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ABSTRACT

Accurate spatio-temporal traffic forecasting is a fundamental task that has wide
applications in city management, transportation area and financial domain. There
are many factors that make this significant task also challenging, like: (1) maze-
like road network makes the spatial dependency complex; (2) the traffic-time re-
lationships bring non-linear temporal complication; (3) with the larger road net-
work, the difficulty of flow forecasting grows. The prevalent and state-of-the-art
methods have mainly been discussed on datasets covering relatively small districts
and short time span, e.g., the dataset that is collected within a city during months.
To forecast the traffic flow across a wide area and overcome the mentioned chal-
lenges, we design and propose a promising forecasting model called Layerwise
Recurrent Autoencoder (LRA), in which a three-layer stacked autoencoder (SAE)
architecture is used to obtain temporal traffic correlations and a recurrent neu-
ral networks (RNNs) model for prediction. The convolutional neural networks
(CNNs) model is also employed to extract spatial traffic information within the
transport topology for more accurate prediction. To the best of our knowledge,
there is no general and effective method for traffic flow prediction in large area
which covers a group of cities. The experiment is completed on such large scale
real-world traffic datasets to show superiority. And a smaller dataset is exploited
to prove universality of the proposed model. And evaluations show that our model
outperforms the state-of-the-art baselines by 6% - 15%.

1 INTRODUCTION

Spatiotemporal traffic flow forecasting task is currently under a heated discussion and has attracted
a large research population. The application of this task is wide, including transportation anomaly
detection, optimal resource allocation, logistic supply chain and city management. However, since
the dynamic environment of traffic condition and the inherent complexity of large scale forecasting
tasks, the task is challenging (Drew, 1968). In this paper, we investigate the advantages from current
methods and propose a model that can solve the task with spatiotemporal modeling. Even in the
dataset with large road network, the model works well. The goal of the traffic flow forecasting is to
predict the future traffic flow in the whole road network with the input sequences from sensors and
the space correlations of those sensors.

The main obstacle of traffic flow prediction task is to find the appropriate spatiotemporal dependen-
cies (Atwood & Towsley, 2016). For two reasons. First, the time series of traffic flow is dynamic,
where the rush hours in the morning and evening cause a non-linear variate on the flow, and the
information in different days of the week incurs more complex relationships. Second, the space cor-
relations between sensors in the road network are difficult to be determined. Figure 1 demonstrates
an example of the complexity in spatial dependency modeling. Point A and Point B are two sensors
in a freeway network, and their geographic distance is close, but the driving distance is much farther
than it seems to be. Besides, since they are deployed on the opposite sides of the road, the flows are
different a lot. This instance illustrates that the spatial distance is not supposed to be Euclidean, but
to be dominated by the road topology.

To overcome the challenges, we propose a deep-learning based layerwise recurrent autoencoder
(LRA) for sequence-to-sequence traffic flow forecasting. The contributions of this paper are sum-
marized as the following:
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Figure 1: Distance dependency is not directional and geographic. The Point A and B are geograph-
ically close, but they stand on opposite sides of the road, the driving distance is far. And their traffic
flows are different a lot, shown in the right figure.

• Originally use a very large scale traffic dataset1, which covers three cities, and a compar-
atively small dataset to evaluate our model with common used baselines. The results of
experiments prove the generalization and effectiveness of LRA.

• Creatively employ three-layer time series sequences (flow sequence of current time, flow
sequence of this time of last week and last four weeks) as inputs of LRA, from which LRA
obtains the knowledge of time series relationships and the periodical effect of traffic flows.

• Innovatively exploit the driving distances between sensors in the road network to model
spatial dependency, which is presented as a directed graph whose nodes are sensors and
edge weights are spatial correlations.

