂
∂x
`
(
f(x;w), y

)∥∥
2

]
. (5)

Notice that (5) can be regarded as the “one-step approximation” of (3). In practice we need to change
the expectation over Preal to empirical distribution of finite data,

min
w

1

n

n∑
i=1

[
`
(
f(xi;w), yi

)
+ λ ·

∥∥ ∂

∂xi
`
(
f(xi;w), yi

)∥∥
2

]
, (6)

where {(xi, yi)}ni=1 are feature-label pairs constitute the training set. Ideally, if we have enough
data and model size is moderate then the objective function in (6) still converges to (5). However in
practice when taking adversarial examples into account, we have one more problem to worry about:
Does small LLV in training set imply small LLV in test set? The enlarged accuracy gap shown in
Fig. 1 (Left) tends to give a negative answer. To verify this phenomenon directly, we calculate the
LLV on images sampled from training and testing set respectively (Fig. 1 (Right)), we observe that
in parallel with accuracy gap, the LLV gap between training and testing set is equally significant.
Thus we conclude that although adversarial training controls LLV around training set effectively,
this property does not generalize to test set. Notice that our empirical finding does not contradict
the certified robustness of adversarial training using generalization theory (e.g. (Sinha et al., 2017)),
which only explains weak attack situation.

The generalization gap can be potentially reduced if we have a better understanding of Preal instead
of approximating it by training set. This leads to our first motivation: can we use GAN to learn Preal
and plug it into adversarial training algorithm to improve robustness on test set? We will give a
possible solution in Sec. 3.3.

3.2 MOTIVATION II: MORE EFFECTIVE GAN TRAINING BY ROBUST DISCRIMINATOR

GANs are notoriously hard to train. To our knowledge, there are two major symptoms of a failure trial
— gradient vanishing and mode collapse. The theoretical explanation of gradient vanishing problem
is discussed in (Arjovsky & Bottou, 2017) by assuming the images lie in a low dimensional manifold.
Following this idea, (Arjovsky et al., 2017; Gulrajani et al., 2017a) propose to use 1-Wasserstein
distance in place of the KL-divergence. The central character of WGAN and improved WGAN is
that they require the set of discriminators {D(x;w)|∀w ∈ Rd} equals to the set of all 1-Lipschitz
functions w.r.t input x. Practically, we can either clip the weight of discriminator w (Arjovsky et al.,
2017), or add a gradient norm regularizer (Gulrajani et al., 2017a). Recently, another regularization
technique called “spectral normalization” (Miyato et al., 2018; Miyato & Koyama, 2018) is proposed
to enforce 1-Lipschitz discriminator and for the first time, GAN learns to generate high quality images
from full ImageNet data with only one generator-discriminator pair. In contrast, AC-GAN (Odena
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et al., 2017) — the supervised version of DCGAN — divides 1000 classes into 100 groups so each
network-pair only learns 10 classes.

Despite the success along this line of research, we wonder if a weaker assumption to the discriminator
is possible. Concretely, instead of a strict one-Lipschitz function, we require a small local Lipschitz
value on image manifold. Indeed, we find a connection between robustness of discriminator and the
learning efficiency of generator, as illustrated in Fig. 2.

Real	images

Fake	images

𝑥"
𝛿

𝑥adv = 𝑥" + 𝛿

Decision boundary

𝑥"

𝛿
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Robust

Non-
robust

Figure 2: Comparing robust and non-robust discriminators, for simplicity, we put them together
into one graph. Conceptually, the non-robust discriminator tends to make all images close to the
decision boundary, so even a tiny distortion δ can make a fake image x0 to be classified as a real
image xadv = x0 + δ. In contrast, such δ is expected to be much larger for robust discriminators.
As one can see in Fig. 2, if a discriminator D(x) has small LLV (or |D′(x)|), then we know
D(x + δ) ≈ D(x) + D′(x) · δ ≈ D(x) for a “reasonably” large δ. In other words, for robust
discriminator, the perturbed fake image xadv = x0 + δ is unlikely to be mistakenly classified as
real image, unless δ is large. Compared with adversarial attacks (2), the attacker is now a generator
G(z;w) parameterized by w ∈ Rd instead of the gradient ascend algorithm. For making x0 “looks
like” a real image (xadv), we must update generatorG(z;w) toG(z;w′) and by assuming the Lipschitz
continuity of G,

