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ABSTRACT

Unsupervised image-to-image translation has gained considerable attention due to
the recent impressive progress based on generative adversarial networks (GANs).
However, previous methods often fail in challenging cases, in particular, when
an image has multiple target instances and a translation task involves significant
changes in shape, e.g., translating pants to skirts in fashion images. To tackle
the issues, we propose a novel method, coined instance-aware GAN (InstaGAN),
that incorporates the instance information (e.g., object segmentation masks) and
improves multi-instance transfiguration. The proposed method translates both an
image and the corresponding set of instance attributes while maintaining the per-
mutation invariance property of the instances. To this end, we introduce a context
preserving loss that encourages the network to learn the identity function outside
of target instances. We also propose a sequential mini-batch inference/training
technique that handles multiple instances with a limited GPU memory and en-
hances the network to generalize better for multiple instances. Our comparative
evaluation demonstrates the effectiveness of the proposed method on different im-
age datasets, in particular, in the aforementioned challenging cases. Code and
results are available in https://github.com/sangwoomo/instagan.

1 INTRODUCTION

Cross-domain generation arises in many machine learning tasks, including neural machine trans-
lation (Artetxe et al., 2017; Lample et al., 2017), image synthesis (Reed et al., 2016; Zhu et al.,
2016), text style transfer (Shen et al., 2017), and video generation (Bansal et al., 2018; Wang et al.,
2018a; Chan et al., 2018). In particular, the unpaired (or unsupervised) image-to-image translation
has achieved an impressive progress based on variants of generative adversarial networks (GANs)
(Zhu et al., 2017; Liu et al., 2017; Choi et al., 2017; Almahairi et al., 2018; Huang et al., 2018;
Lee et al., 2018), and has also drawn considerable attention due to its practical applications includ-
ing colorization (Zhang et al., 2016), super-resolution (Ledig et al., 2017), semantic manipulation
(Wang et al., 2018b), and domain adaptation (Bousmalis et al., 2017; Shrivastava et al., 2017; Hoff-
man et al., 2017). Previous methods on this line of research, however, often fail on challenging
tasks, in particular, when the translation task involves significant changes in shape of instances (Zhu
et al., 2017) or the images to translate contains multiple target instances (Gokaslan et al., 2018). Our
goal is to extend image-to-image translation towards such challenging tasks, which can strengthen
its applicability up to the next level, e.g., changing pants to skirts in fashion images for a customer
to decide which one is better to buy. To this end, we propose a novel method that incorporates the
instance information of multiple target objectsin the framework of generative adversarial networks
(GAN); hence we called it instance-aware GAN (InstaGAN). In this work, we use the object seg-
mentation masks for instance information, which may be a good representation for instance shapes,
as it contains object boundaries while ignoring other details such as color. Using the information,
our method shows impressive results for multi-instance transfiguration tasks, as shown in Figure 1.

Our main contribution is three-fold: an instance-augmented neural architecture, a context preserving
loss, and a sequential mini-batch inference/training technique. First, we propose a neural network
architecture that translates both an image and the corresponding set of instance attributes. Our ar-
chitecture can translate an arbitrary number of instance attributes conditioned by the input, and is
designed to be permutation-invariant to the order of instances. Second, we propose a context preserv-

1

https://github.com/sangwoomo/instagan


Published as a conference paper at ICLR 2019

Figure 1: Translation results of the prior work (CycleGAN, Zhu et al. (2017)), and our proposed
method, InstaGAN. Our method shows better results for multi-instance transfiguration problems.

ing loss that encourages the network to focus on target instances in translation and learn an identity
function outside of them. Namely, it aims at preserving the background context while transform-
ing the target instances. Finally, we propose a sequential mini-batch inference/training technique,
i.e., translating the mini-batches of instance attributes sequentially, instead of doing the entire set
at once. It allows to handle a large number of instance attributes with a limited GPU memory, and
thus enhances the network to generalize better for images with many instances. Furthermore, it
improves the translation quality of images with even a few instances because it acts as data augmen-
tation during training by producing multiple intermediate samples. All the aforementioned contri-
butions are dedicated to how to incorporates the instance information (e.g., segmentation masks) for
image-to-image translation. However, we believe that our approach is applicable to numerous other
cross-domain generation tasks where set-structured side information is available.

