
Data-dependent Sample Complexity of Deep Neural
Networks via Lipschitz Augmentation

Colin Wei
Computer Science Department

Stanford University
colinwei@stanford.edu

Tengyu Ma
Computer Science Department

Stanford University
tengyuma@stanford.edu

Abstract

Existing Rademacher complexity bounds for neural networks rely only on norm
control of the weight matrices and depend exponentially on depth via a product of
the matrix norms. Lower bounds show that this exponential dependence on depth is
unavoidable when no additional properties of the training data are considered. We
suspect that this conundrum comes from the fact that these bounds depend on the
training data only through the margin. In practice, many data-dependent techniques
such as Batchnorm improve the generalization performance. For feedforward
neural nets as well as RNNs, we obtain tighter Rademacher complexity bounds by
considering additional data-dependent properties of the network: the norms of the
hidden layers of the network, and the norms of the Jacobians of each layer with
respect to all previous layers. Our bounds scale polynomially in depth when these
empirical quantities are small, as is usually the case in practice. To obtain these
bounds, we develop general tools for augmenting a sequence of functions to make
their composition Lipschitz and then covering the augmented functions. Inspired
by our theory, we directly regularize the network’s Jacobians during training and
empirically demonstrate that this improves test performance.

1 Introduction

Deep networks trained in practice typically use many more parameters than training examples, and
therefore have the capacity to overfit to the training set [Zhang et al., 2016]. Fortunately, there are also
many known (and unknown) sources of regularization during training: model capacity regularization
such as simple weight decay, implicit or algorithmic regularization [Gunasekar et al., 2017, 2018b,
Soudry et al., 2018, Li et al., 2018], and finally regularization that depends on the training data such as
Batchnorm [Ioffe and Szegedy, 2015], layer normalization [Ba et al., 2016], group normalization [Wu
and He, 2018], path normalization [Neyshabur et al., 2015a], dropout [Srivastava et al., 2014, Wager
et al., 2013], and regularizing the variance of activations [Littwin and Wolf, 2018].

In many cases, it remains unclear why data-dependent regularization can improve the final test
error — for example, why Batchnorm empirically improves the generalization performance in
practice [Ioffe and Szegedy, 2015, Zhang et al., 2019]. We do not have many tools for analyzing
data-dependent regularization in the literature; with the exception of Dziugaite and Roy [2018], [Arora
et al., 2018] and [Nagarajan and Kolter, 2019] (with which we compare later in more detail), existing
bounds typically consider properties of the weights of the learned model but little about their
interactions with the training set. Formally, define a data-dependent property as any function of
the learned model and the training data. In this work, we prove tighter generalization bounds by
considering additional data-dependent properties of the network. Optimizing these bounds leads to
data-dependent regularization techniques that empirically improve performance.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

One well-understood and important data-dependent property is the training margin: Bartlett et al.
[2017] show that networks with larger normalized margins have better generalization guarantees.
However, neural nets are complex, so there remain many other data-dependent properties which
could potentially lead to better generalization. We extend the bounds and techniques of Bartlett et al.
[2017] by considering additional properties: the hidden layer norms and interlayer Jacobian norms.
Our final generalization bound (Theorem 5.1) is a polynomial in the hidden layer norms and Lipschitz
constants on the training data. We give a simplified version below for expositional purposes. Let F
denote a neural network with smooth activation φ parameterized by weight matrices {W (i)}ri=1 that
perfectly classifies the training data with margin γ > 0. Let t denote the maximum `2 norm of any
hidden layer or training datapoint, and σ the maximum operator norm of any interlayer Jacobian,
where both quantities are evaluated only on the training data.

Theorem 1.1 (Simplified version of Theorem 5.1). Suppose σ, t ≥ 1. With probability 1− δ over
the training data, we can bound the test error of F by

L0-1(F) ≤ Õ

(σγ + r3σ2)t
(

1 +
∑
i ‖W (i)>‖2/32,1

)3/2

+ r2σ
(

1 +
∑
i ‖W (i)‖2/31,1

)3/2

√
n

+ r

√
log(1

δ)

n

The notation Õ hides logarithmic factors in d, r, σ, t and the matrix norms. The ‖ · ‖2,1 norm is
formally defined in Section 3.

The degree of the dependencies on σ may look unconventional — this is mostly due to the dramatic
simplification from our full Theorem 5.1, which obtains a more natural bound that considers all
interlayer Jacobian norms instead of only the maximum. Our bound is polynomial in t, σ, and network
depth, but independent of width. In practice, t and σ have been observed to be much smaller than the
product of matrix norms [Arora et al., 2018, Nagarajan and Kolter, 2019]. We remark that our bound
is not homogeneous because the smooth activations are not homogeneous and can cause a second
order effect on the network outputs.