‖δ‖ = ‖xadv − x0‖ = ‖G(z;w′)−G(z;w)‖ ≤ LG‖w − w′‖. (7)

This indicates the movement of generator weights ‖w′ − w‖ is lower bounded by the distance of a
fake image x0 to the decision boundary, specifically we have ‖w′ − w‖ ≥ ‖δ‖/LG. Furthermore,
recall that a robust discriminator D(x) implies a larger ‖δ‖, putting them together we know that
improving the robustness of discriminator will lead to larger updates of the generator. In Sec. 4 we
experimentally show that adversarial training not only speeds up the convergence to the equilibrium,
but also obtains an excellent generator. But we leave the rigorous analysis for future works.

3.3 ADVGAN: ADVERSARIAL TRAINING ON LEARNED IMAGE MANIFOLD

Motivated by Sec. 3.1 and 3.2, we propose a system that combines generator, discriminator, and
adversarial attacker into a single network. Our system consists of two stages, the first stage is an
end-to-end GAN training: the generator feeds fake images to the discriminator; meanwhile real
images sampled from training set are processed by PGD attacking algorithm before sending to
the discriminator. After that the discriminator is learned to minimize both discrimination loss and
classification loss (introduced below). In the next stage, the discriminator is refined by combining the
fake and real images. The network structure is illustrated in Fig. 3. In what follows, we give more
details about each component:
Discriminator: The discriminator could have the standard architecture like AC-GAN. In each
iteration, it discriminates real and fake images. When the ground truth labels are available, it
also predicts the classes. In this paper, we only consider the label-conditioning GANs (Mirza &
Osindero, 2014; Odena et al., 2017; Miyato & Koyama, 2018), whose architectural differences are
briefly overviewed in Fig. 4. Among them we simply choose AC-GAN, despite that SN-GAN (a
combination of spectral normalization (Miyato et al., 2018) and projection discriminator (Miyato
& Koyama, 2018)) performs much better in their paper. The reason we choose the AC-GAN is that
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Figure 3: Illustration of the training process. Step-1 is the standard GAN training, i.e. alternatively
updating the G and D networks. The only difference is that whenever feeding the real images to
the D network, we first run 5 steps of PGD attack, so the discriminator is trained with adversarial
examples. Step-2 is a refining technique, aiming at improving prediction accuracy on the test set.
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Figure 4: Comparing the architectures of discriminators. Our architecture is similar to AC-
GAN (Odena et al., 2017), but they are different in loss functions, if one compares (8) with (9).

SN-GAN discriminator relies on the ground truth labels and their adversarial loss is not designed
to encourage high classification accuracy. But surprisingly, even though AC-GAN is beaten by
SN-GAN by a large margin, after inserting the adversarial training module, the performance of
AC-GAN matches or even surpasses the SN-GAN, due to the reason discussed in Sec. 3.2. We also
changed the loss objective of AC-GAN. Recall that the original loss in (Odena et al., 2017) defined
by discrimination likelihood LS and classification likelihood LC :

LS = E[logP(S = real|Xreal)] + E[logP(S = fake|Xfake)]

LC = E[logP(C = c|Xreal)] + E[logP(C = c|Xfake)],
(8)

where Xreal/fake are any real/fake images, S is the discriminator output, C is the classifier output.
Based on (8), the goal of discriminator is to maximize LS + LC while generator aims at maximizing
LC − LS . According to this definition, both G and D are optimized to increase LC : even if G(z)
produces unrecognizable images, D(x) has to struggle to classify them (with high loss), in such case
the corresponding gradient term∇LC can contribute uninformative direction to the discriminator. To
resolve this issue, we split LC as follows,