To the best of our knowledge, we are the first to report image-to-image translation results for multi-
instance transfiguration tasks. A few number of recent methods (Kim et al., 2017; Liu et al., 2017;
Gokaslan et al., 2018) show some transfiguration results but only for images with a single instance
often in a clear background. Unlike the previous results in a simple setting, our focus is on the
harmony of instances naturally rendered with the background. On the other hand, CycleGAN (Zhu
et al., 2017) show some results for multi-instance cases, but report only a limited performance for
transfiguration tasks. At a high level, the significance of our work is also on discovering that the
instance information is effective for shape-transforming image-to-image translation, which we think
would be influential to other related research in the future. Mask contrast-GAN (Liang et al., 2017)
and Attention-GAN (Mejjati et al., 2018) use segmentation masks or predicted attentions, but only
to attach the background to the (translated) cropped instances. They do not allow to transform the
shapes of the instances. To the contrary, our method learns how to preserve the background by
optimizing the context preserving loss, thus facilitating the shape transformation.

2 INSTAGAN: INSTANCE-AWARE IMAGE-TO-IMAGE TRANSLATION

Given two image domains X and Y , the problem of image-to-image translation aims to learn map-
pings across different image domains,GXY : X → Y or/andGYX : Y → X , i.e., transforming target
scene elements while preserving the original contexts. This can also be formulated as a conditional
generative modeling task where we estimate the conditionals p(y|x) or/and p(x|y). The goal of
unsupervised translation we tackle is to recover such mappings only using unpaired samples from
marginal distributions of original data, pdata(x) and pdata(y) of two image domains.

The main and unique idea of our approach is to incorporate the additional instance information,
i.e., augment a space of set of instance attributes A to the original image space X , to improve the
image-to-image translation. The set of instance attributes a ∈ A comprises all individual attributes
of N target instances: a = {ai}Ni=1. In this work, we use an instance segmentation mask only,
but we remark that any useful type of instance information can be incorporated for the attributes.
Our approach then can be described as learning joint-mappings between attribute-augmented spaces
X ×A and Y×B. This leads to disentangle different instances in the image and allows the generator
to perform an accurate and detailed translation. We learn our attribute-augmented mapping in the
framework of generative adversarial networks (GANs) (Goodfellow et al., 2014), hence, we call it
instance-aware GAN (InstaGAN). We present details of our approach in the following subsections.

2.1 INSTAGAN ARCHITECTURE

Recent GAN-based methods (Zhu et al., 2017; Liu et al., 2017) have achieved impressive perfor-
mance in the unsupervised translation by jointly training two coupled mappings GXY and GYX with
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(a) Overview (b) Generator G (c) Discriminator D

Figure 2: (a) Overview of InstaGAN, where generatorsGXY,GYX and discriminatorDX,DY follows
the architectures in (b) and (c), respectively. Each network is designed to encode both an image and
set of instance masks. G is permutation equivariant, and D is permutation invariant to the set order.
To achieve properties, we sum features of all set elements for invariance, and then concatenate it
with the identity mapping for equivariance.

a cycle-consistency loss that encourages GYX(GXY(x)) ≈ x and GXY(GYX(y)) ≈ y. Namely,
we choose to leverage the CycleGAN approach (Zhu et al., 2017) to build our InstaGAN. How-
ever, we remark that training two coupled mappings is not essential for our method, and one can
also design a single mapping following other approaches (Benaim & Wolf, 2017; Galanti et al.,
2018). Figure 2 illustrates the overall architecture of our model. We train two coupled generators
GXY : X × A → Y × B and GYX : Y × B → X × A, where GXY translates the original data
(x,a) to the target domain data (y′, b′) (and vice versa for GYX), with adversarial discriminators
DX : X ×A → {‘X’, ‘not X’} and DY : Y ×B → {‘Y’, ‘not Y’}, where DX determines if the data
(original (x,a) or translated (x′,a′)) is in the target domain X ×A or not (and vice versa for DY).

