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Abstract

Despite rapid advances in speech recognition, current models remain brittle to1

superficial perturbations to their inputs. Small amounts of noise can destroy the2

performance of an otherwise state-of-the-art model. To harden models against back-3

ground noise, practitioners often perform data augmentation, adding artificially-4

noised examples to the training set, carrying over the original label. In this paper,5

we hypothesize that a clean example and its superficially perturbed counterparts6

shouldn’t merely map to the same class — they should map to the same repre-7

sentation. We propose invariant-representation-learning (IRL): At each training8

iteration, for each training example, we sample a noisy counterpart. We then apply9

a penalty term to coerce matched representations at each layer (above some chosen10

layer). Our key results, demonstrated on the LibriSpeech dataset are the following:11

(i) IRL significantly reduces character error rates (CER) on both ‘clean’ (3.3%12

vs 6.5%) and ‘other’ (11.0% vs 18.1%) test sets; (ii) on several out-of-domain13

noise settings (different from those seen during training), IRL’s benefits are even14

more pronounced. Careful ablations confirm that our results are not simply due to15

shrinking activations at the chosen layers.16

1 Introduction17

Over the past several years, a series of papers have developed end-to-end deep learning systems18

for automatic speech recognition (ASR), advancing the state of the art on a variety of benchmarks19

[1, 2, 3, 4, 5, 6]. Typically, these models consist of either Recurrent Neural Networks (RNNs) with20

Sequence-to-Sequence (Seq2Seq) architectures [7] and attention mechanisms [8, 9], RNN transducers21

[10], transformer networks [11, 6], convolutional neural networks paired with transformer networks22

[12, 13], or RNNs trained with CTC loss [14]. Often, these models act on spectral features, e.g.,23

Mel-Frequency Cepstral Coefficients (MFCC) [15].24

While these systems achieve impressive accuracy when trained and evaluated on clean data, they25

suffer a well-documented sensitivity to changing noise levels and various noise types [16]. Perhaps26

this vulnerability should not be surprising, given the significant impact that background noise can27

have on MFCC features [16].28

One simple strategy to combat the vulnerability of deep nets to background noise is a technique29

known generally as data augmentation, and as multi-condition training in the speech recognition30

community. Here, we augment the original data by applying transformations to which we want our31

models to be invariant and assigning these perturbed data points the same label as the unperturbed32

originals. While the computer vision literature has long focused on perturbations like random crops,33

rotations, translations, and Gaussian noise [17, 18, 19, 20, 21], data augmentation papers in the ASR34

literature commonly sample snippets of additive background noise from datasets such as MUSAN35

[22], which contains environmental noise (dial tones, thunder, footsteps, animal noises, etc), music36
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(baroque, classical, romantic, jazz, bluegrass, hip-hop, etc.), and speech. ASR models trained with37

such augmented data have demonstrated lower grapheme error rates on noisy data [23, 24, 25].38

In this paper, we draw inspiration from the human ability to recognize not only that a clean clip and39

its noisy counterpart belong to the same category but that they are produced from the same exact40

recording. Thus, we propose models that map both clean inputs and their noisy counterparts onto the41

same point in representation space, introducing this inductive bias via regularization terms, penalizing42

differences between the hidden representations produced from real and noisy data. Throughout train-43

ing, for each clean example, we synthesize one noisy counterpart, using a custom data augmentation44

pipeline that first selects a random noise snippet and volume level, adding the two raw waveforms45

and then generating the corresponding MFCC features on the fly. At each iteration, we apply the46

original cross-entropy loss on the predictions for both clean and perturbed inputs and also penalize47

the difference in hidden activations encouraging corresponding activations as quantified by both48

cosine distance and L2 distance.49

Our experiments address the LibriSpeech dataset [26], building on a Seq2Seq baseline with cross-50

entropy loss. To keep the empirical study clean, we do not use a language model. We run all51

experiments both on the standard dev and test sets and also under a variety of out-of-domain noise52

conditions. First, we show that while data augmentation improves generalization error on both53

the original task and under out-of-domain noise, the models still suffer significant degradation in54

performance. Next, we show that Invariant-Representation Learners (IRLs) improve significantly55

over generic data augmentation models, both on the clean and other (the more challenging dataset56

with higher word error rate) subsets of the LibriSpeech test set. Comparisons against an adversarial57

approach proposed by [27] and the logit pairing approach due to [28] demonstrate the significant58

advantage of IRL. We then demonstrate that on a variety of simulated out-of-domain noise conditions,59

the IRL models are considerably more robust than all baselines. Finally, we perform ablation60

