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1 Introduction

Differentiable programming allows programmers to
calculate program gradients and unlocks experimen-
tation with new optimizers and neural network archi-
tectures. This is why modern deep learning frame-
works [1, 23, 20, 7] introduce derivative APIs (e.g.
tf.gradients in TensorFlow). Programmers ask for
the gradient of an objective function with respect to
its parameters; which is then used to optimize these
parameters, e.g. through stochastic gradient descent.

Recent projects, as Swift for TensorFlow (S4TF)
(www.tensorflow.org/swift) and Julia Zygote [15],
in the spirit of the seminal “Lambda the Ultimate
Backpropagator” (LTUB) [21], advocate AD as a
first-class construct in a general-purpose programming
language, and aim to take advantage of traditional
compiler optimizations for efficient code generation.

The idea is to produce statically, for every differ-
entiable function of type a → b, another function re-
turning the result of the original function and a linear
back-propagator map, of type a → (b, Tan b −◦ Tan a).
We call these compiler-generated functions the rep-
resentation functions (rep-functions for short) of dif-
ferentiable functions, and will use a  b as a type
abbreviation for a → (b, Tan b −◦ Tan a). To achieve
this, the AD pass merely composes rep-functions out
of primitive rep-functions like those for (+) and (−),
by systematically lifting these primitives through the
constructs of the programming language.

An important challenge in this setting is the dif-
ferentiation of functions that accept or return other
functions, perhaps capturing (differentiable or non-
differentiable) variables. Partial applications must not
“forget” to back-propagate to captured variables, and
more generally we need AD that provably preserves
equational reasoning – needed to justify inlining, com-
mon sub-expression elimination etc. As we will see
(Section 2), higher-order functions are ubiquitous in
modern statically-typed languages, even inside the im-
plementation of end-to-end first-order programs. They
have to be tackled heads-on to avoid additional com-

plications in a compiler, such as extra inlining and
loop unrolling or early defunctionalization, and to
allow for separate compilation, to name a few.

This is the challenge we address. We focus on
(i) statically-typed, (ii) compile-time, (ii) reverse-mode
AD, a scenario exemplified by Swift AD. (http://bit.
ly/swift-autodiff) Our contributions are:

• Following recent work [11] we introduce combina-
tors for rep-functions that also return pullback lin-
ear maps (back-propagators), and show how they
can be used for AD. Generalizing to higher-order
functions boils down to introducing differentiable
curry and eval combinators.

• Higher-order functions (like curry) accept or re-
turn closures. For a function from tensors to
tensors, its pullback at some input is also a linear
map from tensors to tensors. We use the term
tangent space, denoted as Tan t, for the space of
permutations of values of a type t. Hence the
tangent space of a tensor is just a tensor. But
what should be the tangent space of a function
type? Perhaps surprisingly, a function type itself
is not the right answer. We provide two possi-
ble implementations for function tangents and
differentiable currying, and explain the tradeoffs.

• The first implementation – novel to our knowl-
edge – is typeable in a simply-typed discipline
and bears similarities to tracing but may involve
re-computation of the function we differentiate
during the execution of its backwards derivative.

• The second is a dependently typed version of an
idea behind “Lambda the Ultimate Backpropaga-
tor” [21], itself inspired by the view of functions
as closures whose tangents are the tangents of
their environments. We put that idea in the
combinatory setting of Elliott. Our work implies
that an “erased” version that relies on reinterpret
casts in a weaker type system is in fact safe.
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2 Higher-order functions and AD

Higher-order functions may not seem essential for
differentiation but in a general-purpose programming
language (e.g. Swift) are actually ubiquitous, even
inside the implementation of a first-order program.
Consider, for instance, the case of a recurrent neural
network (RNN) model. An RNN, in its simplest form,
folds a state transformer (called the RNN cell – e.g. a
Long Short-Term Memory [14])) through a sequence
of inputs and produces a final state. The state is often
called the “hidden state” of the RNN:

rnnCell :: (Params, Tensor, Tensor) → Tensor

rnnCell (params, hidden_state, input) =
... // return new hidden_state

runRNN :: Params  Tensor  [Tensor]  Tensor

runRNN params init_state xs =
let g :: Tensor  Tensor  Tensor

g hid input = lstmCell (params, hid, input)
in fold g init_state xs

Here function g is the partial application of rnnCell
on params, passed to the recursive function fold. This
example shows many features required for a general
purpose language; (i) partial applications, (ii) recur-
sive functions (such as fold), (iii) recursive datatypes
(such as [ Tensor] above). In particular function g, the
partial application of rnnCell captures the parameters
and – unlike our simple example above – needs to back-
propagate to these parameters. Moreover, we cannot
eliminate higher-order functions by inlining, unless
we unroll fold. And even if we could unroll fold,
rnnCell might be imported from a different module
whose source is not available for inlining.

