Planning with Goal-Conditioned Policies

Soroush Nasiriany, Vitchyr H. Pong; Steven Lin, Sergey Levine
University of California, Berkeley
{snasiriany,vitchyr,stevenlin598,svlevine@berkeley.edu}

Abstract

Planning methods can solve temporally extended sequential decision making prob-
lems by composing simple behaviors. However, planning requires suitable abstrac-
tions for the states and transitions, which typically need to be designed by hand.
In contrast, model-free reinforcement learning (RL) can acquire behaviors from
low-level inputs directly, but often struggles with temporally extended tasks. Can
we utilize reinforcement learning to automatically form the abstractions needed
for planning, thus obtaining the best of both approaches? We show that goal-
conditioned policies learned with RL can be incorporated into planning, so that a
planner can focus on which states to reach, rather than how those states are reached.
However, with complex state observations such as images, not all inputs represent
valid states. We therefore also propose using a latent variable model to compactly
represent the set of valid states for the planner, so that the policies provide an
abstraction of actions, and the latent variable model provides an abstraction of
states. We compare our method with planning-based and model-free methods
and find that our method significantly outperforms prior work when evaluated
on image-based robot navigation and manipulation tasks that require non-greedy,
multi-staged behavior.

1 Introduction

Reinforcement learning can acquire complex skills by learning through direct interaction with
the environment, sidestepping the need for accurate modeling and manual engineering. However,
complex and temporally extended sequential decision making requires more than just well-honed
reactions. Agents that generalize effectively to new situations and new tasks must reason about the
consequences of their actions and solve new problems via planning. Accomplishing this entirely with
model-free RL often proves challenging, as purely model-free learning does not inherently provide
for temporal compositionality of skills. Planning and trajectory optimization algorithms encode this
temporal compositionality by design, but require accurate models with which to plan. When these
models are specified manually, planning can be very powerful, but learning such models presents
major obstacles: in complex environments with high-dimensional observations such as images, direct
prediction of future observations presents a very difficult modeling problem [4}, 143} 36, |6, 27, 3, 131]],
and model errors accumulate over time [39], making their predictions inaccurate in precisely those
long-horizon settings where we most need the compositionality of planning methods. Can we obtain
the benefits temporal compositionality inherent in model-based planning, without the need to model
the environment at the lowest level, in terms of both time and state representation?

One way to avoid modeling the environment in detail is to plan over abstractions: simplified
representations of states and transitions on which it is easier to construct predictions and plans.
Temporal abstractions allow planning at a coarser time scale, skipping over the high-frequency details
and instead planning over higher-level subgoals, while state abstractions allow planning over a

*equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

simpler representation of the state. Both make modeling and planning easier. In this paper, we study
how model-free RL can be used to provide such abstraction for a model-based planner. At first glance,
this might seem like a strange proposition, since model-free RL methods learn value functions and
policies, not models. However, this is precisely what makes them ideal for abstracting away the
complexity in temporally extended tasks with high-dimensional observations: by avoiding low-level
(e.g., pixel-level) prediction, model-free RL can acquire behaviors that manipulate these low-level
observations without needing to predict them explicitly. This leaves the planner free to operate at a
higher level of abstraction, reasoning about the capabilities of low-level model-free policies.

Building on this idea, we propose a model-free planning framework. For temporal abstraction, we
learn low-level goal-conditioned policies, and use their value functions as implicit models, such that
the planner plans over the goals to pass to these policies. Goal-conditioned policies are policies that are
trained to reach a goal state that is provided as an additional input [24} 55,153} 48]]. While in principle
such policies can solve any goal-reaching problem, in practice their effectiveness is constrained to
nearby goals: for long-distance goals that require planning, they tend to be substantially less effective,
as we illustrate in our experiments. However, when these policies are trained together with a value
function, as in an actor-critic algorithms, the value function can provide an indication of whether a
particular goal is reachable or not. The planner can then plan over intermediate subgoals, using the
goal-conditioned value function to evaluate reachability. A major challenge with this setup is the
need to actually optimize over these subgoals. In domains with high-dimensional observations such
as images, this may require explicitly optimizing over image pixels. This optimization is challenging,
as realistic images — and, in general, feasible states — typically form a thin, low-dimensional manifold
within the larger space of possible state observation values [34]. To address this, we also build
abstractions of the state observation by learning a compact latent variable state representation, which
makes it feasible to optimize over the goals in domains with high-dimensional observations, such as
images, without explicitly optimizing over image pixels. The learned representation allows the planner
to determine which subgoals actually represent feasible states, while the learned goal-conditioned
value function tells the planner whether these states are reachable.

Our contribution is a method for combining model-free RL for short-horizon goal-reaching with
model-based planning over a latent variable representation of subgoals. We evaluate our method on
temporally extended tasks that require multistage reasoning and handling image observations. The
low-level goal-reaching policies themselves cannot solve these tasks effectively, as they do not plan
over subgoals and therefore do not benefit from temporal compositionality. Planning without state
representation learning also fails to perform these tasks, as optimizing directly over images results in
invalid subgoals. By contrast, our method, which we call Latent Embeddings for Abstracted Planning
(LEAP), is able to successfully determine suitable subgoals by searching in the latent representation
space, and then reach these subgoals via the model-free policy.

2 Related Work

Goal-conditioned reinforcement learning has been studied in a number of prior works [24} 12537,
18,1531 12,148,157, 1401 [59]. While goal-conditioned methods excel at training policies to greedily reach
goals, they often fail to solve long-horizon problems. Rather than proposing a new goal-conditioned
RL method, we propose to use goal-conditioned policies as the abstraction for planning in order to
handle tasks with a longer horizon.

Model-based planning in deep reinforcement learning is a well-studied problem in the context
of low-dimensional state spaces [50} 132} 39, [7]. When the observations are high-dimensional,
such as images, model errors for direct prediction compound quickly, making model-based RL
difficult [15, [13} 5} [14, [26]. Rather than planning directly over image observations, we propose
to plan at a temporally-abstract level by utilizing goal-conditioned policies. A number of papers
have studied embedding high-dimensional observations into a low-dimensional latent space for
planning [[60} 16, 162 22} 29]. While our method also plans in a latent space, we additionally use a
model-free goal-conditioned policy as the abstraction to plan over, allowing our method to plan over
temporal abstractions rather than only state abstractions.