Our generator G encodes both x and a, and translates them into y′ and b′. Notably, the order
of the instance attributes in the set a should not affect the translated image y′, and each instance
attribute in the set a should be translated to the corresponding one in b′. In other words, y′ is
permutation-invariant with respect to the instances in a, and b′ is permutation-equivariant with
respect to them. These properties can be implemented by introducing proper operators in feature
encoding (Zaheer et al., 2017). We first extract individual features from image and attributes using
image feature extractor fGX and attribute feature extractor fGA, respectively. The attribute features
individually extracted using fGA are then aggregated into a permutation-invariant set feature via
summation:

∑N
i=1 fGA(ai). As illustrated in Figure 2b, we concatenate some of image and attribute

features with the set feature, and feed them to image and attribute generators. Formally, the image
representation hGX and the n-th attribute representation hnGA in generator G can be formulated as:

hGX(x,a) =

[
fGX(x);

N∑
i=1

fGA(ai)

]
, hnGA(x,a) =

[
fGX(x);

N∑
i=1

fGA(ai); fGA(an)

]
, (1)

where each attribute encoding hnGA process features of all attributes as a contextual feature. Finally,
hGX is fed to the image generator gGX, and hnGA (n = 1, . . . , N) are to the attribute generator gGA.

On the other hand, our discriminatorD encodes both x and a (or x′ and a′), and determines whether
the pair is from the domain or not. Here, the order of the instance attributes in the set a should
not affect the output. In a similar manner above, our representation in discriminator D, which is
permutation-invariant to the instances, is formulated as:

hDX(x,a) =

[
fDX(x);

N∑
i=1

fDA(ai)

]
, (2)

which is fed to an adversarial discriminator gDX.

We emphasize that the joint encoding of both image x and instance attributes a for each neural
component is crucial because it allows the network to learn the relation between x and a. For
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example, if two separate encodings and discriminators are used for x and a, the generator may
be misled to produce image and instance masks that do not match with each other. By using the
joint encoding and discriminator, our generator can produce an image of instances properly depicted
on the area consistent with its segmentation masks. As will be seen in Section 3, our approach
can disentangle output instances considering their original layouts. Note that any types of neural
networks may be used for sub-network architectures mentioned above such as fGX, fGA, fDX, fDA, gGX,
gGA, and gDX. We describe the detailed architectures used in our experiments in Appendix A.

2.2 TRAINING LOSS

Remind that an image-to-image translation model aims to translate a domain while keeping the
original contexts (e.g., background or instances’ domain-independent characteristics such as the
looking direction). To this end, we both consider the domain loss, which makes the generated
outputs to follow the style of a target domain, and the content loss, which makes the outputs to
keep the original contents. Following our baseline model, CycleGAN (Zhu et al., 2017), we use
the GAN loss for the domain loss, and consider both the cycle-consistency loss (Kim et al., 2017;
Yi et al., 2017) and the identity mapping loss (Taigman et al., 2016) for the content losses.1 In
addition, we also propose a new content loss, coined context preserving loss, using the original and
predicted segmentation information. In what follows, we formally define our training loss in detail.
For simplicity, we denote our loss function as a function of a single training sample (x,a) ∈ X ×A
and (y, b) ∈ Y × B, while one has to minimize its empirical means in training.