2 RELATED WORK

The history of traffic forecasting has been decades long, and many methods have emerged. Espe-
cially in recent years, the instruments and infrastructures of sensors are developed, these detectors
provide the possibility of accurate record of traffic volume within transportation network. The meth-
ods on this subject can be mainly divided into two categories: classic statistical approaches and
data-driven approaches. The classical time-series approaches are mainly based on queuing theory
and statistic theory (Cascetta, 2013). While the data-driven methods focus on curriculum learning
and have recently attracted plenty attentions.

In this paper, some cutting-edge models and popular accepted methods are studied from both cate-
gories, but these methods are found often share similar problems in different experimental settings
and face some limitations when apply with real-world complex tasks. In the category of classic
methods, Box & Jenkins (1970) acts as a fundamental role in this area of forecasting by generating
the model called autoregressive moving average (ARMA) model. Taking ARMA as basis, an inte-
grated version of ARMA for traffic forecasting is built, we cite as autoregressive integrated moving
average (ARIMA) (Box et al., 2015; Moorthy & Ratcliffe, 1988; Lee & Fambro, 1999). The ARIMA
model is a general extension of ARMA, and starting from ARIMA, a bunch of variations born, in-
cluding seasonal ARIMA (SARIMA) (Williams & Hoel, 2003), which is designed for capturing the
common periodical features from many time-series processes and space-time ARIMA (STARIMA)
(Williams & Hoel, 2005), which models for short-term traffic flow forecasting in multiple nodes
within a transportation topology. These statistical methods are primarily based on queuing theories
and mathematical simulations, it is hard for them to learn patterns from dynamics and complexities.
As a result, though they perform satisfactorily on short-term and small-scale datasets in some re-
search areas (Lippi et al., 2013), when apply to real-time large-scale scenarios, their performance is
barely satisfactory (Cheng et al., 2017). In this paper, we select the two most representative methods,
ARMA and ARIMA as the baselines.

In data-driven learning community, over the recent decade, a number of models are built by neural
networks, and have gotten high performances that surpass the traditional time analysis methods.
The works in Laptev et al. (2017); Yu et al. (2017), apply recurrent neural networks (RNNs) to

1The dataset is from http://tris.highwaysengland.co.uk/detail/trafficflowdata
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study time series prediction. And convolutional neural networks (CNNs) are also chosen for flow
forecasting in Ma et al. (2017); Zhang et al. (2017). Besides, the echo state networks (ESNs) (Ilies
et al., 2007) are deployed on some light applications for forecasting tasks. However, because of
the mentioned complexities and challenges in traffic forecasting tasks, the unsolved problem is to
design a general approach with temporal and spatial correlations modeling. In Lv et al. (2015), the
authors use stacked autoencoder (SAE) model to learn generic time series features, and the model
is applied using autoencoder as building block to represent traffic flow features for prediction. See
in Yu et al. (2016), a temporal regularized matrix factorization method is proposed and find graph
regularization connections to learn the dependencies, but this model pays insufficient attention on
nonlinear temporal relationships. Other researchers exploit latent space models for traffic volume
prediction, while the distance dependency is extracted by controversial geographical distances (Deng
et al., 2016; Sun et al., 2006) or by a rough epitome of region flows (Zhang et al., 2016). In Li et al.
(2018), the authors obtain the space-time dependencies with diffusion convolutional recurrent neural
networks (DCRNN), the distance correlations are represented as a directed graph and the model
relates traffic flow to a diffusion process. In this work, we select ESNs, SAE, RNNs and DCRNN as
the representatives of data-driven models, the comparison between these models and the proposed
one is shown in the latter part of this paper, the generalization and effectiveness of our model is also
demonstrated.

3 LAYERWISE RECURRENT AUTOENCODER

In this section, the structure of LRA is introduced by order, and the structure for spatial-temporal
modeling is formulated.