Automatically setting subgoals for a low-level goal-reaching policy bears a resemblance to hierarchical
RL, where prior methods have used model-free learning on top of goal-conditioned policies [[10, 61}

12,1581 133, 120L 38]]. By instead using a planner at the higher level, our method can flexibly plan to
solve new tasks and benefit from the compositional structure of planning.

Our method builds on temporal difference models [48] (TDMs), which are finite-horizon, goal-
conditioned value functions. In prior work, TDMs were used together with a single-step planner
that optimized over a single goal, represented as a low-dimensional ground truth state (under the
assumption that all states are valid) [48]. We also use TDMs as implicit models, but in contrast to
prior work, we plan over multiple subgoals and demonstrate that our method can perform temporally
extended tasks. More critically, our method also learns abstractions of the state, which makes this
planning process much more practical, as it does not require assuming that all state vectors represent
feasible states. Planning with goal-conditioned value functions has also been studied when there are
a discrete number of predetermined goals [30] or skills [[1], in which case graph-search algorithms
can be used to plan. In this paper, we not only provide a concrete instantiation of planning with
goal-conditioned value functions, but we also present a new method for scaling this planning approach
to images, which reside in a lower-dimensional manifold.

Lastly, we note that while a number of papers have studied how to combine model-free and model-
based methods [54,141,123,156,144.151,139], our method is substantially different from these approaches:
we study how to use model-free policies as the abstraction for planning, rather than using models [54}
41} 123, 139] or planning-inspired architectures [56, 144,151, 21] to accelerate model-free learning.

3 Background

We consider a finite-horizon, goal-conditioned Markov decision process (MDP) defined by a tuple
(8,6, A,p, R, Trmax, po, pg), Where S is the set of states, G is the set of goals, A is the set of actions,
p(st+1 | st, ay) is the time-invariant (unknown) dynamics function, R is the reward function, Ty, is
the maximum horizon, py is the initial state distribution, and p, is the goal distribution. The objective
in goal-conditioned RL is to obtain a policy 7(a; | s¢, g,t) to maximize the expected sum of rewards

E[ZtT:g" R(st, g,t)], where the goal is sampled from p, and the states are sampled according to
So ~ po, a; ~ w(a; | s¢,8,t), and s;41 ~ p(Si4+1 | St, a¢). We consider the case where goals reside
in the same space as states, i.e., G = S.

An important quantity in goal-conditioned MDPs is the goal-conditioned value function V'™, which
predicts the expected sum of future rewards, given the current state s, goal g, and time ¢:

Tmax
V™(s,g,t)=E Z R(sy,g,t') | sy = s, mis conditioned on g | .

t'=t

To keep the notation uncluttered, we will omit the dependence of V' on 7. While various time-varying
reward functions can be used, temporal difference models (TDMs) [48] use the following form:

RTDM(Sv g, t) = _5(t = Tmax)d(sa g) (1)

where d is the indicator function, and the distance function d is defined by the task. This particular
choice of reward function gives a TDM the following interpretation: given a state s, how close will
the goal-conditioned policy 7 get to g after ¢ time steps of attempting to reach g? TDMs can thus
be used as a measure of reachability by quantifying how close to another state the policy can get
in ¢ time steps, thus providing temporal abstraction. However, TDMs will only produce reasonable
reachability predictions for valid goals — goals that resemble the kinds of states on which the TDM
was trained. This important limitation requires us to also utilize state abstractions, limiting our search
to valid states. In the next section, we will discuss how we can use TDMs in a planning framework
over high-dimensional state observations such as images.

4 Planning with Goal-Conditioned Policies

We aim to learn a model that can solve arbitrary long-horizon goal reaching tasks with high-
dimensional observation and goal spaces, such as images. A model-free goal-conditioned rein-
forcement learning algorithm could, in principle, solve such a problem. However, as we will show in
our experiments, in practice such methods produce overly greedy policies, which can accomplish
short-term goals, but struggle with goals that are more temporally extended. We instead combine

® E‘Iﬂ"‘r

i a-

Figure 1: Summary of Latent Embeddings for Abstracted Planning (LEAP). (1) The planner is given a goal
state. (2) The planner plans intermediate subgoals in a low-dimensional latent space. By planning in this latent
space, the subgoals correspond to valid state observations. (3) The goal-conditioned policy then tries to reach
the first subgoal. After ¢; time steps, the policy replans and repeats steps 2 and 3.

goal-conditioned policies trained to achieve subgoals with a planner that decomposes long-horizon
goal-reaching tasks into K shorter horizon subgoals. Specifically, our planner chooses the K sub-
goals, g, ,...,8t,, and a goal-reaching policy then attempts to reach the first subgoal g, in the
first ¢; time steps, before moving onto the second goal g, , and so forth, as shown in [Figure 1| This
procedure only requires training a goal-conditioned policy to solve short-horizon tasks. Moreover, by
planning appropriate subgoals, the agent can compose previously learned goal-reaching behavior to
solve new, temporally extended tasks. The success of this approach will depend heavily on the choice
of subgoals. In the sections below, we outline how one can measure the quality of the subgoals. Then,
we address issues that arise when optimizing over these subgoals in high-dimensional state spaces
such as images. Lastly, we summarize the overall method and provide details on our implementation.

4.1 Planning over Subgoals

Suitable subgoals are ones that are reachable: if the planner can choose subgoals such that each
subsequent subgoal is reachable given the previous subgoal, then it can reach any goal by ensuring
the last subgoal is the true goal. If we use a goal-conditioned policy to reach these goals, how can we
quantify how reachable these subgoals are?

One natural choice is to use a goal-conditioned value function which, as previously discussed,
provides a measure of reachability. In particular, given the current state s, a policy will reach a goal
g after ¢ time steps if and only if V (s, g,¢) = 0. More generally, given K intermediate subgoals

g1k = &1,..-,8k and K 4 1 timeintervals ¢y, . .., t g1 that sum to T}y, we define the feasibility
vector as
V(s,g1,t1)

V(g1 g2, t2)
V(S,gl:k’tl:/wg) =
V(gKfla gK, tK)

V(gr, 8 tk+1)

The feasibility vector provides a quantative measure of a plan’s feasibility: The first element describes
how close the policy will reach the first subgoal, g, starting from the initial state, s. The second
element describes how close the policy will reach the second subgoal, go, starting from the first
subgoal, and so on, until the last term measures the reachability to the true goal, g.