LC1
= E[logP(C = c|Xreal)], LC2

= E[logP(C = c|Xfake)], (9)

then discriminator maximizes LS + LC1 and generator maximizes LC2 − LS . The new objective
functions ensure that discriminator only focuses on classifying the real images and discriminating
real/fake images.
Generator: Similar to the traditional GAN training, the generator is updated on a regular basis
to mimic the distribution of real data. This is the key ingredient to improve the robustness of
discriminators: as shown in Sec. 3.1, adversarial training performs well on training set but is
vulnerable on test set. Intuitively, this is because during adversarial training, the network only “sees”
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adversarial examples residing in the δmax-ball of all training samples, whereas the rest images in the
data manifold are undefended. Data augmentation is a natural way to resolve this issue, but traditional
techniques (Krizhevsky et al., 2012; Halevy et al., 2009; Tokozume et al., 2017; Zhang et al., 2017;
Inoue, 2018) rely largely on combinations of geometric transforms to the training images, in our case
the support of the probability density function is still very small. Instead, our system uses images
sampled from generator to provide a continuously supported p.d.f. for the adversarial training. Unlike
traditional augmentation methods, if the equilibrium in (1) is reached, then we can show that one
desirable solution of (1) would be Pfake(z)

dist.
= Preal, and therefore the robust classifier can be trained

on the learned distribution.
Fine-tuning the classifier: This step aims at improving the classification accuracy, based on the
auxiliary classifier in the pretrained discriminator. This is crucial because in the GAN training
stage (step 1 in Fig. 3), the discriminator is not trained to minimize the classification error, but a
weighted loss of both discrimination and classification. But in step 2, we want to focus on the
robust classification task

Lcls
D , E

(x,y)∼Preal

`(f(xadv;w), y) + λ · E
(x,y)∼Pfake

`(f(xadv;w), y),

where xadv = argmin
‖x′−x‖≤δmax

`(f(x′;w), y).
(10)

Here the function f(x;w) is just the classifier part of network D(x), recall that we are dealing with
conditional GAN. As we can see, throughout the fine-tuning stage, we force the discriminator to
focus on the classification task rather than the discrimination task. It turns out that the fine-tuning step
boosts the accuracy by a large margin. Adversarial attacker is omitted in Fig. 3 due to width limit.

4 EXPERIMENT

We experiment on both CIFAR10 and a subset of ImageNet data. Specifically, we extract classes yi
such that yi ∈ np.arange(151, 294, 1) from the original ImageNet data: recall in total there
are 1000 classes in ImageNet data and we sampled 294− 151 = 143 classes from them. We choose
these datasets because 1) the current state-of-the-art GAN, SN-GAN (Miyato & Koyama, 2018),
also worked on these datasets, and 2) the current state-of-the-art adversarial training method (Madry
et al., 2017) only scales to CIFAR dataset. For fair comparison, we copy all the network architectures
for generators and discriminators from SN-GAN, other important factors, such as learning rate,
optimization algorithms, #discriminator updates in each cycle, etc. are also kept the same. The only
modification is that we discarded the feature projection layer and applied the auxiliary classifier (see
Fig. 4). Please refer to the appendix or source code for more implementation details.
Effect of fine-tuning In what follows, we check whether fine-tuning helps improving test set
accuracy. To this end, we design a experiment that compares two set of models: in the first set, we
directly extract the auxiliary classifiers from discriminators to classify images; in the next set, we
apply fine-tuning strategy to the pretrained model as Fig. 3 illustrated. The results can be found in
Fig. 5, which supports our argument that fine-tuning is indeed useful for better prediction accuracy.
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Figure 5: The effect of fine-tuning on prediction accuracy (left: CIFAR10, right: ImageNet-64px)
Robustness of discriminator: comparing robustness with/ without data augmentation In this
experiment, we would like to compare the robustness of discriminator networks with or without
data augmentation technique discussed in Sec. 3.3. The robustness is measured by the prediction
accuracy under adversarial attack. For networks without data augmentation, that would be equal to
the state-of-the-art Madry’s algorithm (Madry et al., 2017). For attacking algorithm, we choose the
widely used `∞ PGD attack (Madry et al., 2017), but other gradient based attacks are expected to
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Dataset σmax of `∞ attacks

0 0.02 0.04 0.08

CIFAR10 81.1% (−0.35%) 70.41% (+1.26%) 57.43% (+3.69%) 30.25% (+6.67%)

0 0.01 0.02 0.03

ImageNet† (64px) 32.4% (+6.35%) 25.2% (+6.9%) 19.1% (+6.58%) 13.7% (+5.38%)

†Denotes the 143-class subset of ImageNet.