experiments, showing that our models trained with the IRL algorithm outperform well-known61

regularization tactics like weight decay applied on the same representations.62

1.1 Related work63

A number of proposed models address the goal of noise-robust speech recognition: [29] proposes a64

method called noise-aware training that introduces information about the environment as additional65

inputs to DNN-based acoustic models. [23] proposes augmenting training examples with additive66

noise sampled from the DEMAND noise database training examples. [27] seeks noise-invariant67

representations in DNN-HMM architectures through an adversarial learning setup. [30] shows the68

training on multi-modal data leads to noise robust models. [31] demonstrates that modeling speech as69

a linear combination of exemplars results in noise-robust ASR models. [32] proposes deep recurrent70

autoencoders to denoise input features. [33] presents an overview of methods for noise-robust ASR,71

including recursive cepstral mean and variance normalization [34], joint adaptive training [35], and72

speaker adaptive training [36]. To our knowledge, no prior work in speech recognition employs our73

simple approach of penalizing distance between the hidden representations corresponding to clean74

and noisy signals.75

In the most similar paper, [27] claimed that with adversarially trained DNN-HMM systems, the best76

performance gain is achieved when a small number of noise types are available for training. When77

using 6 noise classes (airport, babble, car, restaurant, street, and train), [27] found that there was no78

significant difference between the adversarial and baseline models. In contrast, our models show a79

CER improvement over baseline of 3.1% absolute on test-clean and 6.5% absolute on test-other using80

hundreds of noise classes.81

2 Noise-invariant representations82

To begin, we formally describe our loss function for enforcing noise-invariant representations on83

the outputs of a given layer. Because our first proposed model focuses noise-invariance in the84

encoding layer, we dub models using such loss functions IRL-E. In other experiments, we apply a85

cumulative penalty, additionally requiring noise-invariant representations at all subsequent layers,86

naming this model IRL-C. We begin by describing IRL-E. Subsequently, extension to IRL-C will be87

straightforward.88
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Figure 1: Diagram demonstrating the various terms in the IRL loss function as applied to a Seq2Seq
attention model. Dotted lines represent shared weights.

2.1 IRL-E89

The IRL algorithm is simple: First, during training, for each example x, we produce a noisy version90

by sampling from x′ ∼ ν(x), where ν is a stochastic function. In our experiments, this function takes91

a random snippet from a noise database, sets its amplitude by drawing from a normal distribution, and92

adds it to the original (in sample space), before converting to spectral features. We then incorporate a93

penalty term in our loss function to penalize the distance between the encodings of the original data94

point φe(x) and the noisy data point φe(x′), where φl is representation at layer l. In our experiments,95

we choose φe to be the output of the encoder in our Seq2Seq model. We illustrate the learning setup96

graphically in Figure 1. In short, our loss function consists of three terms, one to maximize the97

probability assigned to the the clean example’s label, another to maximize the probability our model98

assigned to the noisy example’s (identical) label scaled by hyper-parameter α, and a penalty term to99

induce noise-invariant representations Ld. In the following equations, we express the loss calculated100

on a single example x and its noisy counterpart x′, omitting sums over the dataset for brevity.101

L(θ) = Lc(x; θ) + αLc(x
′; θ) + Ld(x,x

′; θ),

where θ denotes our model parameters. Because our experiments address multiclass classification,102

our primary loss Lc is cross-entropy:103

Lc(x; θ) = −
C∑

k=1

yk log ŷk(x; θ),

where C denotes the vocabulary size and ŷ is our model’s softmax output. To induce similar104

representations for clean and noised data, we apply a penalty consisting of two terms, the first105

penalizes the L2 distance between φe(x) and φe(x′), the second penalizes their negative cosine106

distance.107

Ld(x,x
′; θ) =γ (φe(x)− φe(x′))

2 − λ φe(x) · φe(x′)

||φe(x)|| · ||φe(x′)||

We jointly penalize the L2 and cosine distance for the following reason. It is possible to lower the108

L2 distance between the two (clean and noisy) hidden representations simply by shrinking the scale109

of all encoded representations. Trivially, these could then be dilated again simply by setting large110

weights in the following layer. On the other hand, it is possible to assign high cosine similarity to111

the two vectors but for their magnitudes to vary significantly. By jointly penalizing L2 and cosine112

distance, we require that both the clean and noisy representations point in the same direction and are113

close to each other in magnitude.114
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2.2 Applying IRL cumulatively across layers (IRL-C)115