To create a feasible plan, we would like each element of this vector to be zero, and so we minimize
the norm of the feasibility vector:

ﬁ(g1:K+1) - HV(Sagl:thl:k‘vg)H- (2)

In other words, minimizing searches for subgoals such that the overall path is feasible and
terminates at the true goal. In the next section, we turn to optimizing Equation [2]and address issues
that arise in high-dimensional state spaces.

4.2 Optimizing over Images

We consider image-based environments, where the set of states S is the set of valid image observations
in our domain. In image-based environments, solving the optimization in Equation [2| presents two

problems. First, the optimization variables g;.x are very high-dimensional — even with 64x64
images and just 3 subgoals, there are over 10,000 dimensions. Second, and perhaps more subtle, the
optimization iterates must be constrained to the set of valid image observations S for the subgoals to
correspond to meaningful states. While a plethora of constrained optimization methods exist, they
typically require knowing the set of valid states [42]] or being able to project onto that set [46]. In
image-based domains, the set of states S is an unknown r-dimensional manifold embedded in a
higher-dimensional space RV, for some N > r [34] —i.e., the set of valid image observations.

Optimizing would be much easier if we could
directly optimize over the r dimensions of the underlying (a) (b)

representation, since r < N, and crucially, since we
would not have to worry about constraining the planner
to an unknown manifold. While we may not know the
set S a priori, we can learn a latent-variable model with
a compact latent space to capture it, and then optimize
in the latent space of this model. To this end, we use a
variational-autoencoder (VAE) [28, |52]], which we train :
with images randomly sampled from our environment. Figure 2: Optimizing directly over the im-

A VAE consists of an encoder ¢4(z | s) and decoder £° manifold (b) is challenging, ‘as it is
generally unknown and resides in a high-

po(s | z). The inference network maps high-dimensional g, = - space. We optimize over a latent
states s € S to a distribution over lower-dimensional latent (e (a) and use our decoder to generate im-
variables z for some lower dimensional space Z, while ages. So long as the latent states have high
the generative model reverses this mapping. Moreover, likelihood under the prior (green), they will
the VAE is trained so that the marginal distribution of Z correspond to realistic images, while latent
matches our prior distribution py, the standard Gaussian. states with low likelihood (red) will not.

This last property of VAEs is crucial, as it allows us to

tractably optimize over the manifold of valid states S. So long as the latent variables have high
likelihood under the prior, the corresponding images will remain inside the manifold of valid states,
as shown in In fact, Dai and Wipf [9] showed that a VAE with a Gaussian prior can always
recover the true manifold, making this choice for latent-variable model particularly appealing.

In summary, rather than minimizing [Equation 2| which requires optimizing over the high-dimensional,
unknown space S we minimize

K
Lipap(z1:x) = ||7(S, Z1:k, L1k, 8)|lp — A Zlogp(zk) 3)
k=1
where
V(s,¥(z1),t1)
V(¢(zl)7 (22)7t2)
V(S,zl:k,tlzk,g) = : and (z) =argmaxpy(g’ | z).
V((zr-1),¥(zK), tK) ¢

V(¢(ZK)7g7tK+l)

This procedure optimizes over latent variables z;, , which are then mapped onto high-dimensional
goal states gy, using the maximum likelihood estimate (MLE) of the decoder arg max,(g | z). In
our case, the MLE can be computed in closed form by taking the mean of the decoder. The term
summing over log p(z;,) penalizes latent variables that have low likelihood under the prior p, and A
is a hyperparameter that controls the importance of this second term.

While any norm could be used, we used the ¢.,-norm which forces each element of the feasibility
vector to be near zero. We found that the /,,-norm outperformed the ¢5-norm, which only forces the
sum of squared elements near zero.

4.3 Goal-Conditioned Reinforcement Learning

For our goal-conditioned reinforcement learning algorithm, we use temporal difference models
(TDMs) [48]]. TDMs learn Q functions rather that V functions, and so we compute V' by evaluating

2 See|Subsection A.1|comparison.

@ with the action from the deterministic policy: V(s,g,t) = Q(s,a,8,t)|a—r(s,g,)- To further
improve the efficiency of our method, we can also utilize the same VAE that we use to recover the
latent space for planning as a state representation for TDMs. While we could train the reinforcement
learning agents from scratch, this can be expensive in terms of sample efficiency as much of the
learning will focus on simply learning good convolution filters. We therefore use the pretrained
mean-encoder of the VAE as the state encoder for our policy and value function networks, and
only train additional fully-connected layers with RL on top of these representations. Details of the
architecture are provided in We show in Section [5] that our method works without
reusing the VAE mean-encoder, and that this parameter reuse primarily helps with increasing the
speed of learning.

4.4 Summary of Latent Embeddings for Abstracted Planning

Our overall method is called Latent Embeddings for Abstracted Planning (LEAP) and is summarized
in[Algorithm 1] We first train a goal-conditioned policy and a variational-autoencoder on randomly
collected states. Then, given a new goal, we choose subgoals by minimizing [Equation 3] Once the
plan is chosen, the first goal v(z1) is given to the policy. After ¢; steps, we repeat this procedure:
we produce a plan with K — 1 (rather than K') subgoals, and give the first goal to the policy. In this
work, we fix the time intervals to be evenly spaced out (i.e., t1 = t2...tx+1 = |Tmax/(K +1)]),
but additionally optimizing over the time intervals would be a promising future extension.

Algorithm 1 Latent Embeddings for Abstracted Planning (LEAP)

Train VAE encoder g, and decoder pg.
Train TDM policy 7 and value function V.
Initialize state, goal, and time: s; ~ pg, goal g ~ pg, and ¢t = 1.
Assign the last subgoal to the true goal, gx+1 = g
forkinl,..., K+ 1do
Optimize Equation [3]to choose latent subgoals zy, . ..,z using V and pg if k < K.
Decode z, to obtain goal g = ().
fort'in1,...,t; do
Sample next state s;11 using goal-conditioned policy 7 (- | s¢, gk, tx — t').
Increment the global timer ¢ <— ¢ + 1.
end for
: end for

PRIN AR

— ==
NTew

S Experiments

Our experiments study the following two questions: (1) How does LEAP compare to model-based
methods, which directly predict each time step, and model-free RL, which directly optimizes for the
final goal? (2) How does the use of a latent state representation and other design decisions impact the
performance of LEAP?