In this extended abstract we will only focus on
higher-order functions. We will show how we can
express differentiation through higher-order programs
following Elliott’s recipe by providing implementations
of a small set of combinators, given below:

id :: τ  τ
curry :: ((τa,τb)  τc) → (τa  (τb  τc))
eval :: (τ  σ, τ)  σ
prod :: (τy  τa) → (τy  τb) → (τy  (τa,τb))
(◦) :: (τa  τb) → (τb  τc) → (τa  τc)
constτ :: σ → (τ  σ)
proji :: (τ1,. . .,τn)  τi

Unfolding types, we see that curry/eval require a
definition for function tangents, Tan(τ  σ). What
these should be (and why) is answered in this work.

J [[∆ ` e : τ ]] = b

b = J [[∆, (x:τ) ` e : σ]]

J [[∆ ` diffλx:τ.e : τ  σ]] = curry b
BDLam

b1 = J [[∆ ` e1 : τ  σ]]
b2 = J [[∆ ` e2 : τ ]]

J [[∆ ` e1 e2 : σ]] = prod b1 b2 ◦ eval
BDApp

x is i-th variable in ∆

J [[∆ ` x : τ ]] = proji
BDVar

b1 = J [[∆ ` e1 : τ1]] b2 = J [[∆ ` e2 : τ2]]

J [[∆ ` (e1, e2) : (τ1, τ2)]] = prod b1 b2
BDProd

Figure 1: Translating to combinators

3 Combinatory-style AD
We first illustrate how AD can be implemented using
the aforementioned set of combinators.

3.1 Step 1: Translate to combinators

We first use the combinator language in the previous
section as the target of conversion from a (conven-
tional) call-by-value higher-order lambda calculus of
differentiable functions λ∂ . The translation, in Fig-
ure 1, has (yet) nothing to do with AD; rather it
is reminiscent of the well-understood translation of
λ-calculus into cartesian closed categories (CCCs) [8].
J [[∆  ̀ e : τ ]] defines such a type-directed trans-
lation. The rules ensure that if ∆  ̀ e : τ then
` J [[∆  ̀ e : τ ]] : ∆  τ , where we abuse notation
and refer to ∆ as the tuple of all types of environment
variables. The conversion also assumes (not shown, for
lack of space) that all differentiable primitives, such as
(∗) : (Float, Float) Float come with rep-function
implementations.

3.2 Step 2: Implement combinators

Next, we implement our combinators, accepting
and returning a  b values, i.e. functions of type
a → (b, Tan b → Tan a). We also need to define a tan-
gent space Tan t for every type t. Figure 2 presents
such a small library. Figure 6 in the Appendix gives
the definition of T [τ ] for all the types of λ∂ . The
cases for floats, products, and tensors of floats are
standard; also the rules for “discrete” types all return
Unit. Some combinators (e.g. prod) rely on having
0 and (+) defined for every tangent type T [τ ], also
found in Figure 6. In the next sections we proceed to
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vjp : (τ  σ) → τ → T [σ] → T [τ ]
vjp f x gb = snd (f x) gb

mult :: (Float,Float)  Float

mult (x1,x2) = (x1∗x2, λg. (x2∗g, x1∗g))

proj_left :: (τ ,σ)  τ
proj_left (a,b) = (a, λg. (g, 0))

prod :: (τ  σ1) → (τ  σ2) → (τ  (σ1, σ2))
prod f g y = let (a, pbf) = f y

(b, pbg) = g y

in ((a, b), λ(ga, gb). pbf ga + pbg gb)
(◦) :: (τa  τb) → (τb  τc) → (τa  τc)
(◦) f g a = let (b, pbf) = f a

(c, pbg) = g b

in (c, λgc. pbf (pbg gc))

Figure 2: Library of combinators (excerpt)

curry :: ((τa,τb)  τc) → (τa  (τb  τc))
curry f = new_f

where new_f :: τa → (τb  τc, T [τb  τc] → T [τa])
new_f t =
let new_g :: τb → (τc, T [τc] → T [τb])

new_g s = let (r, pb) = f(t, s)
in (r, λgr. snd (pb gr))

new_pb :: T [τb  τc] → T [τa]
new_pb grs =
let aux (s,gr) = fst (snd (f (t, s)) gr)
in sum (map aux grs)

in (new_g, new_pb)
eval :: (τ  σ, τ)  σ
eval (f, x) = let (y, pb) = f x

in (y, λg. ([(x,g)], pb g))

Figure 3: Simply-typed differentiable curry/eval

discuss the highlighted parts in Figure 6, to do with
function tangents, curry, and eval.