In contrast, the bounds of Neyshabur et al. [2015b], Bartlett et al. [2017], Neyshabur et al. [2017a],
Golowich et al. [2017] all depend on a product of norms of weight matrices which scales exponentially
in the network depth, and which can be thought of as a worst case Lipschitz constant of the network.
In fact, lower bounds show that with only norm-based constraints on the hypothesis class, this product
of norms is unavoidable for Rademacher complexity-based approaches (see for example Theorem
3.4 of [Bartlett et al., 2017] and Theorem 7 of [Golowich et al., 2017]). We circumvent these lower
bounds by additionally considering the model’s Jacobian norms – empirical Lipschitz constants which
are much smaller than the product of norms because they are only computed on the training data.

The bound of Arora et al. [2018] depends on similar quantities related to noise stability but only
holds for a compressed network and not the original. The bound of Nagarajan and Kolter [2019] also
depends polynomially on the Jacobian norms rather than exponentially in depth; however these
bounds also require that the inputs to the activation layers are bounded away from 0, an assumption
that does not hold in practice [Nagarajan and Kolter, 2019]. We do not require this assumption
because we consider networks with smooth activations, whereas the bound of Nagarajan and Kolter
[2019] applies to relu nets.

In Section G, we additionally present a generalization bound for recurrent neural nets that scales
polynomially in the same quantities as our bound for standard neural nets. Prior generalization bounds
for RNNs either require parameter counting [Koiran and Sontag, 1997] or depend exponentially on
depth [Zhang et al., 2018, Chen et al., 2019].

In Figure 1, we plot the distribution over the sum of products of Jacobian and hidden layer norms
(which is the leading term of the bound in our full Theorem 5.1) for a WideResNet [Zagoruyko and
Komodakis, 2016] trained with and without Batchnorm. Figure 1 shows that this sum blows up for
networks trained without Batchnorm, indicating that the terms in our bound are empirically relevant
for explaining data-dependent regularization.

An immediate bottleneck in proving Theorem 1.1 is that standard tools require fixing the hypothesis
class before looking at training data, whereas conditioning on data-dependent properties makes the
hypothesis class a random object depending on the data. A natural attempt is to augment the loss

2

Figure 1: Let h1, h2, h3 denote the 1st, 2nd, and
3rd blocks of a 16-layer WideResNet and Ji the
Jacobian of the output w.r.t layer i. In log-scale we
plot a histogram of the 100 largest values on the
training set of

∑3
i=1 ‖hi‖‖Ji‖/γ for a WideRes-

Net trained with and without Batchnorm on CI-
FAR10, where γ is the example’s margin.

with indicators on the intended data-dependent quantities {γi}, with desired bounds {κi} as follows:

laug = (lold − 1)
∏

properties γi

1(γi ≤ κi) + 1

This augmented loss upper bounds the original loss lold ∈ [0, 1], with equality when all properties hold
for the training data. The augmentation lets us reason about a hypothesis class that is independent of
the data by directly conditioning on data-dependent properties in the loss. The main challenges with
this approach are twofold: 1) designing the correct set of properties and 2) proving generalization of
the final loss laug, a complicated function of the network.

Our main tool is covering numbers: Lemma 4.1 shows that a composition of functions (i.e, a neural
network) has low covering number if the output is worst-case Lipschitz at each level of the composition
and internal layers are bounded in norm. Unfortunately, the standard neural net loss satisfies neither
of these properties (without exponential dependencies on depth). However, by augmenting with
properties γ, we can guarantee they hold. One technical challenge is that augmenting the loss makes
it harder to reason about covering, as the indicators can introduce complicated dependencies between
layers.

Our main technical contributions are: 1) We demonstrate how to augment a composition of functions
to make it Lipschitz at all layers, and thus easy to cover. Before this augmentation, the Lipschitz
constant could scale exponentially in depth (Theorem 4.4). 2) We reduce covering a complicated
sequence of operations to covering the individual operations (Theorem 4.3). 3) By combining 1
and 2, it follows cleanly that our augmented loss on neural networks has low covering number and
therefore has good generalization. Our bound scales polynomially, not exponentially, in the depth of
the network when the network has good Lipschitz constants on the training data (Theorem 5.1).

As a complement to the main theoretical results in this paper, we show empirically in Section 6 that
directly regularizing our complexity measure can result in improved test performance.

2 Related Work

Zhang et al. [2016] and Neyshabur et al. [2017b] show that generalizaton in deep learning often
disobeys conventional statistical wisdom. One of the approaches adopted torwards explaining
generalization is implicit regularization; numerous recent works have shown that the training method
prefers minimum norm or maximum margin solutions [Soudry et al., 2018, Li et al., 2018, Ji and
Telgarsky, 2018, Gunasekar et al., 2017, 2018a,b, Wei et al., 2018]. With the exception of [Wei et al.,
2018], these papers analyze simplified settings and do not apply to larger neural networks.