5.1 Vision-based Comparison and Results

We study the first question on two distinct vision-based tasks, each of which requires temporally-
extended planning and handling high-dimensional image observations.

The first task, 2D Navigation requires navigating around a U-shaped wall to reach a goal, as shown in
Figure 3] The state observation is a top-down image of the environment. We use this task to conduct
ablation studies that test how each component of LEAP contributes to final performance. We also
use this environment to generate visualizations that help us better understand how our method uses
the goal-conditioned value function to evaluate reachability over images. While visually simple, this
task is far from trivial for goal-conditioned and planning methods: a greedy goal-reaching policy
that moves directly towards the goal will never reach the goal. The agent must plan a temporally-
extended path that moves around the walls, sometimes moving away from the goal. We also use this
environment to compare our method with prior work on goal-conditioned and model-based RL.

2D Navigation N Push and Reach

—— LEAP (ours)
— TDM25

HER
PETS, state

o
1 unit HH

g

e to puck Goal (cm)

Final distance to Goal

Final distanc

Number of Environment Steps Total (x1000)
Figure 3: Comparisons on two vision-based domains that evaluate temporally extended control, with illustra-
tions of the tasks. In 2D Navigation (left), the goal is to navigate around a U-shaped wall to reach the goal. In the
Push and Reach manipulation task (right), a robot must first push a puck to a target location (blue star), which
may require moving the hand away from the goal hand location, and then move the hand to another location (red
star). Curves are averaged over multiple seeds and shaded regions represent one standard deviation. Our method,
shown in red, outperforms prior methods on both tasks. On the Push and Reach task, prior methods typically get
the hand close to the right location, but perform much worse at moving the puck, indicating an overly greedy
strategy, while our approach succeeds at both.

To evaluate LEAP on a more complex task, we utilize a robotic manipulation simulation of a Push
and Reach task. This task requires controlling a simulated Sawyer robot to both (1) move a puck
to a target location and (2) move its end effector to a target location. This task is more visually
complex, and requires more temporally extended reasoning. The initial arm and and puck locations
are randomized so that the agent must decide how to reposition the arm to reach around the object,
push the object in the desired direction, and then move the arm to the correct location, as shown in
Figure|3] A common failure case for model-free policies in this setting is to adopt an overly greedy
strategy, only moving the arm to the goal while ignoring the puck.

We train all methods on randomly initialized goals and initial states. However, for evaluation,
we intentionally select difficult start and goal states to evaluate long-horizon reasoning. For 2D
Navigation, we initialize the policy randomly inside the center square and sample a goal from the
region directly below the U-shaped wall. This requires initially moving away from the goal to
navigate around the wall. For Push and Reach, we evaluate on 5 distinct challenging configurations,
each requiring the agent to first plan to move the puck, and then move the arm only once the puck is
in its desired location. In one configuration for example, we initialize the hand and puck on opposite
sides of the workspace and set goals so that the hand and puck must switch sides.

We compare our method to both model-free methods and model-based methods that plan over learned
models. All of our tasks use 7Ty,,x = 100, and LEAP uses CEM to optimize over K = 3 subgoals,
each of which are 25 time steps apart. We compare directly with model-free TDMs, which we
label TDM-25. Since the task is evaluated on a horizon of length T}, = 100 we also compare
to a model-free TDM policy trained for Ti,,x = 100, which we label TDM-100. We compare
to reinforcement learning with imagined goals (RIG) [40], a state-of-the-art method for solving
image-based goal-conditioned tasks. RIG learns a reward function from images rather than using
a pre-determined reward function. We found that providing RIG with the same distance function
as our method improves its performance, so we use this stronger variant of RIG to ensure a fair
comparison. In addition, we compare to hindsight experiment replay (HER) [2] which uses sparse,
indicator rewards. Lastly, we compare to probabilistic ensembles with trajectory sampling (PETS) [7],
a state-of-the-art model-based RL method. We favorably implemented PETS on the ground-truth
low-dimensional state representation and label it PETS, state.

The results are shown in LEAP significantly outperforms prior work on both tasks, particu-
larly on the harder Push and Reach task. While the TDM used by LEAP (TDM-25) performs poorly
by itself, composing it with 3 different subgoals using LEAP results in much better performance. By
400k environment steps, LEAP already achieves a final puck distance of under 10 cm, while the next
best method, TDM-100, requires 5 times as many samples. Details on each task are in[Appendix B]

and algorithm implementation details are given in[Appendix C|

We visualize the subgoals chosen by LEAP in|[Figure 4| by decoding the latent subgoals z;, . into
images with the VAE decoder pg. In Push and Reach, these images correspond to natural subgoals
for the task. also shows a visualization of the value function, which is used by the planner to
determine reachability. Note that the value function generally recognizes that the wall is impassable,

" N |
Sty Sta St

——ry

?__
t1 Yto Yts

Figure 4: (Left) Visualization of subgoals reconstructed from the VAE (bottom row), and the actual images
seen when reaching those subgoals (top row). Given an initial state so and a goal image g, the planner chooses
meaningful subgoals: at g;, , it moves towards the puck, at g;,, it begins pushing the puck, and at g;, it completes
the pushing motion before moving to the goal hand position at g. (Middle) The top row shows the image subgoals
superimposed on one another. The blue circle is the starting position, the green circle is the target position, and
the intermediate circles show the progression of subgoals (bright red is g, , brown is g¢,). The colored circles
show the subgoals in the latent space (bottom row) for the two most active VAE latent dimensions, as well as
samples from the VAE aggregate posterior [35]]. (Right) Heatmap of the value function V (s, g, t), with each
column showing a different time horizon ¢ for a fixed state s. Warmer colors show higher value. Each image
indicates the value function for all possible goals g. As the time horizon decreases, the value function recognizes
that it can only reach nearby goals.

and makes reasonable predictions for different time horizons. Videos of the final policies and
generated subgoals and code for our implementation of LEAP are available on the paper websit

5.2 Planning in Non-Vision-based Environments with Unknown State Spaces

While LEAP was presented in the context of optimizing over images, we also study its utility in
non-vision based domains. Specifically, we compare LEAP to prior works on an Ant Navigation task,
shown in where the state-space consists of the quadruped robot’s joint angles, joint velocity,
and center of mass. While this state space is more compact than images, only certain combinations of
state values are actually valid, and the obstacle in the environment is unknown to the agent, meaning
that a naive optimization over the state space can easily result in invalid states (e.g., putting the robot
inside an obstacle).