4 Simply-typed curry

We define curry and eval in Figure 3. These defini-
tions together with the need for having an addition
and a zero operator, effectively force the equation
T [τ  σ] = [(τ, T [σ])], a list of pairs of values and
result tangents. Addition and zero are given by list
concatenation and the empty list, as we see in the
highlighted parts of Figure 6. These lists intuitively
track all calls of a function and hence we have to sum
up all the resulting tangents from running our func-

tion forwards and then backwards for every element,
arriving at the implementation of curry in Figure 3.
The eval combinator merely records the primal value
(x) and the output tangent (g) in a singleton list.

4.1 Properties and metatheory

Is our construction correct? We answer by showing
that it respects equational reasoning principles. For
example, when given f : (τ1, τ2)  τ3 which we can
curry and repeatedly evaluate with an argument of
type τ1 and another of type τ2, we will get a func-
tion that is not only forward-equivalent, but also has
an equivalent back-propagator. An example are the
forward-equivalent functions foo1 and foo2 in the
“Partial Application” column of Figure 4.

Consider foo1 and foo2 in the “Forgetting Results”
column of Figure 4. The two functions should be
equivalent in forward and reverse mode, but for foo1

we will back-propagate a tangent value of [(x, 0)] for
the use of g. In foo2, since g is not used at all, we will
back-propagate []. We want to therefore treat [(x, 0)]
and [] as equivalent, even if they are different lists.

Finally, foo1 and foo2 in the “Summing Results”
column are forward-equivalent, hence we expect equiv-
alent back-propagators. In the first case, we call f

multiple times with the same argument and sum the
results; in the second case we call it once. The tan-
gents that are back-propagated to f in the first case
will be [(x, g), (x, g)] where g is the tangent corre-
sponding to the result of foo1. In the second case we
get [(x, g + g)]. We need these two tangents to be
treated as equivalent, even if they are different lists.

We have formalized thus a notion of equivalence that
goes beyond β-equivalence for back-propagators, and
showed various CCC laws hold of our combinators wrt.
that equivalence. These laws guarantee equivalences
for the examples presented in this section.

5 Dependently-typed curry

Unfortunately the differentiable curry in Figure 3 has
a back-propagator new pb that involves a full forward
computation of the original function f, at each of the
recorded inputs it was applied to – hence suffers from
redundant computation. We need something better.

A key insight from the LTUB work [21], leading to
an efficient solution, has been this: a back-propagator
for a function τ  σ should take as argument a value
of type T [σ] but return not only tangent T [τ ] but
also the tangent of the environment ∆ over which
the function closed when it was constructed; T [∆].
To understand the intuition, it’s helpful to think of
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f :: (Float, Float)  Float

foo1, foo2 :: (Float, Float)  Float

foo1 (a, b) = (λxb → f (a, xb)) b

foo2 (a, b) = f (a, b)

foo1, foo2 :: (Float  Float,
Float  Float)

 Float  Float

foo1 (f, g) x = fst (f x, g x)
foo2 (f, g) x = f x

foo1 :: (Float  Float)
 Float  Float

foo1 f x = f x + f x

foo2 f x = let y = f x in (y + y)

Partial Application Forgetting Results Summing Results

Figure 4: Example equivalences (foo1 and foo2 in each column)

a function value as just (i) a static top-level code
pointer that does not vary with any input, plus (ii)
an environment of captured values that could vary
as these captured values vary. In other words, for a
closure of type τ  σ, capturing environment ∆, its
tangent space is T [τ  σ] = T [∆].

LTUB originally presented an AD system for a dy-
namically typed language. But in a static type system
we immediately hit a problem: it is no longer the case
that T [·] can be a type operator, because different val-
ues of type τ  σ capture different environments. We
therefore revise T [τ ] to now become a value-dependent
type operator that takes a value of type τ as an ar-
gument. We write T [v : τ ] to denote this dependent
tangent type, and when the type is obvious from the
context we will simply be writing T [v].

Definition 5.1 (Dependently typed rep-function).
We define τ  σ to be the following type:

∃τ [∆.Π(x:τ).Σ(y:σ).T [y] (T [x], τ [∆)

where τ [∆ denotes a first-order type corresponding to
the tangents of the closure environment.

Definition 5.2 (Dependently typed tangents). We
define T [v : τ ] where v is a closed term of type τ
similarly to the previous non-dependent definition,
but modify the case for functions as follows:

T [v : τ  σ] = match v with exT τ [∆ ⇒ τ [∆

These definitions – reminiscent of typed closure con-
version [19] – deserve some discussion. Definition 5.1
is just a small augmentation of the rep-function type
that we have been familiarized with so far. It existen-
tially quantifies over an environment tangent type τ [δ ,
and returns a function that when given an argument
(x:τ) it will return a dependent sum (y:σ) and an addi-
tional back-propagator function. The back-propagator
also return a τ [∆. Intuitively, is corresponds to the
tangent of the environment captured in the function.
For this reason Definition 5.2, opens up one of these
existential types and returns the witness type.