The GAN loss is originally proposed by Goodfellow et al. (2014) for generative modeling via alter-
nately training generator G and discriminator D. Here, D determines if the data is a real one of a
fake/generated/translated one made by G. There are numerous variants of the GAN loss (Nowozin
et al., 2016; Arjovsky et al., 2017; Li et al., 2017; Mroueh et al., 2017), and we follow the LSGAN
scheme (Mao et al., 2017), which is empirically known to show a stably good performance:

LLSGAN = (DX(x,a)− 1)2 +DX(GYX(y, b))
2 + (DY(y, b)− 1)2 +DY(GXY(x,a))

2. (3)

For keeping the original content, the cycle-consistency loss Lcyc and the identity mapping loss Lidt
enforce samples not to lose the original information after translating twice and once, respectively:

Lcyc = ‖GYX(GXY(x,a))− (x,a)‖1 + ‖GXY(GYX(y, b))− (y, b)‖1, (4)
Lidt = ‖GXY(y, b)− (y, b)‖1 + ‖GYX(x,a)− (x,a)‖1. (5)

Finally, our newly proposed context preserving loss Lctx enforces to translate instances only, while
keeping outside of them, i.e., background. Formally, it is a pixel-wise weighted `1-loss where the
weight is 1 for background and 0 for instances. Here, note that backgrounds for two domains become
different in transfiguration-type translation involving significant shape changes. Hence, we consider
the non-zero weight only if a pixel is in background in both original and translated ones. Namely,
for the original samples (x,a), (y, b) and the translated one (y′, b′), (x′,a′), we let the weight
w(a, b′), w(b,a′) be one minus the element-wise minimum of binary represented instance masks,
and we propose

Lctx = ‖w(a, b′)� (x− y′)‖1] + ‖w(b,a
′)� (y − x′)‖1 (6)

where � is the element-wise product. In our experiments, we found that the context preserving loss
not only keeps the background better, but also improves the quality of generated instance segmenta-
tions. Finally, the total loss of InstaGAN is

LInstaGAN = LLSGAN︸ ︷︷ ︸
GAN (domain) loss

+λcycLcyc + λidtLidt + λctxLctx︸ ︷︷ ︸
content loss

, (7)

where λcyc, λidt, λctx > 0 are some hyper-parameters balancing the losses.

2.3 SEQUENTIAL MINI-BATCH TRANSLATION

While the proposed architecture is able to translate an arbitrary number of instances in principle,
the GPU memory required linearly increases with the number of instances. For example, in our
experiments, a machine was able to forward only a small number (say, 2) of instance attributes

1 We remark that the identity mapping loss is also used in CycleGAN (see Figure 9 of Zhu et al. (2017)).
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Figure 3: Overview of the sequential mini-batch training with instance subsets (mini-batches) of size
1,2, and 1, as shown in the top right side. The content loss is applied to the intermediate samples of
current mini-batch, and GAN loss is applied to the samples of aggregated mini-batches. We detach
every iteration in training, in that the real line indicates the backpropagated paths and dashed lines
indicates the detached paths. See text for details.

during training, and thus the learned model suffered from poor generalization to images with a
larger number of instances. To address this issue, we propose a new inference/training technique,
which allows to train an arbitrary number of instances without increasing the GPU memory. We
first describe the sequential inference scheme that translates the subset of instances sequentially, and
then describe the corresponding mini-batch training technique.

Given an input (x,a), we first divide the set of instance masks a into mini-batches a1, . . . ,aM , i.e.,
a =

⋃
i ai and ai ∩aj = ∅ for i 6= j. Then, at the m-th iteration for m = 1, 2, . . . ,M , we translate

the image-mask pair (xm,am), where xm is the translated image y′m−1 from the previous iteration,
and x1 = x. In this sequential scheme, at each iteration, the generator G outputs an intermediate
translated image y′m, which accumulates all mini-batch translations up to the current iteration, and
a translated mini-batch of instance masks b′m:

(y′m, b
′
m) = G(xm,am) = G(y′m−1,am). (8)

In order to align the translated image with mini-batches of instance masks, we aggregate all the
translated mini-batch and produce a translated sample:

(y′m, b
′
1:m) = (y′m,∪mi=1b

′
i). (9)

The final output of the proposed sequential inference scheme is (y′M , b
′
1:M ).