This task has a significantly longer horizon of T},,x = 600, and LEAP uses CEM to optimize over
K = 11 subgoals, each of which are 50 time steps apart. As in the vision-based comparisons, we
compare with model-free TDMs, for the short-horizon setting (TDM-50) which LEAP is built on top
of, and the long-horizon setting (TDM-600). In addition to HER, we compare to a variant of HER
that uses the same rewards and relabeling strategy as RIG, which we label HER+. We exclude the
PETS baseline, as it has been unable to solve long-horizon tasks such as ours. In this section, we
add a comparison to hierarchical reinforcement learning with off-policy correction (HIRO) [38]], a
hierarchical method for state-based goals. We evaluate all baselines on a challenging configuration of
the task in which the ant must navigate from the top left corner to the top right corner of the maze,
by going around a long wall. The desired behavior will result in large negative rewards during the
trajectory, but will result in an optimal final state. We see that in[Figure 5] LEAP is the only method
that successfully navigates the ant to the goal. HIRO, HER, HER+ don’t attempt to go around the
wall at all, as doing so will result in a large sum of negative rewards. TDM-50 has a horizon that is
too short and results in greedy behavior, while TDM-600 fails to learn meaningful behavior due to
the temporal sparsity of the reward.

Ant Navigation

- — LEAP (ours)
~— TDM-50
TOM-600
10- — HER+
HER
HIRO

Final distance to Goal

0-
4 200 400

00 1000
Number of Environment Steps Total (x1000)

Figure 5: In the Ant Navigation task, the ant must move around the long obstacle, which will result in large
negative rewards during the trajectory, but will result in an optimal final state. Our method, shown in red, is the
only method that successfully navigates the ant to the goal.

*https://sites.google.com/view/goal-planning

https://sites.google.com/view/goal-planning

2D-Navigation Learning Ablation

&6

e N 3
| \ g

L 44 N\ — Q

A WV Ours =

s AN —— -Latent

25 -

52 . -Shared &%

E N R N ——— Shared Latent &

i 100 200 300 400 R

Number of Environment Steps Total (x1000)

Figure 6: (Left) Ablative studies on 2D Navigation. We keep all components of LEAP the same but replace
optimizing over the latent space with optimizing over the image space (-latent). We separately train the RL
methods from scratch rather than reusing the VAE mean encoder (-shared), and also test both ablations together
(-latent, shared). We see that sharing the encoder weights with the RL policy results in faster learning, and
that optimizing over the latent space is critical for success of the method. (Right) Visualization of the subgoals
generated when optimizing over the latent space and decoding the image (top) and when optimizing over the
images directly (bottom). The goals generated when planning in image space are not meaningful, which explains
the poor performance of “-latent” shown in (Left).

5.3 Ablation Study

We analyze the importance of planning in the latent space, as opposed to image space, on the
navigation task. For comparison, we implement a planner that directly optimizes over image subgoals
(i.e., in pixel space). We also study the importance of reusing the pretrained VAE encoder by
replicating the experiments with the RL networks trained from scratch. We see in that a
model that does not reuse the VAE encoder does succeed, but takes much longer. More importantly,
planning over latent states achieves dramatically better performance than planning over raw images.
also shows the intermediate subgoals outputted by our optimizer when optimizing over
images. While these subgoals may have high value according to Equation [2] they clearly do not
correspond to valid state observations, indicating that the planner is exploiting the value function by
choosing images far outside the manifold of valid states.

We include further ablations in [Appendix A} in which we study the sensitivity of A in[Equation 3
(Subsection A.3)), the choice of norm (Subsection A.1J), and the choice of optimizer (Subsection A.2).

The results show that LEAP works well for a wide range of A, that ¢,.-norm performs better, and that
CEM consistently outperforms gradient-based optimizers, both in terms of optimizer loss and policy
performance.

6 Discussion

We presented Latent Embeddings for Abstracted Planning (LEAP), an approach for solving temporally
extended tasks with high-dimensional state observations, such as images. The key idea in LEAP
is to form femporal abstractions by using goal-reaching policies to evaluate reachability, and state
abstractions by using representation learning to provide a convenient state representation for planning.
By planning over states in a learned latent space and using these planned states as subgoals for goal-
conditioned policies, LEAP can solve tasks that are difficult to solve with conventional model-free
goal-reaching policies, while avoiding the challenges of modeling low-level observations associated
with fully model-based methods. More generally, the combination of model-free RL with planning is
an exciting research direction that holds the potential to make RL methods more flexible, capable,
and broadly applicable. Our method represents a step in this direction, though many crucial questions
remain to be answered. Our work largely neglects the question of exploration for goal-conditioned
policies, and though this question has been studied in some recent works [[17, 145} 59} 49], examining
how exploration interacts with planning is an exciting future direction. Another exciting direction for
future work is to study how lossy state abstractions might further improve the performance of the
planner, by explicitly discarding state information that is irrelevant for higher-level planning.

7 Acknowledgments

This work was supported by the Office of Naval Research, the National Science Foundation, Google,
NVIDIA, Amazon, and ARL DCIST CRA W911NF-17-2-0181.

References

[1] Arpit Agarwal, Katharina Muelling, and Katerina Fragkiadaki. Model learning for look-ahead
exploration in continuous control. AAAI, 2019.

[2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob Mcgrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems, 2017.

[3] Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine.
Stochastic variational video prediction. In International Conference on Learning Representa-
tions, 2018.

[4] Byron Boots, Arunkumar Byravan, and Dieter Fox. Learning predictive models of a depth
camera & manipulator from raw execution traces. In IEEE International Conference on Robotics
and Automation, 2014.

[5] Arunkumar Byravan, Felix Leeb, Franziska Meier, and Dieter Fox. Se3-pose-nets: structured
deep dynamics models for visuomotor planning and control. In IEEE International Conference
on Robotics and Automation.

[6] Silvia Chiappa, Sébastien Racaniere, Daan Wierstra, and Shakir Mohamed. Recurrent environ-
ment simulators. In International Conference on Learning Representations, 2017.