This paper more closely follows a line of work related to Rademacher complexity bounds for
neural networks [Neyshabur et al., 2015b, 2018, Bartlett et al., 2017, Golowich et al., 2017]. For a
comparison, see the introduction. There has also been work on deriving PAC-Bayesian bounds for
generalization [Neyshabur et al., 2017b,a, Nagarajan and Kolter, 2019]. Dziugaite and Roy [2017a]
optimize a bound to compute non-vacuous bounds for generalization error. Another line of work
analyzes neural nets via their behavior on noisy inputs. Neyshabur et al. [2017b] prove PAC-Bayesian
generalization bounds for random networks under assumptions on the network’s empirical noise
stability. Arora et al. [2018] develop a notion of noise stability that allows for compression of a
network under an appropriate noise distribution. They additionally prove that the compressed network
generalizes well. In comparison, our Lipschitzness construction also relates to noise stability, but our
bounds hold for the original network and do not rely on the particular noise distribution.

3

Nagarajan and Kolter [2019] use PAC-Bayes bounds to prove a similar result as ours for generalization
of a network with bounded hidden layer and Jacobian norms. The main difference is that their bounds
depend on the inverse relu preactivations, which are found to be large in practice [Nagarajan and
Kolter, 2019]; our bounds apply to smooth activations and avoid this dependence at the cost of an
additional factor in the Jacobian norm (shown to be empirically small). We note that the choice of
smooth activations is empirically justified [Clevert et al., 2015, Klambauer et al., 2017]. We also
work with Rademacher complexity and covering numbers instead of the PAC-Bayes framework.
It is relatively simple to adapt our techniques to relu networks to produce a similar result to that
of Nagarajan and Kolter [2019], by conditioning on large pre-activation values in our Lipschitz
augmentation step (see Section 4.2). In Section H, we provide a sketch of this argument and
obtain a bound for relu networks that is polynomial in hidden layer and Jacobian norms and inverse
preactivations. However, it is not obvious how to adapt the argument of Nagarajan and Kolter
[2019] to activation functions whose derivatives are not piecewise-constant.

Dziugaite and Roy [2018, 2017b] develop PAC-Bayes bounds for data-dependent priors obtained via
some differentially private mechanism. Their bounds are for a randomized classifier sampled from
the prior, whereas we analyze a deterministic, fixed model.

On the empirical side, Novak et al. [2018] demonstrate that the sensitivity of a neural net to input noise
correlates with its generalization error. There are also other perspectives on generalization: Hardt
et al. [2015] show that models which train faster tend to generalize better. Keskar et al. [2016], Hoffer
et al. [2017] study the effect of batch size on generalization. Brutzkus et al. [2017] analyze a neural
network trained on hinge loss and linearly separable data and show that gradient descent recovers the
exact separating hyperplane.

3 Notation

Let 1(E) be the indicator function of event E. Let l0-1 denote the standard 0-1 loss. For κ ≥ 0, Let
1≤κ(·) be the softened indicator function defined as

1≤κ(t) =

{
1 if t ≤ κ
2− t/κ if κ ≤ t ≤ 2κ
0 if 2κ ≤ t

Note that 1≤κ is κ−1-Lipschitz. Define the norm ‖ · ‖p,q by ‖A‖p,q ,
(∑

j

(∑
iA

p
i,j

)q/p)1/q

. Let
Pn be a uniform distribution over n points {x1, . . . , xn} ⊂ Dx. Let f be a function that maps Dx to
some output space Df , and assume both spaces are equipped with some norms ||| · ||| (these norms can
be different but we use the same notations for them). Then the L2(Pn, ||| · |||) norm of the function f

is defined as ‖f‖L2(Pn,|||·|||) ,
(

1
n

∑
i |||f(xi)|||2

)1/2

. We use D to denote total derivative operator,
and thus Df(x) represents the Jacobian of f at x. Suppose F is a family of functions from Dx to
Df . Let C(ε,F , ρ) be the covering number of the function class F w.r.t. metric ρ with cover size ε.
In many cases, the covering number depends on the examples through the norms of the examples,
and in this paper we only work with these cases. Thus, we let N (ε,F , s) be the maximum covering
number for any possible n data points with norm not larger than s. Precisely, if we define Pn,s to
be the set of all possible uniform distributions supported on n data points with norms not larger
than s, then N (ε,F , s) , supPn∈Pn,s C(ε,F , L2(Pn, ||| · |||)). Suppose F contains functions with
m inputs that map from a tensor product m Euclidean space to Euclidean space, then we define
N (ε,F , (s1, . . . , sm)) , supP :∀(x1,...,xm)∈supp(P)

‖xi‖≤si
C(ε,F , L2(P)).