It is possible for representations to be close (but not identical) in the encoder layer, but to subsequently116

be pushed apart in subsequent decoder layers. Thus, we introduce another model, IRL-C (C for117

cumulative), that additionally applies the IRL penalty on all subsequent decoder layers. By requiring118

noise-invariant representations in multiple layers, we ensure that each training example and its119

randomly-sampled noisy counterpart have similar representations throughout the network. Note that120

if the encodings of the clean and noisy examples are identical at the encoder layer, then all subsequent121

layers will also be identical and thus those penalties will go to 0. We can express this loss as a sum122

over successive representations φl of the clean φl(x) and noisy φl(x′) data:123

Ld(x,x
′; θ) =

L∑
l=e

[
γ(φl(x)− φl(x′))2 − λ φl(x) · φl(x′)

||φl(x)|| · ||φl(x′)||

]
In our experiments, we find that IRL-C consistently gives a small improvement over results achieved124

with IRL-E.125

2.3 Application to recurrent speech models126

As described to this point, our loss can be applied on any feedforward neural network with any127

noise process ν. Applying our technique to recurrent neural networks requires just a few additional128

considerations. Primarily, we must decide how to deal with the sequence structure. Two natural129

choices are (i) to concatenate the representations for a given layer across time steps, and then to130

apply our penalty on the concatenated representations and (ii) to apply the penalty separately at each131

time step and then to sum (or equivalently, up to a scaling factor to average) over the time steps.132

These approaches are identical for the L2 penalty but not for the cosine distance penalty, owing to133

the normalizing factor which may be different at each time step. In this work we take approach (i)134

concatenating the representations across time steps and then calculating the penalty.135

All of our models are based off of the sequence-to-sequence due to [9]. The input to the encoder is a136

sequence of spectral features, here MFCC, which are encoded by several consecutive layers of LSTM137

units. The encoder output states are then passed through an attention mechanism which computes the138

similarity between the decoder hidden states and the encoder output states. The output is a softmax139

over the vocabulary (here, characters) at each decoder time step.140

In our experiments with IRL-E (penalty applied on a single layers), we use the output of the encoder141

to calculate the penalty. Note that there is one output per step in the input sequence and thus we are142

concatenating across the T1 steps.143

To calculate IRL-C, we also start with the encoder output concatenating across all T1 sequence steps144

to calculate the IRL penalty. However, for all subsequent layers, we are acting upon layers in the145

decoder, and thus concatenating across the number of decoding sequence steps T2 for calculating146

these terms in the IRL-C penalty.147

3 Datasets148

LibriSpeech We evaluate all models on the LibriSpeech [26] dataset. This dataset consists of149

roughly 1000 hours of audio split into training, dev and test partitions. The dataset was carefully150

designed to ensure that no speaker (person) appears in multiple partitions. Within both the dev and the151

test partitions, the data is further subdivided into “clean” and “other” subsets based on the speakers.152

The “clean” portion contains those speakers for which a baseline model had the lowest CER, and the153

“other” portion contains those speakers for whom the error rate was high. Following common practice154

in the literature on these datasets, we evaluate all models on the dev-clean, dev-other, test-clean, and155

test-other splits separately.156

The MUSAN noise dataset For our additive noise, we draw upon samples from the MUSAN157

noise dataset [22]. MUSAN was released under a flexible Creative Commons license and consists of158

approximately 109 hours of noise sampled at 16kHz. The dataset contains music from several genres,159

namely baroque, classical, romantic jazz, bluegrass, and hip-hop, among others, speech from twelve160

languages, and a wide assortment of technical and non-technical noises. To generate noisy audio, we161
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first add MUSAN noise to the training data point at a signal-to-noise ratio drawn from a Gaussian162

with a mean of 12dB and a variance of 8dB. This aligns roughly with the scale of noise employed in163

other papers using multi-condition training [2].164

4 Experiments165

Before presenting our main results, we briefly describe the model architectures, training details, and166

the various baselines that we compare against. We also present details on our pipeline for synthesizing167

noisy speech and explain the experimental setup for evaluating on out-of-domain noise.168

4.1 Model architecture169

To facilitate reliable comparisons between our methods and various baseline training schemes, we170

conduct all experiments using identical architectures and tuning schemes. Because we conduct a171

large number of experiments and because of the computational expense of unrolling of long speech172

sequences, we struck a balance between performance and speed when choosing the basic architecture.173

The encoder for our base model consists of 4 layers: 2 encoder BLSTM layers with 320 hidden174

units each, followed by 2 encoder LSTM layers with 320 hidden units each. Our decoder accesses175

the encoded representations using dot product attention, and contains 4 decoder LSTM layers, with176