[7] Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, 2018.

[8] Cédric Colas, Pierre Fournier, Olivier Sigaud, and Pierre-Yves Oudeyer. CURIOUS: intrinsically
motivated multi-task, multi-goal reinforcement learning. International Conference on Machine
Learning, 2019.

[9] Bin Dai and David Wipf. Diagnosing and enhancing vae models. In International Conference
on Learning Representations, 2019.

[10] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in Neural
Information Processing Systems, 1993.

[11] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1), 2005.

[12] Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function
decomposition. Journal of Artificial Intelligence Research, 13, 2000.

[13] Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning
with temporal skip connections. In Conference on Robot Learning, 2017.

[14] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

[15] Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In Advances
in Neural Information Processing Systems, 2016.

[16] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. In IEEE International Conference on Robotics
and Automation, 2016.

[17] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International Conference on Machine Learning, 2018.

[18] David Foster and Peter Dayan. Structure in the space of value functions. Machine Learning, 49
(2-3), 2002.

[19] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018.

[20] Dibya Ghosh, Abhishek Gupta, and Sergey Levine. Learning actionable representations with
goal-conditioned policies. In International Conference on Learning Representations, 2019.

[21] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racaniere, Théophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of
model-free planning. In International Conference on Machine Learning, 2019.

10

[22] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, 2019.

[23] Nicolas Heess, Greg Wayne, David Silver, Timothy Lillicrap, Yuval Tassa, and Tom Erez.
Learning continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems, 2015.

[24] Leslie Pack Kaelbling. Learning to achieve goals. In International Joint Conference on Artificial
Intelligence (IJCAI), volume vol.2, 1993.

[25] Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: preliminary results. In
International Conference on Machine Learning, 1993.

[26] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-
based reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

[27] Nal Kalchbrenner, Adron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals, Alex
Graves, and Koray Kavukcuoglu. Video pixel networks. In International Conference on
Machine Learning, 2017.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[29] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and Pieter Abbeel. Learning
plannable representations with causal infogan. In Advances in Neural Information Processing
Systems, 2018.

[30] Terran Lane and Leslie Pack Kaelbling. Toward hierarchical decomposition for planning
in uncertain environments. In Proceedings of the 2001 IJCAI workshop on planning under
uncertainty and incomplete information, 2001.

[31] Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

[32] Ian Lenz, Ross Knepper, and Ashutosh Saxena. DeepMPC: learning deep latent features for
model predictive control. In Robotics: Science and Systems (RSS), 2015.

[33] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierar-
chies with hindsight. In International Conference on Learning Representations, 2019.

[34] Haw-Minn Lu, Yeshaiahu Fainman, and Robert Hecht-Nielsen. Image manifolds. In Applica-
tions of Artificial Neural Networks in Image Processing III, volume 3307. International Society
for Optics and Photonics, 1998.

[35] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, lan Goodfellow, and Brendan Frey. Adver-
sarial autoencoders. In International Conference on Learning Representations, 2016.

[36] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. In International Conference on Learning Representations, 2016.

[37] Andrew W Moore, Leemon Baird, and Leslie P Kaelbling. Multi-value-functions: Effcient
automatic action hierarchies for multiple goal mdps. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1999.

[38] Ofir Nachum, Google Brain, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient

hierarchical reinforcement learning. In Advances in Neural Information Processing Systems,
2018.

[39] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In IEEE
International Conference on Robotics and Automation, 2018.

[40] Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, 2018.

[41] Derrick H Nguyen and Bernard Widrow. Neural networks for self-learning control systems.
IEEE Control systems magazine, 1990.

[42] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

11

[43] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-
conditional video prediction using deep networks in atari games. In Advances in Neural
Information Processing Systems, 2015.

[44] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in
Neural Information Processing Systems, 2017.

[45] Fabio Pardo, Vitaly Levdik, and Petar Kormushev. Q-map: a convolutional approach for
goal-oriented reinforcement learning. CoRR, abs/1810.02927, 2018.

[46] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and Trends®) in Optimiza-
tion, 1(3), 2014.

[47] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob Mcgrew, Bowen Baker, Glenn Powell,
Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, Vikash Kumar, and Wojciech
Zaremba. Multi-goal reinforcement learning: challenging robotics environments and request
for research. arXiv preprint arXiv:1802.09464, 2018.

[48] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference mod-
els: model-free deep RL For model-based control. In International Conference on Learning
Representations, 2018.

[49] Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine.
Skew-fit: state-covering self-supervised reinforcement learning. CoRR, abs/1903.03698, 2019.

[50] Ali Punjani and Pieter Abbeel. Deep learning helicopter dynamics models. In IEEE International
Conference on Robotics and Automation, 2015.

[51] Sébastien Racaniere, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
et al. Imagination-augmented agents for deep reinforcement learning. In Advances in Neural
Information Processing Systems, 2017.

[52] Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine
Learning, 2014.

[53] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxi-
mators. In International Conference on Machine Learning, 2015.

[54] Richard S Sutton. Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming. In Machine Learning Proceedings 1990. Elsevier, 1990.

[55] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M Pilarski, Adam
White, and Doina Precup. Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In International Conference on Autonomous Agents and
Multiagent Systems, 2011.

[56] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, 2016.

[57] Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning. arXiv
preprint arXiv:1806.09605, 2018.

[58] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, and Koray Kavukcuoglu. FeUdal networks for hierarchical reinforcement learning.
In International Conference on Machine Learning, 2017.

[59] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. CoRR,
abs/1811.11359, 2018.

[60] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed
to control: a locally linear latent dynamics model for control from raw images. In Advances in
Neural Information Processing Systems, 2015.

[61] Marco Wiering and Jiirgen Schmidhuber. Hg-learning. Adaptive Behavior, 6(2), 1997.

[62] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J Johnson, and Sergey
Levine. Solar: deep structured latent representations for model-based reinforcement learning.
In International Conference on Machine Learning, 2019.