4 Overview of Main Results and Proof Techniques

In this section, we give a general overview of the main technical results and outline how to prove
them with minimal notation. We will point to later sections where many statements are formalized.

To simplify the core mathematical reasoning, we abstract feed-forward neural networks (including
residual networks) as compositions of operations. Let F1, . . . ,Fk be a sequence of families of
functions (corresponding to families of single layer neural nets in the deep learning setting) and ` be

4

a Lipschitz loss function taking values in [0, 1]. We study the compositions of ` and functions in Fi’s:

L , ` ◦ Fk ◦ Fk−1 · · · ◦ F1 = {` ◦ fk ◦ fk−1 ◦ · · · ◦ f1 : ∀i, fi ∈ Fi} (1)
Textbook results [Bartlett and Mendelson, 2002] bound the generalization error by the Rademacher
complexity (formally defined in Section C) of the family of losses L, which in turn is bounded by the
covering number of L through Dudley’s entropy integral theorem [Dudley, 1967]. Modulo minor
nuances, the key remaining question is to give a tight covering number bound for the family L for
every target cover size ε in a certain range (often, considering ε ∈ [1/nO(1), 1] suffices).

As alluded to in the introduction, generalization error bounds obtained through this machinery only
depend on the (training) data through the margin in the loss function, and our aim is to utilize more
data-dependent properties. Towards understanding which data-dependent properties are useful to
regularize, it is helpful to revisit the data-independent covering technique of [Bartlett et al., 2017],
the skeleton of which is summarized below.

Recall that N (ε,F , s) denotes the covering number for arbitrary n data points with norm less than s.
The following lemma says that if the intermediate variable (or the hidden layer) fi ◦ · · · ◦ f1(x) is
bounded, and the composition of the rest of the functions l ◦fk ◦ · · · ◦fi+1(x) is Lipschitz, then small
covering number of local functions imply small covering number for the composition of functions.
Lemma 4.1. [abstraction of techniques in [Bartlett et al., 2017]] In the context above, assume:

1. for any x ∈ supp(Pn), |||fi ◦ · · · ◦ f1(x)||| ≤ si.
2. ` ◦ fk ◦ · · · ◦ fi+1 is κi-Lipschitz for all i.

Then, we have the following covering number bound for L (for any choice of ε1, . . . , εk > 0):
logN (

∑k
i=1 κiεi,L, s0) ≤∑k

i=1 logN (εi,Fi, si−1).

The lemma says that the log covering number and the cover size scale linearly if the Lipschitzness
parameters and norms remain constant. However, these two quantities, in the worst case, can
easily scale exponentially in the number of layers, and they are the main sources of the dependency
of product of spectral/Frobenius norms of layers in [Golowich et al., 2017, Bartlett et al., 2017,
Neyshabur et al., 2017a, 2015b] More precisely, the worst-case Lipschitzness over all possible data
points can be exponentially bigger than the average/typical Lipschitzness for examples randomly
drawn from the training or test distribution. We aim to bridge this gap by deriving a generalization
error bound that only depends on the Lipschitzness and boundedness on the training examples.

Our general approach, partially inspired by margin theory, is to augment the loss function by soft
indicators of Lipschitzness and boundedness. Let hi be shorthand notation for fi ◦ · · · ◦ f1, the i-th
intermediate value, and let z(x) , `(hk(x)) be the original loss. Our first attempt considered:

z̃′(x) , 1 + (z(x)− 1) ·
k∏

i=1

1≤si(‖hi(x)‖) ·
k∏

i=1

1≤κi(‖∂z/∂hi‖op) (2)

Since z takes values in [0, 1], the augmented loss z̃′ is an upper bound on the original loss z with
equality when all the indicators are satisfied with value 1. The hope was that the indicators would
flatten those regions where hi is not bounded and where z is not Lipschitz in hi. However, there are
two immediate issues. First, the soft indicators functions are themselves functions of hi. It’s unclear
whether the augmented function can be Lipschitz with a small constant w.r.t hi, and thus we cannot
apply Lemma 4.1.1 Second, the augmented loss function becomes complicated and doesn’t fall into
the sequential computation form of Lemma 4.1, and therefore even if Lipschitzness is not an issue,
we need new covering techniques beyond Lemma 4.1.

We address the first issue by recursively augmenting the loss function by multiplying more soft
indicators that bound the Jacobian of the current function. The final loss z̃ reads:2

z̃(x) , 1 + (z(x)− 1) ·
k∏

i=1

1≤si(‖hi(x)‖) ·
∏

1≤i≤j≤k
1≤κj←i(‖Dfj ◦ · · · ◦ fi[hi−1]‖op) (3)

1A priori, it’s also unclear what “Lipschitz in hi” means since the z̄′ does not only depend on x through hi.
We will formalize this in later section after defining proper language about dependencies between variables.