We also propose the corresponding sequential training algorithm, as illustrated in Figure 3. We
apply content loss (4-6) to the intermediate samples (y′m, b

′
m) of current mini-batch am, as it is

just a function of inputs and outputs of the generator G.2 In contrast, we apply GAN loss (3) to
the samples of aggregated mini-batches (y′m, b

′
1:m), because the network fails to align images and

masks when using only a partial subset of instance masks. We used real/original samples {x} with
the full set of instance masks only. Formally, the sequential version of the training loss of InstaGAN
is

LInstaGAN−SM =
M∑

m=1

LLSGAN((x,a), (y′m, b′1:m)) + Lcontent((xm,am), (y′m, b
′
m)) (10)

where Lcontent = λcycLcyc + λidtLidt + λctxLctx.

We detach every m-th iteration of training, i.e., backpropagating with the mini-batch am, so that
only a fixed GPU memory is required, regardless of the number of training instances.3 Hence, the

2 The cycle-consistency loss (4) needs reconstruction sample (x′′
m,a′′

m). However, it is just a twice trans-
lated current mini-batch sample, i.e., for the opposite direction generator G′, (x′′

m,a′′
m) = G′(G(xm,am)).

3 We still recommend users to increase the subset size as long as the GPU memory allows. This is because
too many sequential steps may hurt the permutation-invariance property of our model.
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Figure 4: Translation results on clothing co-parsing (CCP) (Yang et al., 2014) dataset.

Figure 5: Translation results on multi-human parsing (MHP) (Zhao et al., 2018) dataset.

Figure 6: Translation results on COCO (Lin et al., 2014) dataset.

sequential training allows for training with samples containing many instances, and thus improves
the generalization performance. Furthermore, it also improves translation of an image even with a
few instances, compared to the one-step approach, due to its data augmentation effect using interme-
diate samples (xm,am). In our experiments, we divided the instances into mini-batches a1, . . . ,aM

according to the decreasing order of the spatial sizes of instances. Interestingly, the decreasing order
showed a better performance than the random order. We believe that this is because small instances
tend to be occluded by other instances in images, thus often losing their intrinsic shape information.

3 EXPERIMENTAL RESULTS

3.1 IMAGE-TO-IMAGE TRANSLATION RESULTS

We first qualitatively evaluate our method on various datasets. We compare our model, InstaGAN,
with the baseline model, CycleGAN (Zhu et al., 2017). For fair comparisons, we doubled the number
of parameters of CycleGAN, as InstaGAN uses two networks for image and masks, respectively.
We sample two classes from various datasets, including clothing co-parsing (CCP) (Yang et al.,
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Figure 7: Results of InstaGAN varying over different input masks.

Figure 8: Translation results on CCP dataset, using predicted mask for inference.

2014), multi-human parsing (MHP) (Zhao et al., 2018), and MS COCO (Lin et al., 2014) datasets,
and use them as the two domains for translation. In visualizations, we merge all instance masks
into one for the sake of compactness. See Appendix B for detailed settings for our experiments.
The translation results for three datasets are presented in Figure 4, 5, and 6, respectively. While
CycleGAN mostly fails, our method generates reasonable shapes of the target instances and keeps
the original contexts by focusing on the instances via the context preserving loss. For example, see
the results on sheep↔giraffe in Figure 6. CycleGAN often generates sheep-like instances but loses
the original background. InstaGAN not only generates better sheep or giraffes, but also preserves
the layout of the original instances, i.e., the looking direction (left, right, front) of sheep and giraffes
are consistent after translation. More experimental results are presented in Appendix E. Code and
results are available in https://github.com/sangwoomo/instagan.