12

2D Navigation

I~ I N
o n =3

Final distance to Goal

o
o

0.0- 0 "
L inf L2

Norm

Figure 7: We compare using the {o-norm to the £2-norm. We see that the £o.-norm outperforms £2-norm

2D Navigation 2D Navigation
74
3.0-

6-
" =25
gs- &
g £50-
E4° ¢
g @ 1.5-
©3- 3
2 5
i 2- £10-

1- 0.5-

0- 0 g ' . " 0.0- 0 0 " " "

CEM Adam RMSProp SGD L-BFGS CEM Adam RMSProp SGD L-BFGS
Optimizer Optimizer

Figure 8: We compare CEM to different optimizers L-BFGS, Adam, RMSProp, and gradient descent (SGD)
that have had their learning rates tuned. (Left) The optimizer loss, where CEM outperforms the other methods.
(Right) The performance of the policy after using the plan chosen by each optimizer. We see that the lower
optimizer loss of CEM corresponds to a better performance.

A Additional Experiments

A.1 Norm Ablation

We compare using the /,,-norm to minimize the feasibility vector with using the /3-norm. As shown
in £so-norm performs better, which matches the intuition it will more consistently push all
terms in the feasibility vector towards zero.

A.2 Optimizer Ablation

We compare the performance of different optimizers on the 2D Navigation tasks. As shown in
CEM consistently outperforms other optimizers both in terms of the optimizer loss, and the
corresponding final performance on the task.

A.3 Likelihood Penalty Ablation

We examine the effect of the additional log-likelihood term (under the VAE prior) in Equation [3]
In particular, we vary the weighting hyperparameter A for the 2D Navigation and Push and Reach
environments. For each environment, we note the final performance of the RL algorithm, in addition
to the log-likelihood values and V values that compose equation[3] See for detailed results.
We see that there is a trade-off between achieving a high likelihood under the prior and high V values.
As we increase the weighting term A the likelihood values increase while the V values decrease.
There is an optimal threshold at which RL performance is maximized. For 2D Navigation, we note
this value to be A = 0.01 and for Push and Reach any range of values between 0.0001 and 0.01. For
Ant Navigation, we independently verified an optimal choice of A = 0.1.

13

2D Navigation 2D Navigation . 2D Navigation

o I
® o
o
o
o

)
Y

V value

0.4-

log prob of prior

|
)
By

Final distance to Goal

0.2- -120-

0.0-

0.0 le-2 le-1 1e0 0.0 le-2 le-1 1e0 0.0 le-2 le-1 1€0
Weight Weight Weight
Push and Reach o Push and Reach 0.00 Push and Reach

0.07
T =20~
£ 0.06 0.02
g N -40
2 005 5
F] 2 o -0.04
] & -60 3
5 0.04 2 3
2 2 g
g & -80- >
5 0-03 2 0.06
2 °
S o0.02 100
£ 0.08

0.01 -120

0.00 g v v v v . . . i .

0.0 le-4 le-3 le-2 le-1 0.0 le-4 le-3 le-2 le-1 0.0 le-4 le-3 le-2 le-1

Weight Weight Weight

Figure 9: Examining the effect of the weight A in We note the final RL performance (left),
log-likelihood under the VAE prior (middle), and V values (right). As we increase), the log-likelihood values
increase while the V values decrease. For 2D navigation (top), we note the optimal value to be A = 0.01 and for
Push and Reach (bottom) any range of values between 0.0001 and 0.01.

B Environment Details

B.1 2D Navigation

The agent must learn to navigate around a square room with a U-shaped wall in the center. See
Figure[3|for a visualization of the environment. The dimensions of the space are 8 x 8 units, the walls
are 1 unit thick, and the agent is a circle with radius 0.5 units. The observation is a 48 x 48 RGB
image and the agent specifies a 2D velocity as the action. At each timestep, the agent can attempt to
move up to 0.15 units in either dimension. The distance for[Equation 1]is the distance between the
current 2D position and the target position. We note that a greedy policy can easily lower the final
distance by moving directly towards the goal. To measure whether or not the final policy performs
more non-greedy behavior, we define success as whether or not the policy ends below the horizontal
wall and within a diameter of the intended goal. Complete results are provided in[Figure 10] Plots
are averaged across 5 seeds, with the exception of PETS, which uses 3 seeds due to computational
constraints. For image based baselines (all except PETS), we first train VAEs and select the top 5
seeds based on VAE loss. We proceed to training our RL algorithm with one seed per selected VAE.
Note that for the ablation study in we select the top VAE seed based on VAE loss, and train
our RL algorithm with 5 seeds.

2D Navigation 2D Navigation
~—— LEAP (ours)
~— TDM-25
TDM-100
~— RIG
HER
PETS, state

A NAAN A AN~ ~—

L

Final success

Final distance to Goal

200 0 400 500

100 200 300 400 500 0 300
onment Steps Total (x1000)

100
Number of Environment Steps Total (x1000) Number of Envir

Figure 10: Complete 2D Navigation Results

B.2 Push and Reach

This task is based on the environment released by Nair et al. [40]. An additional invisible wall around
the goal space of the puck has been added to prevent the puck from moving to unreachable hand

14

locations. In contrast to prior work evaluated on goal-conditioned pushing tasks [2} 47, 8], this task is
solved using images as the observations and cannot be solved with a simple, unidirectional pushing
behavior [40,49]. Specifically, the observation is an 84 x 84 RGB image showing a top-down view
of the scene. The robot is operated via 2D position control, where each action is limited to moving
the robot end effector 2 cm in either dimension. The distance for Equation|[I]is the Euclidean distance
between (1) the goal and (2) the XY-position of the puck concatenated with the XY-position of the
hand. We modify the task so as to require the agent to perform temporally extended planning. First,
we increase the workspace of the environment to 40 cm x 20 cm. Second, we evaluate the final
policy on 5 hard scenarios which require temporally extended behavior: rather than simply executing
a simple, unidirectional pushing behavior, the robot must reach across the table to a corner where
the puck is located, move its arm around the puck, and then pull the puck to a different corner of
the table, as shown in[Figure 3| A trajectory is successful if the final puck position is within 6 cm
of the target position. For context, the puck has a radius of 4 cm. Complete results are provided in
Plots are averaged across 8 seeds, with the exception of PETS, which uses 5 seeds due
to computational constraints. For image based baselines (all except MPC), we first train VAEs and
select the top 8 seeds based on VAE loss. We proceed to training our RL algorithm with one seed per
selected VAE.