2Unlike in equation (2), we don’t augment the Jacobian of the loss w.r.t the layers. This allows us to deal
with non-differentiable loss functions such as ramp loss.

5

where κj←i’s are user-defined parameters. For our application to neural nets, we instantiate si as the
maximum norm of layer i and κj←i as the maximum norm of the Jacobian between layer j and i
across the training dataset. A polynomial in κ, s can be shown to bound the worst-case Lipschitzness
of the function w.r.t. the intermediate variables in the formula above.3 By our choice of κ, s, a) the
training loss is unaffected by the augmentation and b) the worst-case Lipschitzness of the loss is
controlled by a polynomial of the Lipschitzness on the training examples. We provide an informal
overview of our augmentation procedure in Section 4.2 and formally state definitions and guarantees
in Section B. The downside of the Lipschitz augmentation is that it further complicates the loss
function. Towards covering the loss function (assuming Lipschitz properties) efficiently, we extend
Lemma 4.1, which works for sequential compositions of functions, to general families of formulas,
or computational graphs. We informally overview this extension in Section 4.1 using a minimal set
of notations, and in Section A, we give a formal presentation of these results.

Combining the Lipschitz augmentation and graphs covering results, we obtain a covering number
bound of augmented loss. The theorem below is formally stated in Theorem B.3 of Section B.

Theorem 4.2. Let L̃ be the family of augmented losses defined in (3). For cover resolutions εi and
values κ̃i that are polynomial in the parameters si, κj←i, we obtain the following covering number
bound for L̃:

logN (
∑

i

εiκ̃i, L̃, s0) ≤
∑

i

logN (εi,Fi, si−1) +
∑

i

logN (εi, DFi, si−1)

where DFi denotes the function class obtained from applying the total derivative operator to all
functions in Fi.

Now, following the standard technique of bounding Rademacher complexity via covering numbers, we
can obtain generalization error bounds for augmented loss. For the demonstration of our technique,
suppose that the following simplification holds: logN (εi, DFi, si−1) = logN (εi,Fi, si−1) =
s2
i−1/ε

2
i . Then after minimizing the covering number bound in εi via standard techniques, we obtain

the below generalization error bound on the original loss for parameters κ̃i alluded to in Theorem 4.2
and formally defined in Theorem B.2. When the training examples satisfy the augmented indicators,
Etrain[z̃] = Etrain[z], and because z̃ bounds z from above, we have

E
test

[z]− E
train

[z] ≤ E
test

[z̃]− E
train

[z̃] ≤ Õ
((∑

i κ̃
2/3
i s

2/3
i−1

)3/2

√
n

+

√
log(1/δ)

n

)
(4)

4.1 Overview of Computational Graph Covering

To obtain the augmented z̃ defined in (3), we needed to condition on data-dependent properties
which introduced dependencies between the various layers. Because of this, Lemma 4.1 is no longer
sufficient to cover z̃. In this section, we informally overview how to extend Lemma 4.1 to cover more
general functions via the notion of computational graphs. For space constraints, this section is a
dramatically abbreviated and informal version of Section A.

A computational graph G(V, E , {RV }) is an acyclic directed graph with three components: the set of
nodes V corresponds to variables, the set of edges E describes dependencies between these variables,
and {RV } contains a list of composition rules indexed by the variables V ’s, representing the process
of computing V from its direct predecessors. For simplicity, we assume the graph contains a unique
sink, denoted by OG, and we call it the “output node”. We also overload the notation OG to denote
the function that the computational graph G finally computes. Let IG = {I1, . . . , Ip} be the subset
of nodes with no predecessors, which we call the “input nodes” of the graph.

The notion of a family of computational graphs generalizes the sequential family of function com-
positions in (1). Let G = {G(V, E , {RV })} be a family of computational graphs with shared nodes,
edges, output node, and input nodes (denoted by I). Let RV be the collection of all possible compo-
sition rules used for node V by the graphs in the family G. This family G defines a set of functions
OG , {OG : G ∈ G}.

3As mentioned in footnote 1, we will formalize the precise meaning of Lipschitzness later.

6

The theorem below extends Lemma 4.1. In the computational graph interpretation, Lemma 4.1
applies to a sequential family of computational graphs with k internal nodes V1, . . . , Vk, where each
Vi computes the function fi, and the output computes the composition OG = ` ◦ fk · · · ◦ f1 = z.
However, the augmented loss z̃ no longer has this sequential structure, requiring the below theorem
for covering generic families of computational graphs. We show that covering a general family of
computational graphs can be reduced to covering all the local composition rules.