3.1 TEMPORAL DEPENDENCY MODELING

To extract temporal relationships within the history traffic flows, we model this process as a layering
structure with autoencoder as cell. An autoencoder is used to reproduce its inputs, in other words,
the target output of autoencoder is its input. The structure of autoencoder is shown in Appendix B.
With sequences of traffic flows {x(1),x(2),x(3), ...} as input, an autoencoder first encodes the input
x(i) to a hidden representation, and then decodes the representation back to a reconstruction. To
minimizing reconstruction error L(X,Z), where X is the input matrix of the autoencoder and Z is
the output matrix, we denote it as θ, as

θ = argmin
θ
L(X,Z) = argmin

θ

1

2

N∑
i=1

∥∥∥x(i) − z
(
x(i)

)∥∥∥2

, (1)

where N is the length of the input sequence, and z(·) is the reconstruction.

When take the sparsity constrains into consideration, to achieve the sparse representation in hidden
layer (Lv et al., 2015), we minimize the reconstruction error as

SAO = L(X,Z) + γ

HD∑
j=1

KL
(
ρ‖ρ̂j

)
, (2)

where γ is the weight of the sparsity term,HD is the number of hidden units, ρ is a sparsity parameter
and is typically a small positive value, ρ̂j is the average activation of hidden units, and KL(ρ‖ρ̂j) is
the Kullback-Leibler (KL) divergence, which provides the sparsity constraints on the coding, defined
as

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ
1− ρ̂j

. (3)

The SAE is created by hierarchically stacked autoencoders, in which the input of the kth layer is
the output of the (k − 1)th layer and a logistic regression is on the top. The structure of SAE is
illustrated in Appendix B. In this paper, to extract more detailed temporal relationships in traffic
history, we employ a three-layer SAE, with three-layer input as the flow sequences of current time,
flow sequences of this time of last week and last four weeks relatively.
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Following the layering SAE model, we employ a sequence-to-sequence RNNs structure. At training
time, we feed ground truth into this RNNs architecture. And during testing stage, the ground truth
values are replaced by the output of SAE model for forecasting. The backpropagation algorithm is
used to optimize this process.

To avoid the vanishing gradient problem in long lasting dataset with the traditional RNNs models,
we use long short term memory (LSTM) (Gers et al., 2002) in our model. The key of LSTM model
is memory cell, which allows LSTM to remove or maintain the information, with special structures
called gates in every memory cell, including input gate, forget gate and output gate. The memory
cells can help for remembering the temporal relationships from SAE model and outperform other
RNNs models when competing on large-scale long-span datasets (Seo et al., 2016).

3.2 SPATIAL DEPENDENCY MODELING

The correlations of spatial dependency are complex, and even more abstract than the temporal re-
lationships especially in large-scale road networks, in this paper, we model the spatial dependency
between sensors as a directed graph and analysis the relationships with CNNs.

As for the directed graph, in which takes sensors as nodes and driving distance as edges. We denote
the graph as G = 〈V, E〉. V is the set of nodes and E ⊆ {(u, v)|u ∈ V, v ∈ V} is the set of edges.
In the graph G, the distribution of the sensors is viewed as a space matrix, with inner elements are
weights between each other. The space matrix is denoted as

M =


m11 m12 · · · m1n

m21 m22 · · · m2n

...
...

. . .
...

mn1 mn2 · · · mnn


where mij is the weight from vi to vj .

With the structured space matrix, the right way to express and exploit the dependency leads im-
provements in prediction performance. We encode the space matrix M with a graph convolution
networks (GCNs) model (Kipf & Welling, 2017) to extract spatial dependency for helping traffic
predict (Atwood & Towsley, 2016). The core work of the GCNs is to map from the input M to the
convolutional representation that records the influential index of each sensors. After training epochs,
the output matrix converges to a concise distribution P , the ith row in P is the space correlation
vector of node vi ∈ V .

The convolutional layerwise propagation in our paper is defined as

H(l+1) = σ
(
D̃
− 1

2MD̃
− 1

2H(l)W (l)
)
, (4)

where D̃ii =
∑
jMij and W (l) is a trainable matrix. While σ(·) is activation function, we use

ReLU(·) in this work. H(l) denotes the matrix of last layer and H(0) is input matrix M .