320 hidden units each. Notably, our first encoder layer halves the sequence length by concatenating177

adjacent inputs along the temporal axis. Each model across all of our comparisons has the exact same178

number of trainable parameters. To keep things simple, we do not use an external language model.179

Instead we decode predictions from all models via beam search with width 10.180

To ensure fair comparisons, we perform hyper-parameter searches separately for each model and181

account for variability due to initialization by training each model 5 times and keeping the best run182

as determined on the dev-other partition. Specifically, we tune the weights on our losses by trying183

each of the scale values (0.001, 0.01, 0.1, 1, 10, and 100). We found that an α of 1 (the weight on184

the cross-entropy loss of the noised data), a γ of 0.01 (the weight on the L2 distance loss), and a λ of185

0.01 (the weight on the cosine distance loss) worked well.186

4.2 Training details187

We train all models with the Adam optimizer with an initial learning rate of 0.001. We employ a188

learning rate schedule similar to NewBob [37] that decreases by a factor of 2 if there is an increase189

in validation perplexity epoch-over-epoch. We employ a stopping criterion that ends training if190

validation perplexity does not decrease for three epochs in a row. We limit each models to a maximum191

of 40 epochs, although our networks generally converge within 20 epochs.192

The primary loss function for each model is cross-entropy loss and our primary evaluation metric to193

evaluate all models is the character error rate. As described above, the additional loss terms for our194

IRL models are L2 loss and cosine distance between representations of clean and noisy audio.195

4.3 Baselines196

Our baseline models include a model trained on the standard training data, a model trained with197

noise-augmented data, a model trained with noise augmented data and weight decay, and a data198

augmented model supervised with L2 loss to push activations of the encodings to 0. These ablation199

tests provide evidence that our IRL algorithm isn’t simply penalizing the norm of the encodings.200

• Baseline: Our base model trains the baseline sequence-to-sequence model on the original201

960 hours of LibriSpeech training data.202

• Data augmentation: Our data augmentation model trains the sequence-to-sequence model203

on both the examples from the 960 hour LibriSpeech training corpus and the randomly204

generated noisy counterparts.205

• Adversarial: The adversarial model consists of an adversarial noise discriminator trained206

on top of the encoder outputs. The discriminator consists of 2 layers of 256 ReLu units and a207

single unit sigmoid output. We train the discriminator to classify whether the representation208

originates from clean or noised inputs. The encoder meanwhile is trained both to minimize209
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the classification loss and to fool the discriminator, in a scheme similar to the reverse gradient210

technique in the domain-adversarial approach due to [38] and applied to speech by [27].211

• Logit pairing: Our final baseline consists of the logit pairing model due to [28] which212

applies L2 loss and cosine distance loss on the final decoder layer logits, enforcing noise-213

invariant representations but only on the output layer.214

4.4 Synthesizing noise215

We train all models on the LibriSpeech corpus, generating noisy data by adding randomly selected216

noise tracks from the MUSAN dataset with a signal to noise ratio drawn from a Gaussian distribution217

(12dB mean, 8dB standard deviation) and temporal shift drawn from a uniform distribution (with218

a range of 0 to 1000ms). For the data augmentation model, this result resembles the typical data219

augmentation (multi-condition training) procedure.220

4.5 Out-of-domain noise221

Next, we evaluate each of our models on a variety of noise conditions that were not seen at training222

time. In particular, we consider the following out-of-domain noise conditions: (i) augmenting the223

test-clean split with overlapping out-of-domain speech from the WSJ-0 dataset [39] to simulate224

multi-speaker environments, (ii) applying additive noise with various SNRdb to simulate varying225

noise levels, (iii) modulating the volume of the clean signal to simulate different levels of speaker226

loudness, (iv) convolving the original wave file with room impulse responses to simulate the effect227

of room reverberation on speech, and (v) re-sampling to 8kHz to simulate telephony data. For each228

setting, we measure CER on the out-of-domain noise-augmented test-clean data.229

5 Results230

Table 1: Evaluation and test set character error rate on the LibriSpeech corpus.