Theorem 4.3 (Informal and weaker version of Theorem A.3). Suppose that there is an ordering
(V1, . . . , Vm) of the nodes, so that after cutting out nodes V1, . . . , Vi−1, the node Vi becomes a leaf
node and the output OG is κVi-Lipschitz w.r.t to Vi for all G ∈ G. In addition, assume that for all
G ∈ G, the node V ’s value has norm at most sV . Let pr(V) be all the predecessors of V and spr(V)

be the list of norm upper bounds of the predecessors of V .

Then, small covering numbers for all of the local composition rules of V with resolution εV would
imply small covering number for the family of computational graphs with resolution

∑
V εV κV :

logN (
∑

V ∈V\I∪{O}
κV εV + εO, OG , sI) ≤

∑

V ∈V\I
logN (εV ,RV , spr(V)) (5)

In Section A we formalize the notion of “cutting” nodes from the graph. The condition that node
V ’s value has norm at most sV is a simplification made for expositional purposes; our full Theo-
rem A.3 also applies if OG collapses to a constant whenever node V ’s value has norm greater than
sV . This allows for the softened indicators 1≤si(‖hi(x)‖) used in (3).

4.2 Lipschitz Augmentation of Computational Graphs

The covering number bound of Theorem 4.3 relies on Lipschitzness w.r.t internal nodes of the graph
under a worst-case choice of inputs. For deep networks, this can scale exponentially in depth via the
product of weight norms and easily be larger than the average Lipschitz-ness over typical inputs. In
this section, we explain a general operation to augment sequential graphs (such as neural nets) into
graphs with better worst-case Lipschitz constants, so tools such as Theorem 4.3 can be applied. This
section is heavily simplified for space constraints. Formal definitions and theorem statements are in
Section B.

The augmentation relies on introducing terms such as the soft indicators in equation (2) and (3)
which condition on data-dependent properties. As outlined in Section 4, they will translate to the
data-dependent properties in the generalization bounds. We also require the augmented function to
upper bound the original.

We will present a generic approach to augment function compositions such as z , ` ◦ fk ◦ . . . ◦ f1,
whose Lipschitz constants are potentially exponential in depth, with only properties involving the
norms of the inter-layer Jacobians. We will produce z̃, whose worst-case Lipschitzness w.r.t. internal
nodes can be polynomial in depth.

Informal explanation of Lipschitz augmentation: In the same setting of Section 4, recall that
in (2), our first unsuccessful attempt to smooth out the function was by multiplying indicators on the
norms of the derivatives of the output:

∏k
i=1 1≤κi(‖∂z/∂hi‖op). The difficulty lies in controlling

the Lipschitzness of the new terms ‖∂z/∂hi‖op that we introduce: by the chain rule, we have the
expansion ∂z

∂hi
= ∂z

∂hk
∂hk
∂hk−1

· · · ∂hi+1

∂hi
, where each hj′ is itself a function of hj for j′ > j. This

means ∂z
∂hi

is a complicated function in the intermediate variables hj for 1 ≤ j ≤ k. Bounding the
Lipschitzness of ∂z

∂hi
requires accounting for the Lipschitzness of every term in its expansion, which

is challenging and creates complicated dependencies between variables.

Our key insight is that by considering a more complicated augmentation which conditions on the
derivatives between all intermediate variables, we can still control Lipschitzness of the system,
leading to the more involved augmentation presented in (3). Our main technical contribution is
Theorem 4.4, which we informally state below.

Theorem 4.4 (Informal version of Theorem B.2). The functions z̃ (defined in (3)) can be computed
by a family of computational graphs G̃ illustrated in Figure 2. This family has internal nodes Vi and
Ji computing hi and Dfi[hi−1], respectively, and computes a modified output rule that augments the

7

original with soft indicators. These soft indicators condition that the norms of the Jacobians and hi
are bounded by parameters κj←i, si.

Importantly, the output OG̃ is κ̃Vi , κ̃Ji-Lipschitz w.r.t. Vi, Ji, respectively, after cutting nodes
V1, J1, . . . , Vi−1, Ji−1, for parameters κ̃Vi , κ̃Ji that are polynomials in κj←i, si.

In addition, the augmented function z̃ will upper bound the original with equality when all the
indicators are satisfied. The crux of the proof is leveraging the chain rule to decompose ∂z

∂hi
into

a product and then applying a telescoping argument to bound the difference in the product by
differences in individual terms. In Section B we present a formal version of this result and also apply
Theorem 4.3 to produce a covering number bound for G̃.

5 Application to Neural Networks

Figure 2: Lipschitz augmentation
(informally defined).