Push and Reach Push and Reach o Push and Reach

Final puck succ

/\ /\/\/\ V= N
— LEAP (ours)

N VAV ANt
TDM-100

— RIG
HER
PETS, state

Final distance to hand Goal (cm)
Final distance to puck Goal (cm)

7 RSN

1250 1500 1750 2000 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000

0 "’ i
250 500 50
nt Steps Total (x1000) Number of Environment Steps Total (x1000) Number of Environment Steps Total (x1000)

0

250 500 750
Number of Enviror

Figure 11: Complete Push and Reach Results

B.3 Ant Navigation

The ant must learn to navigate around a narrow rectangular room with a long wall in the center. See
Figure [5] for a visualization of the environment. The dimensions of the space are 7.5 x 18 units,
the wall is 1.5 units thick, and the ant has a radius of roughly 0.75 units. The state includes the
position, orientation (in Euler angles rather than quaternions), joint angles, and velocities of the
aforementioned components. The gear ratio for the ant is reduced to 10 units, to prevent the ant
from flipping over. The distance for[Equation I]is the distance between the current 2D position and
the target position, in addition to the differences in orientation of the ant with respect to the target
orientation. We define success as whether or not the ant is within 1.5 units of the goal position.
Complete results are provided in[Figure 12] Plots are averaged across 15 seeds, with the exception
of HIRO, which uses 5 seeds due to computational constraints. For LEAP, we first train VAEs and
select the top 5 seeds based on VAE loss. We proceed to training our RL algorithm with three seed
per selected VAE. Unlike the image-based experiments, the VAE is not used for training the RL
algorithm. It is only used during test time for planning subgoals. The VAE is trained on a dataset in
which the ant is in various valid positions of the maze, with a fixed orientation and fixed joint angles.

Ant Navigation Ant Navigation

12 —— LEAP (ours)
—— TDM-50

Final distance to Goal
Final success

200 400 600 1000 0 1000

60 800 200 400 60 00
Number of Environment Steps Total (x1000) Number of Environment Steps Total (x1000)

Figure 12: Complete Ant Navigation Results

15

Hyper-parameter Value

Q network hidden sizes 400, 300
Policy network hidden sizes 400, 300
Q network and policy activation ReLU
Q network output activation None
Policy network output activation tanh

e-greedy, € = .1 (2D Navigation)
OU-process § = .3, 0 = .3 (Push and Reach and Ant Navigation)
training batches per time step 1
128 (2D Navigation)

Exploration noise

Batch size 2048 (Push and Reach and Ant Navigation)
Optimizer Adam
Learning rate (all networks) 0.001
Target update rate 7 0.005
Replay buffer size 1000000

Table 1: TD3 [19] hyperparameters.

C Implementation Details

This section contains descriptions and hyperparameters of the experiment implementations.

C.1 Goal-conditioned reinforcement learning

Both the @ network and policy concatenate all inputs and pass them through a feed-forward network.
For RIG, the Q network outputs a scalar corresponding to the infinite discounted sum of rewards.
For TDMs, the Q network outputs a vector corresponding to the negative distance between the final
state and goal along each of the state dimensions. We train our networks using the twin delayed
deep deterministic policy gradient algorithm [19] (TD3). Hyperparameter details are provided in
When sampling minibatches from the replay buffer, we sample transitions, goals, and times
(for TDMs only). Inspired by RIG, we relabel the goals in our minibatches in the following manner:

e 20%: original goals from collected trajectories
e 40%: randomly sampled states from the replay buffer

e 40%: future states along the same collected trajectory, as dictated by hindsight experience
replay [2] (HER).

We note that in the Ant Navigation task, we split sampling from the replay buffer to 20% from the
replay buffer and 20% oracle goals from the environment.

C.2 Latent space optimization

In this subsection, we describe how we use the cross entropy method (CEM) [11] to optimize
equation 3| Given an optimization problem over K subgoals, with each subgoal represented as an
r-dimensional latent vector, the CEM optimizer is initialized with a standard multivariate Gaussian
distribution A (0, i, I-x), where 0, is a 7 K-dimensional vector of zeros, and I,.ic is the rK x r K
identity matrix. We sample different subgoal sequences from our distribution and evaluate the value
of each sample using We then fit a diagonal multivariate Gaussian distribution to the
top 5% of samples. We repeat this process for 15 iterations, and at each iteration we sample 1000
subgoal sequences from the fitted Gaussian. For the Ant Navigation task which involves optimizing
over significantly higher number of subgoals, we sample 10000 subgoal sequences and run for 50
iterations instead. In addition, we found it beneficial to filter the top 25% of samples for the first half
of iterations, and then filter the top 1% in the latter half. For the weight on the log-likelihood of the
latents, we use A = 0.1 for 2D Navigation and Ant Navigation tasks, and A = 0.001 for Push and
Reach.

16

C.3 Variational auto-encoder

We use separate VAE architectures for 2D Navigation (48 x 48 image) and Push and Reach (84 x 84
image). For 2D Navigation, encoder kernel sizes of [5, 3, 3], encoder strides of [3, 2, 2], [16, 32, 64]
encoder channels, decoder kernel sizes of [3, 3, 6], decoder strides of [2, 2, 3], and [64, 32, 16] decoder
channels are used. For Push and Reach, we use encoder kernel sizes of [5, 5, 5], encoder strides of
[3,3,3], [16, 16, 32] encoder channels, decoder kernel sizes of [5, 6, 6], decoder strides of [3, 3, 3],
and [32, 32, 16] decoder channels. Both architectures have a representation size of 16 and ReLU
activation. We trained the 2D Navigation VAEs with binary cross-entropy loss, and the Push and
Reach VAEs with mean squared error loss.

17

	Introduction
	Related Work
	Background
	Planning with Goal-Conditioned Policies
	Planning over Subgoals
	Optimizing over Images
	Goal-Conditioned Reinforcement Learning
	Summary of Latent Embeddings for Abstracted Planning

	Experiments
	Vision-based Comparison and Results
	Planning in Non-Vision-based Environments with Unknown State Spaces
	Ablation Study

	Discussion
	Acknowledgments
	Additional Experiments
	Norm Ablation
	Optimizer Ablation
	Likelihood Penalty Ablation

	Environment Details
	2D Navigation
	Push and Reach
	Ant Navigation

	Implementation Details
	Goal-conditioned reinforcement learning
	Latent space optimization
	Variational auto-encoder