On the other hand, our method can control the instances to translate by conditioning the input, as
shown in Figure 7. Such a control is impossible under CycleGAN. We also note that we focus on
complex (multi-instance transfiguration) tasks to emphasize the advantages of our method. Never-
theless, our method is also attractive to use even for simple tasks (e.g., horse↔zebra) as it reduces
false positives/negatives via the context preserving loss and enables to control translation. We fi-
nally emphasize that our method showed good results even when we use predicted segmentation for
inference, as shown in Figure 8, and this can reduce the cost of collecting mask labels in practice.4

Finally, we also quantitatively evaluate the translation performance of our method. We measure
the classification score, the ratio of images predicted as the target class by a pretrained classifier.
Specifically, we fine-tune the final layers of the ImageNet (Deng et al., 2009) pretrained VGG-16
(Simonyan & Zisserman, 2014) network, as a binary classifier for each domain. Table 1 and Table 2
in Appendix D show the classification scores for CCP and COCO datasets, respectively. Our method
outperforms CycleGAN in all classification experiments, e.g., ours achieves 23.2% accuracy for the
pants→shorts task, while CycleGAN obtains only 8.5%.

3.2 ABLATION STUDY

We now investigate the effects of each component of our proposed method in Figure 9. Our method
is composed of the InstaGAN architecture, the context preserving loss Lctx, and the sequential mini-
batch inference/training technique. We progressively add each component to the baseline model,
CycleGAN (with doubled parameters). First, we study the effect of our architecture. For fair
comparison, we train a CycleGAN model with an additional input channel, which translates the
mask-augmented image, hence we call it CycleGAN+Seg. Unlike our architecture which translates
the set of instance masks, CycleGAN+Seg translates the union of all masks at once. Due to this,
CycleGAN+Seg fails to translate some instances and often merge them. On the other hand, our
architecture keeps every instance and disentangles better. Second, we study the effect of the context

4 For the results in Figure 8, we trained a pix2pix (Isola et al., 2017) model to predict a single mask from
an image, but one can also utilize recent methods to predict instance masks in supervised (He et al., 2017) or
weakly-supervised (Zhou et al., 2018) way.
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Figure 9: Ablation study on the effect of each component of our method: the InstaGAN architecture,
the context preserving loss, and the sequential mini-batch inference/training algorithm, which are
denoted as InstaGAN, Lctx, and Sequential, respectively.

Figure 10: Ablation study on the effects of the sequential mini-batch inference/training technique.
The left and right side of title indicates which method used for training and inference, respectively,
where “One” and “Seq” indicate the one-step and sequential schemes, respectively.

preserving loss: it not only preserves the background better (row 2), but also improves the translation
results as it regularizes the mapping (row 3). Third, we study the effect of our sequential transla-
tion: it not only improves the generalization performance (row 2,3) but also improves the translation
results on few instances, via data augmentation (row 1).

Finally, Figure 10 reports how much the sequential translation, denoted by “Seq”, is effective in
inference and training, compared to the one-step approach, denoted by “One”. For the one-step
training, we consider only two instances, as it is the maximum number affordable for our machines.
On the other hand, for the sequential training, we sequentially train two instances twice, i.e., images
of four instances. For the one-step inference, we translate the entire set at once, and for the sequential
inference, we sequentially translate two instances at each iteration. We find that our sequential
algorithm is effective for both training and inference: (a) training/inference = One/Seq shows blurry
results as intermediate data have not shown during training and stacks noise as the iteration goes, and
(b) Seq/One shows poor generalization performance for multiple instances as the one-step inference
for many instances is not shown in training (due to a limited GPU memory).

4 CONCLUSION

We have proposed a novel method incorporating the set of instance attributes for image-to-image
translation. The experiments on different datasets have shown successful image-to-image translation
on the challenging tasks of multi-instance transfiguration, including new tasks, e.g., translating jeans
to skirt in fashion images. We remark that our ideas utilizing the set-structured side information have
potential to be applied to other cross-domain generations tasks, e.g., neural machine translation or
video generation. Investigating new tasks and new information could be an interesting research
direction in the future.
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Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipu-
lation on the natural image manifold. In European Conference on Computer Vision, pp. 597–613.
Springer, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593, 2017.