In this section we provide our generalization bound for neural
nets, which was obtained using machinery from Section 4.1.
Define a neural network F parameterized by r weight matri-
ces {W (i)} by F (x) = W (r)φ(· · ·φ(W (1)(x)) · · ·). We use
the convention that activations and matrix multiplications are
treated as distinct layers indexed with a subscript, with odd lay-
ers applying a matrix multiplication and even layers applying
φ (see Example A.1 for a visualization). Additional notation
details and the proof are in Section C.

The below result follows from modeling the neural net loss as
a sequential computational graph and using our augmentation
procedure to make it Lipschitz in its nodes with parameters
κhidden,(i), κjacobian,(i). Then we cover the augmented loss to
bound its Rademacher complexity.
Theorem 5.1. Assume that the activation φ is 1-Lipschitz with a σ̄φ-Lipschitz derivative. Fix
reference matrices {A(i)}, {B(i)}. With probability 1− δ over the random draws of the data Pn, all
neural networks F with parameters {W (i)} and positive margin γ satisfy:

E
(x,y)∼P

[l0-1(F (x), y)] ≤ Õ

(∑
i(κ

hidden,(i)a(i)t(i−1))2/3 + (κjacobian,(i)b(i))2/3
)3/2

√
n

+ r

√
log(1/δ)

n

where κjacobian,(i) ,
∑

1≤j≤2i−1≤j′≤2r−1

σj′←2iσ2i−2←j
σj′←j

, and κhidden,(i) , ξ + σ2r−1←2i

γ +
∑
i≤i′<r

σ2i′←2i

t(i′)
+
∑

1≤j≤j′≤2r−1

∑j′

j′′=max{2i,j},
j′′ even

σ̄φσj′←j′′+1σj′′−1←2iσj′′−1←j
σj′←j

.

In these expressions, we define σj−1←j = 1, ξ = poly(r)−1, and:

a(i) , ‖W (i)> −A(i)>‖2,1 + ξ, b(i) , ‖W (i) −B(i)‖1,1 + ξ

t(0) , max
x∈Pn

‖x‖+ ξ, t(i) , max
x∈Pn

‖F2i←1(x)‖+ ξ

σj′←j , max
x∈Pn

‖Qj′←j(x)‖op + ξ, and γ , min
(x,y)∈Pn

[F (x)]y −max
y′ 6=y

[F (x)]y′ > 0

where Qj′←j computes the Jacobian of layer j′ w.r.t. layer j. Note that the training error here is 0
because of the existence of positive margin γ.

We note that our bound has no explicit dependence on width and instead depends on the ‖·‖2,1, ‖·‖1,1
norms of the weights offset by reference matrices {A(i)}, {B(i)}. These norms can avoid scaling
with the width of the network if the difference between the weights and reference matrices is sparse.
The reference matrices {A(i)}, {B(i)} are useful if there is some prior belief before training about
what weight matrices are learned, and they also appear in the bounds of Bartlett et al. [2017]. In
Section G, we also show that our techniques can easily be extended to provide generalization bounds
for RNNs scaling polynomially in depth via the same quantities t(i), σj′←j .

8

Table 1: Test error for a model trained on CIFAR10 in various settings.

Setting Normalization Jacobian Reg Test Error
Baseline BatchNorm × 4.43%

Low learning rate (0.01) BatchNorm × 5.98%
X 5.46%

No data augmentation BatchNorm × 10.44%
X 8.25%

No BatchNorm
None × 6.65%

LayerNorm [Ba et al., 2016] × 6.20%
X 5.57%

6 Experiments

Though the main purpose of the paper is to study the data-dependent generalization bounds from
a theoretical perspective, we provide preliminary experiments demonstrating that the proposed
complexity measure and generalization bounds are empirically relevant. We show that regularizing
the complexity measure leads to better test accuracy. Inspired by Theorem 5.1, we directly regularize
the Jacobian of the classification margin w.r.t outputs of normalization layers and after residual blocks.
Our reasoning is that normalization layers control the hidden layer norms, so additionally regularizing
the Jacobians results in regularization of the product, which appears in our bound. We find that this is
effective for improving test accuracy in a variety of settings. We note that Sokolić et al. [2017] show
positive experimental results for a similar regularization technique in data-limited settings.

Suppose that m(F (x), y) = [F (x)]y − maxj 6=y[t]j denotes the margin of the network for ex-
ample (x, y). Letting h(i) denote some hidden layer of the network, we define the notation
J (i) , ∂

∂h(i)m(F (x), y) and use training objective

L̂reg[F] , E(x,y)∼Pn

[
l(x, y) + λ

(∑

i

1(‖J (i)(x)‖2F ≥ σ)‖J (i)(x)‖2F

)]

where l denotes the standard cross entropy loss, and λ, σ are hyperparameters. Note the Jacobian is
taken with respect to a scalar output and therefore is a vector, so it is easy to compute.