We also consider convolutions with a filter gθ = diag(θ) (θ ∈ RN in the Fourier Domain) in GCNs
as the multiplication of element x ∈ RN (Defferrard et al., 2016), defined as

gθ ? x = UgθU
>x, (5)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN−D̃
− 1

2MD̃
− 1

2 =
UΛU> with a diagonal matrix of eigenvalues Λ, U>x is the Fourier transform of the element x.
Analysis on Equation 5 indicates that computational cost on computing the eigenvalue decomposi-
tion of L is expensive. To promote efficiency, we exploit a truncated presentation as

gθ̄(Λ) ≈
K∑
k=0

θ̄kTk(Λ̂), (6)
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where Λ̂ = 2
λmax

Λ − IN , λmax means the largest eigenvalue of L. While Tk(·) is recursively
defined as Tk(x) = 2xTk−1(x) − Tk−2(x), with T0 = 1 and T1 = x. See Hammond et al. (2011)
for more discussion of the truncation.

Combine the knowledge of Equation 5 and 6, the filter is substituted by gθ̄, and we have

gθ̄ ? x ≈
K∑
k=0

θ̄kTk(L̂)x, (7)

where L̂ = 2
λmax

L − IN . And the complexity of the computation has decreased from O(N2) in
Equation 5 to O(N) in Equation 7.

Figure 2: The architecture of LRA, designed for general traffic flow forecasting. The temporal
relationships are extracted by three SAEs, whose outputs are fed to RNNs model for prediction.
Then the final states of RNNs model and CNNs model are merged, and system output sequence is
generated. All models are trained by minimizing the cross-entropy loss by backpropagation through
time.

With spatiotemporal modeling and RNNs model, LRA is built with three parts for extracting spatial-
temporal dependencies, whose architecture is shown in Figure 2. The whole network is trained to
minimize the loss value of generated output sequence by backpropagation algorithm.

4 EXPERIMENT

In this paper, we complete the experiments with two real-world datasets: (1) ENG-HW: This dataset
contains traffic flow information from inter-city highways between three cities, recorded by British
Government. We conduct the experiments with 249 sensors and collect a whole year of data ranging
from January 1st 2014 to December 31st 2014. (2) ST-WB: This traffic dataset is collected by
SenseTime and Shanghai West Bund Development (Group) Co., Ltd. We select 220 sensors in
the Shanghai West Bund area and collect 2 months of data for the experiments, ranging from July
1st 2018 to August 31st 2018. Compared with the first one, this dataset is relatively small-scale
and simple, which is used for test universality of our model on both large and small datasets. On
both datasets, we slice traffic flow information into 15 minutes windows, where 70% of data is
for training, 10% for validation and remaining 20% for testing. The distribution of the sensors in
ENG-HW dataset and more details of the two datasets are illustrated in Appendix C.
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Table 1: Performance comparison between LRA and other approaches for traffic flow forecasting.
From the results of our experiments, LRA has the best performance with all metrics on both large
and small scale datasets.

T Metric ARMA ARIMA ESNs SAE LSTM DCRNN LRA
MAE 40.88 40.17 33.43 30.22 25.67 24.82 22.21

15 min RMSE 69.81 68.23 48.25 52.52 43.93 42.26 40.11

E
N

G
-H

W

MAPE 15.9% 15.1% 15.8% 15.7% 15.2% 14.3% 12.5%
MAE 41.44 42.98 35.08 35.12 28.34 29.27 25.19

30 min RMSE 74.49 73.24 56.06 59.66 50.91 50.19 43.97
MAPE 18.4% 18.6% 17.2% 16.3% 16.7% 16.6% 14.4%
MAE 54.89 58.45 50.19 42.34 37.78 32.47 27.58