11



Published as a conference paper at ICLR 2019

A ARCHITECTURE DETAILS

We adopted the network architectures of CycleGAN (Zhu et al., 2017) as the building blocks for our
proposed model. In specific, we adopted ResNet 9-blocks generator (Johnson et al., 2016; He et al.,
2016) and PatchGAN (Isola et al., 2017) discriminator. ResNet generator is composed of downsam-
pling blocks, residual blocks, and upsampling blocks. We used downsampling blocks and residual
blocks for encoders, and used upsampling blocks for generators. On the other hand, PatchGAN dis-
criminator is composed of 5 convolutional layers, including normalization and non-linearity layers.
We used the first 3 convolution layers for feature extractors, and the last 2 convolution layers for
classifier. We preprocessed instance segmentation as a binary foreground/background mask, hence
simply used it as an 1-channel binary image. Also, since we concatenated two or three features to
generate the final outputs, we doubled or tripled the input dimension of those architectures. Simi-
lar to prior works (Johnson et al., 2016; Zhu et al., 2017), we applied Instance Normalization (IN)
(Ulyanov & Lempitsky, 2016) for both generators and discriminators. In addition, we observed that
applying Spectral Normalization (SN) (Miyato et al., 2018) for discriminators significantly improves
the performance, although we used LSGAN (Mao et al., 2017), while the original motivation of SN
was to enforce Lipschitz condition to match with the theory of WGAN (Arjovsky et al., 2017; Gul-
rajani et al., 2017). We also applied SN for generators as suggested in Self-Attention GAN (Zhang
et al., 2018), but did not observed gain for our setting.

B TRAINING DETAILS

For all the experiments, we simply set λcyc = 10, λidt = 10, and λctx = 10 for our loss (7). We
used Adam (Kingma & Ba, 2014) optimizer with batch size 4, training with 4 GPUs in parallel.
All networks were trained from scratch, with learning rate of 0.0002 for G and 0.0001 for D, and
β1 = 0.5, β2 = 0.999 for the optimizer. Similar to CycleGAN (Zhu et al., 2017), we kept learning
rate for first 100 epochs and linearly decayed to zero for next 100 epochs for multi-human parsing
(MHP) (Zhao et al., 2018) and COCO (Lin et al., 2014) dataset, and kept learning rate for first 400
epochs and linearly decayed for next 200 epochs for clothing co-parsing (CCP) (Yang et al., 2014)
dataset, as it contains smaller number of samples. We sampled two classes from the datasets above,
and used it as two domains for translation. We resized images with size 300×200 (height×width)
for CCP dataset, 240×160 for MHP dataset, and 200×200 for COCO dataset, respectively.

C TREND OF TRANSLATION RESULTS

We tracked the trend of translation results over epoch increases, as shown in Figure 11. Both image
and mask smoothly adopted to the target instances. For example, the remaining parts in legs slowly
disappears, and the skirt slowly constructs the triangular shapes.

Figure 11: Trend of the translation results of our method over epoch increases.
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D QUANTITATIVE RESULTS

We evaluated the classification score for CCP and COCO dataset. Unlike CCP dataset, COCO
dataset suffers from the false positive problem, that the classifier fails to determine if the generator
produced target instances on the right place. To overcome this issue, we measured the masked
classification score, where the input images are masked by the corresponding segmentations. We
note that CycleGAN and our method showed comparable results for the naı̈ve classification score,
but ours outperformed for the masked classification score, as it reduces the false positive problem.

Table 1: Classification score for CCP dataset.

jeans→skirt skirt→jeans shorts→pants pants→shorts

train test train test train test train test

Real 0.970 0.888 0.982 0.946 1.000 0.984 0.990 0.720

CycleGAN 0.465 0.371 0.561 0.483 0.845 0.524 0.305 0.085
InstaGAN (ours) 0.665 0.600 0.658 0.540 0.898 0.768 0.373 0.232

Table 2: Classification score (masked) for COCO dataset.

sheep→giraffe giraffe→sheep cup→bottle bottle→cup

train test train test train test train test

Real 0.891 0.911 0.925 0.930 0.746 0.723 0.622 0.566

CycleGAN 0.313 0.594 0.291 0.512 0.368 0.403 0.290 0.275
InstaGAN (ours) 0.406 0.781 0.355 0.642 0.443 0.465 0.322 0.333

E MORE TRANSLATION RESULTS

We present more qualitative results in high resolution images.