Table 1: Accuracy of our model under `∞ PGD-attack. Inside the parenthesis is the improve-
ment over standard adversarial training defense (Madry et al., 2017).

yield the same results. We set the `∞ perturbation to σmax ∈ np.arange(0, 0.1, 0.01) as
defined in (2). Another minor detail is that we scale the images to [−1, 1] rather than usual [0, 1].
This is because generators always have a tanh() output layer, so we need to do some adaptations
accordingly. We exhibit the results in Tab. 1, showing our method can improve the robustness of
state-of-the-art defensive algorithm.
Effect of split classification loss Here we show the effect of split classification loss described in (9),
recall that if we apply the loss in (8) then the resulting model is AC-GAN. It is known that AC-GAN
can easily lose modes in practice, i.e. the generator simply ignores the noise input z and produces
fixed images according to the label y. This defect is observed in many previous works (Huang et al.,
2017; Mathieu et al., 2015; Isola et al., 2017). In this ablation experiment, we compare the generated
images trained by two loss functions, the result is shown in Fig. 6.

Figure 6: Comparing the generated images trained by our modified loss(left) with the original AC-
GAN loss(right). For fair comparison, both networks are trained with adversarial real images. We
can see images from AC-GAN are more distorted and harder to distinguish.

Quality of generator and convergence speed In the last experiment, we compare the quality of
generators trained in three datasets: CIFAR10, ImageNet subset (64px) and ImageNet subset (128px).
Our baseline model is the SN-GAN, considering that, as far as we know, SN-GAN is the best GAN
model capable of learning hundreds of classes. Note that SN-GAN can also learn the conditional
distribution of the entire ImageNet data (1000 classes), unfortunately, we are not able to match this
experiment due to time and hardware limit. To show that the adversarial training technique indeed
accelerates the convergence speed, we also tried to exclude adversarial training — this is basically an
AC-GAN, except that an improved loss function discussed in (9) is applied to discriminator D(x).
The results are exhibited in Fig. 7, which shows that adversarial training can improve the performance
of GAN, and our generator achieves better inception score than SNGAN. Another finding is that our
new loss proposed in (9) works much better than the original AC-GAN loss. (8). Last of all, we check
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Figure 7: Results on subset of ImageNet, left: 64px, right: 128px. We compare the inception scores
between our model and the SN-GAN. Clearly our method learns a high quality generator in a short
time, specifically, in both datasets, AC-GAN with adversarial training surpasses SN-GAN in just
25 epochs (64px) or 50 epochs (128px). Another observation is that with adversarial training, the
convergence is greatly accelerated.

whether adversarial training with fake data augmentation really shrinks the generalization gap. To this
end, we draw the same figure as Fig. 1, except that now the classification model is the discriminator
after fine-tuning step (shown in Fig. 3). We compare the accuracy gap in Fig. 8. Clearly the model
trained with the adversarial real+fake augmentation strategy works extremely well: it improves the
testing accuracy under PGD-attack and so the generalization gap between training/testing set does
not increase that much.
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Figure 8: Comparing the accuracy gap between adversarial training model and GAN data augmenta-
tion model.

5 DISCUSSION

In this paper, we draw a connection between adversarial training (Madry et al., 2017) and generative
adversarial network (Goodfellow et al., 2014a). Our primary goal is to improve the generalization
ability of adversarial training and this is achieved by data augmentation by the unlimited fake images.
Independently, we see an improvement of both robustness and convergence speed in GAN training.
While the theoretical principle in behind is still unclear to us, we gave an intuitive explanation. Apart
from that, a minor contribution of our paper is the improved loss function of AC-GAN, showing a
better result in image quality.
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