For a WideResNet16 [Zagoruyko and Komodakis, 2016] architecture, we train using the above
objective. The threshold on the Frobenius norm in the regularization is inspired by the truncations
in our augmented loss (in all our experiments, we choose σ = 0.1). We tune the coefficient λ as a
hyperparameter. In our experiments, we took the regularized indices i to be last layers in each residual
block as well as layers in residual blocks following a BatchNorm in the standard WideResNet16
architecture. In the LayerNorm setting, we simply replaced BatchNorm layers with LayerNorm. The
remaining hyperparameter settings are standard for WideResNet; for additional details see Section I.1.

Figure 1 shows the results for models trained and tested on CIFAR10 in low learning rate and no data
augmentation settings, which are settings where generalization typically suffers. We also experiment
with replacing BatchNorm layers with LayerNorm and additionally regularizing the Jacobian. We
observe improvements in test error for all these settings. In Section I.2, we empirically demonstrate
that our complexity measure indeed avoids the exponential scaling in depth for a WideResNet model
trained on CIFAR10.

7 Conclusion

In this paper, we tackle the question of how data-dependent properties affect generalization. We prove
tighter generalization bounds that depend polynomially on the hidden layer norms and norms of the
interlayer Jacobians. To prove these bounds, we work with the abstraction of computational graphs
and develop general tools to augment any sequential family of computational graphs into a Lipschitz
family and then cover this Lipschitz family. This augmentation and covering procedure applies to
any sequence of function compositions. An interesting direction for future work is to generalize our
techniques to arbitrary computational graph structures. Additionally, encouraged by our promising
preliminary results, we believe there is the exciting empirical direction of applying these bounds to
develop better data-dependent regularization.

9

Acknowledgments

CW was supported by a NSF Graduate Research Fellowship. Toyota Research Institute (TRI)
provided funds to assist the authors with their research but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

References
Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for

deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249, 2017.

Friedrich L Bauer. Computational graphs and rounding error. SIAM Journal on Numerical Analysis,
11(1):87–96, 1974.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent neural
networks, 2019. URL https://openreview.net/forum?id=Skf-oo0qt7.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

RM Dudley. The sizes of compact subsets of hilbert space and continuity of gaussian processes.
Journal of Functional Analysis, 1(3):290–330, 1967.

Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017a.

Gintare Karolina Dziugaite and Daniel M Roy. Entropy-sgd optimizes the prior of a pac-bayes
bound: Generalization properties of entropy-sgd and data-dependent priors. arXiv preprint
arXiv:1712.09376, 2017b.

Gintare Karolina Dziugaite and Daniel M Roy. Data-dependent pac-bayes priors via differential
privacy. In Advances in Neural Information Processing Systems, pages 8430–8441, 2018.

Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
neural networks. arXiv preprint arXiv:1712.06541, 2017.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. In Advances in Neural Information Processing
Systems, pages 6151–6159, 2017.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. arXiv preprint arXiv:1802.08246, 2018a.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on
linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018b.

Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

10

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. In Advances in Neural Information Processing
Systems, pages 1731–1741, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems, pages 971–980, 2017.

Pascal Koiran and Eduardo D Sontag. Vapnik-chervonenkis dimension of recurrent neural networks.
In European Conference on Computational Learning Theory, pages 223–237. Springer, 1997.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pages 2–47, 2018.

Etai Littwin and Lior Wolf. Regularizing by the variance of the activations’ sample-variances. In
Advances in Neural Information Processing Systems, pages 2115–2125, 2018.

Vaishnavh Nagarajan and Zico Kolter. Deterministic PAC-bayesian generalization bounds for deep
networks via generalizing noise-resilience. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=Hygn2o0qKX.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Data-dependent path
normalization in neural networks. arXiv preprint arXiv:1511.06747, 2015a.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pages 1376–1401, 2015b.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. A pac-
bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint
arXiv:1707.09564, 2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. In Advances in Neural Information Processing Systems, pages 5947–5956,
2017b.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. arXiv preprint
arXiv:1805.12076, 2018.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-
Dickstein. Sensitivity and generalization in neural networks: an empirical study. arXiv preprint
arXiv:1802.08760, 2018.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

11

Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In
Advances in neural information processing systems, pages 351–359, 2013.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. On the margin theory of feedforward neural
networks. arXiv preprint arXiv:1810.05369, 2018.

Wikipedia contributors. Chain rule — Wikipedia, the free encyclopedia, 2019.

Yuxin Wu and Kaiming He. Group normalization. arXiv preprint arXiv:1803.08494, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Residual learning without normalization via
better initialization. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1gsz30cKX.

Jiong Zhang, Qi Lei, and Inderjit S Dhillon. Stabilizing gradients for deep neural networks via
efficient svd parameterization. arXiv preprint arXiv:1803.09327, 2018.

12