Figure 12: Translation results for images searched from Google to test the generalization perfor-
mance of our model. We used a pix2pix (Isola et al., 2017) model to predict the segmentation.
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Figure 13: More translation results on MHP dataset (pants→skirt).

14



Published as a conference paper at ICLR 2019

Figure 14: More translation results on MHP dataset (skirt→pants).
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Figure 15: More translation results on COCO dataset (sheep→giraffe).
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Figure 16: More translation results on COCO dataset (giraffe→sheep).
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Figure 17: More translation results on COCO dataset (zebra→elephant).

Figure 18: More translation results on COCO dataset (elephant→zebra).

Figure 19: More translation results on COCO dataset (bird→zebra).

18



Published as a conference paper at ICLR 2019

Figure 20: More translation results on COCO dataset (zebra→bird).

Figure 21: More translation results on COCO dataset (horse→car).

Figure 22: More translation results on COCO dataset (car→horse).
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F MORE COMPARISONS WITH CYCLEGAN+SEG

To demonstrate the effectiveness of our method further, we provide more comparison results with
CycleGAN+Seg. Since CycleGAN+Seg translates all instances at once, it often (a) fails to translate
instances, or (b) merges multiple instances (see Figure 23 and 25), or (c) generates multiple instances
from one instance (see Figure 24 and 26). On the other hand, our method does not have such issues
due to its instance-aware nature. In addition, since the unioned mask losses the original shape
information, our instance-aware method produces better shape results (e.g., see row 1 of Figure 25).

Figure 23: Comparisons with CycleGAN+Seg on MHP dataset (pants→skirt).
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Figure 24: Comparisons with CycleGAN+Seg on MHP dataset (skirt→pants).
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Figure 25: Comparisons with CycleGAN+Seg on COCO dataset (sheep→giraffe).
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Figure 26: Comparisons with CycleGAN+Seg on COCO dataset (giraffe→sheep).
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G GENERALIZATION OF TRANSLATED MASKS

To show that our model generalizes well, we searched the nearest training neighbors (in L2-norm)
of translated target masks. As reported in Figure 27, we observe that the translated masks (col 3,4)
are often much different from the nearest neighbors (col 5,6). This confirms that our model does not
simply memorize training instance masks, but learns a mapping that generalizes for target instances.

Figure 27: Nearest training neighbors of translated masks.

H TRANSLATION RESULTS OF CROP & ATTACH BASELINE

For interested readers, we also present the translation results of the simple crop & attach baseline
in Figure 28, that find the nearest neighbors of the original masks from target masks, and crop &
attach the corresponding image to the original image. Here, since the distance in pixel space (e.g.,
L2-norm) obviously does not capture semantics, the cropped instances do not fit with the original
contexts as well.

Figure 28: Translation results of crop & attach baseline.
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I VIDEO TRANSLATION RESULTS

For interested readers, we also present video translation results in Figure 29. Here, we use a pre-
dicted segmentation (generated by a pix2pix (Isola et al., 2017) model as in Figure 8 and Figure
12) for each frame. Similar to CycleGAN, our method shows temporally coherent results, even
though we did not used any explicit regularization. One might design a more advanced version of
our model utilizing temporal patterns e.g., using the idea of Recycle-GAN (Bansal et al., 2018) for
video-to-video translation, which we think is an interesting future direction to explore.

Figure 29: Original images (row 1) and translated results of our method (row 2) on a video searched
from YouTube. We present translation results on successive eight frames for visualization.
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J RECONSTRUCTION RESULTS

For interested readers, we also report the translation and reconstruction results of our method in
Figure 30. One can observe that our method shows good reconstruction results while showing good
translation results. This implies that our translated results preserve the original context well.

Figure 30: Translation and reconstruction results of our method.
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