curry :: ((τt,τs)  τr) → (τt  (τs  τr))

curry (exT τ [ f) = exT () new_f

where

new_f :: Π(t:τt). Σ(g : τs  τr). T [g] → (τ [, T [t])
new_f t =

let gf :: Π(s:τs).Σ(r:τr). T [r] → ((τ [, T [t]), T [s])
gf s = let (r, pullback) = f(t,s)

in (r, λgr →
let (cte,(ctt,cts)) = pullback gr

in ((cte,ctt), cts))

g = exT (τ [, T [t]) gf

new_pb :: T [g] → (τ [, T [t])
new_pb env = env

in (g, new_pb)
eval :: (τ  σ, τ)  σ
eval = exT () new_f

where new_f (exT τ [ f, x) = let (y, pb) = f x

in (y, λg → ((), pb g))
comp :: (a  b) → (b  c) → (a  c)

comp (exT τ [f f) (exT τ [g g) = exT (τ [f , τ
[
g) h

where h a = let (b, pb_f) = f a

(c, pb_g) = g b

in (c, λgc → let (envg, gb) = pb_g gc

(envf, ga) = pb_f gb

in ((envf, envg), ga)

Figure 5: Dependently-typed differentiable curry/eval

In Figure 5 we give such a curry and eval, in a non-
opinionated dependent-type notation (we also have
produced in Agda and Coq). The reader is urged
to examine the code, but ignore the type signatures,
resting assured, it all type checks. Another remark is
that composition (also in Figure 5), simply collects
together environment tangents. These need not be
maps from variables to tangents, rather just tuples.

We have showed that dependently typed currying
satisfies similar laws as the simply-typed version. As
a final remark, most production languages do not
support dependent types. There our solution can be
safely implemented using reinterpret casts. This is, in
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fact, a tentative proposal for the Swift AD project.1

6 Discussion and extensions

6.1 Internalizing differentiation

We have not yet described how to calculate vector-
Jacobian products. Indeed, rep-functions are ordi-
nary functions returning linear maps, and our λ∂ of
Section 3 does not include ordinary (→), λ, or appli-
cations. As a result, it cannot type vjp (Figure 2)!
We believe there is a principled way to integrate ordi-
nary and differentiable arrows, while still preserving
equational reasoning, out of scope for this abstract.

6.2 Further features

By taking the same approach of (i) compiling to com-
binators, and (ii) implementing these combinators in
terms of a core language we can show how to intro-
duce control flow and recursion into a differentiable
programming language. Supporting richer algebraic
types may also be possible, through user-specified
definitions for the tangent spaces of these types.

7 Related work

We presented the marriage of ideas behind Elliot’s
categorical presentation of AD [11] and the seminal
LTUB work [21]. We extend Elliot’s presentation to
differentiable currying and evaluation, while putting
the ideas of Pearlmutter and Siskind in a typed setting.

The idea of using closures as back-propagators is
receiving recent attention. For example Julia Zy-
gote [15] and Swift AD adopts this design. Other
recent work follows similar ideas [27, 26] but is using
meta-programming as an implementation technique.

There exists work on differentiation semantics [24]
and differentiable categories [5], usually interpreting
types as vector spaces. Related ideas have appeared
for higher-order lambda calculi [18, 9] but the under-
lying foundations only tackle forward mode.

AD has a long history in array programming and
scientific computing [13]. Forward-mode AD has
been presented before for (first-order) functional pro-
grams [16, 10], as libraries in general purpose lan-
guages [3], DSLs [6], and more. We urge the reader to
consult the comprehensive survey [2]. Recent sys-
tems revisit efficient differentiable array program-
ming [22, 25]. There exist also widely used AD li-
braries for Python [17], and new systems that target

1Using the erased AnyDerivative struct, see https://www.

tensorflow.org/swift/api_docs/Structs/AnyDerivative.

deep learning applications [12] – the latter supporting
variable capture through early defunctionalization.
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A Appendix

T [Float] = Float

T [Tensor(Float)] = Tensor(Float)
T [(τ, σ)] = (T [τ ], T [σ])

T [τ  σ] = [(τ, T [σ])]

T [Unit] = Unit

T [Tensor(Int)] = Unit

T [Int] = Unit

T [Bool] = Unit

0T [Float] = 0
0T [Tensor(Float)] = 0
0T [(τ,σ)] = (0T [τ ], 0T [σ])

0T [τ σ] = []

0T [τ ] = ()

x1 +T [Float] x2 = x1 + x2
x1 +T [Tensor(Float)] x2 = x1 + x2
(x11, x12) +T [(τ,σ)] (x21, x22) = (x11+T [τ ]x12,

x21+T [σ]x22)

x1 +T [τ σ] x2 = x1 ++ x2

Figure 6: Tangent spaces for λ∂ (simply-typed)
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