Evaluation set Test set
dev-clean dev-other test-clean test-other

Baseline 6.7% 17.8% 6.5% 18.1%
Data aug. 6.4% 16.8% 6.4% 17.5%
Adversarial 6.7% 16.7% 6.5% 17.6%
Logit pairing 5.1% 14.5% 5.1% 14.8%
IRL-E 3.6% 11.0% 3.5% 11.2%
IRL-C 3.4% 10.7% 3.3% 11.0%

Our IRL-C model achieves the best CER on both test-clean and test-other 3.3% and 11%, respec-231

tively (Table 1). This compares baseline scores of 6.5% and 18.1%, respectively. We note that by232

comparison, conventional data augmentation is only marginally effective. Among the baselines233

that we consider, logit pairing performs best (5.1% and 14.8%) although the improvements are not234

comparable to either IRL model.235

We found that weight decay slowed down network convergence and did not outperform pure data236

augmented training. However, [40] showed that weight decay is most effective with separate λrec237

and λnonrec hyper-parameters for determining the strength of regularization for the recurrent and238

non-recurrent weight matrices. We have not tried this in our experiments. Additionally, we discovered239

that applying multi-condition training while naively lowering the activations of hidden representations240

leads to nearly identical performance (on both the original and out-of-domain noise perturbed test241

data) and convergence trajectory as the base model trained on noise augmented data. These results242

support our hypothesis that models trained with the IRL algorithm do not trivially decrease the243

magnitude of intermediate representations.244

Our final experiments test the effects of various out-of-domain noise on our models. The results are245

shown in Table 2. We found that our models trained with the IRL procedure had stronger results246

(and significantly less degradation) across all tasks compared to the baseline and the purely data247
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Table 2: Character error rate for test-clean augmented with noise

CER on noisy data
Base Data aug. Adv. Logit IRL-E IRL-C

Error on test-clean 6.5% 6.4% 6.5% 5.1% 3.5% 3.3%
In-domain
(6SNRdB)

27.8% 10.8% 16.5% 8.7% 6.0% 5.7%

In-domain
(12SNRdB)

13.5% 7.8% 12.1% 6.2% 4.2% 4.1%

Impulse convolve 24.1% 21.0% 28.3% 47.6% 18.0% 13.8%
Speech (6SNRdB) 91.5% 32.0% 67.7% 33.0% 16.4% 14.1%
Speech (12SNRdB) 77.8% 15.2% 34.7% 11.1% 7.6% 6.8%
Volume (+6 dB) 6.5% 6.4% 9.8% 5.1% 3.6% 3.5%
Volume (−6 dB) 6.5% 6.3% 9.6% 5.0% 3.6% 3.5%
Telephony 14.2% 12.2% 21.3% 10.3% 7.1% 6.4%
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Figure 2: Average distance between original and noised data for various models (distinct lines) and
various layers (x-axis). Subplot (a) depicts L2 distance and (b) depicts cosine distance.

augmented models. When applying various room reverberation on speech, we found that the IRL-C248

model had a character error rate of 13.8% compared to 21.0% on the data augmented model and249

24.1% on the baseline model. Our IRL-C model shows 14.1% character error rate on out-of-domain250

overlapping speech compared to 91.5% for the baseline and 32.0% on the data augmented model. We251

found that decreasing the signal-to-noise ratio also effected the baseline models more than the models252

trained on the IRL algorithm: our IRL-C model received a character error rate of 5.7% compared to253

27.8% for baseline and 10.8% for the purely data augmented model. We found that modifying the254

volume of the speaker did not effect the accuracy of any of the networks. Finally, we found that our255

models trained with the IRL algorithm performed better for re-sampled telephony data, achieving256

a character error rate of 6.4% for IRL-C compared to 14.2% for baseline and 12.2% for the purely257

data augmented model.258

We also executed some empirical analysis to determine the effect of the various approaches on the259

distances between noisy examples and their clean counterparts in representation space. In general,260

our IRL models have the lowest L2 and cosine distances between noisy representations and the261

clean counterparts. In Figure 2, you can see that although the IRL-E and IRL-C model models have262

similarly close representations at the encoder layer, neither reaches 0 distance. Then for IRL-E over263

the subsequent layers, the clean and noisy representations diverge again, while for IRL-C they remain264

close throughout.265
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6 Conclusions266

In this paper, we demonstrated that enforcing noise-invariant representations by penalizing differences267

between pairs of clean and noisy data can increase model accuracy on the ASR task, produce models268

that are robust to out-of-domain noise, and improve convergence speed. The performance gains269

achieved by IRL come without any impact to inference throughput. We note that our core ideas270

here can be applied broadly to deep networks for any supervised task. While the speech setting is271

particularly interesting to us, our methods are equally applicable to other machine learning fields,272

notably computer vision. One natural extension might be to experiment with various other loss273

functions such as triplet losses, requiring that noisy data be both close to its clean counterpart and274

further away from different clean data. Additionally, our approach might be well-suited to conferring275

greater robustness to adversarial examples. The comparative improvements over requiring invariant276

hidden representations vs. invariant logits here raises the possibility that we might be able to realize277

similar gains over logit pairing in the adversarial setting.278
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