60 min RMSE 78.65 78.62 59.76 61.47 53.21 55.76 49.09
MAPE 22.3% 20.1% 20.2% 17.9% 17.4% 17.7% 15.9%
MAE 48.32 50.66 42.11 41.20 34.99 30.56 3.14

15 min RMSE 82.23 80.88 75.90 70.97 68.23 65.44 55.46

ST
-W

B

MAPE 9.23% 8.97% 8.02% 7.87% 7.23% 7.10% 6.04%
MAE 54.68 58.34 48.50 46.88 38.09 36.62 34.39

30 min RMSE 91.72 92.02 80.69 78.33 73.76 69.88 63.34
MAPE 10.6% 9.83% 9.52% 8.20% 7.46% 7.58% 6.93%
MAE 90.25 89.45 50.33 47.96 42.54 41.22 37.75

60 min RMSE 99.14 102.4 92.55 94.43 89.73 74.62 68.73
MAPE 12.5% 10.9% 11.3% 9.43% 8.99% 8.67% 8.05%

As for another input of our model, road topology information, we compute the directed road network
of sensors, where the distances are different between two sensors in different directions, and a space
matrix is generated with threshold Gaussian kernel, as

mij =
(
− dist(vi, vj)2

σ2

)
, (8)

where mij is the element in space matrix M , represents the edge weight from vi pointing to vj ,
dist(vi, vj) is the directed driving distance between sensori and sensorj , σ denotes the standard
deviation of distances and if dist(vi, vj) is less than threshold κ, we regard mij = 0.

4.1 EXPERIMENTAL SETTINGS

In the experiments, we compare the performance of LRA with popularly used methods and state-
of-the-art model, including: (1) ARMA: which provides a parsimonious description of a weakly
stationary stochastic process, consists of two polynomials, one for autoregression and the second for
moving average. (2) ARIMA: which is widely used in statistics and econometrics, especially in time
series analysis. (3) ESNs: a kind of RNNs model with a sparsely connected hidden layer, which
is fixed and randomly assigned. (4) SAE: a deep neural network model that uses autoencoder as
cell, good for time series forecasting tasks since the capability of extracting temporal dependency.
(5) LSTM: a variant of RNNs model which is popular for classifying, processing and predicting
tasks based on time series data. (6) DCRNN: one of the cutting edge deep learning models for
forecasting, which uses a diffusion process during training stage to learn the representations of
spatial dependency.

We built all the above neural network based models by Tensorflow (Abadi et al., 2016). We record
the detail settings in Appendix D.

4.2 EXPERIMENT RESULTS OF TRAFFIC FLOW FORECASTING

The algorithms are evaluated by three popularly accepted metrics in transportation area, including
(1) Mean absolute error (MAE), is known as a scale-dependent accuracy metric and is common
in time series analysis. (2) Root mean squared error (RMSE), is frequently used for measuring the
differences between prediction value and ground truth. (3) Mean absolute percentage error (MAPE),
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is a measure of prediction accuracy in forecasting areas, usually expresses as a percentage. Note that
comparisons across different datasets are invalid, since all the three metrics are scale-dependent.
Formulations of the three measurements, see Appendix E.

Table 1 records the performances of different methods for three forecasting horizons in two datasets.
From the table, we notice the following facts that: (1) The deep learning based methods, including
ESNs, SAE, LSTM, DCRNN and LRA, outperform the statistical methods. (2) The deeper and more
complex models are supposed to perform better than lighter ones, however there is an exception that
the performances of DCRNN and LSTM are compatible, we guess it may because that the diffusion
convolutional layers in DCRNN extracts insufficient spatial correlations in the experiments. (3) LRA
achieves the best performance regardless metrics and datasets, which reflects the generalization and
effectiveness of the proposed model. Besides, the forecasting task on the ENG-HW dataset is more
difficult than that on ST-WB dataset, since the scale of ENG-HW dataset is larger and spatiotemporal
dependencies are more complex. As the consequence, we use ENG-HW as the default dataset in the
following discussion.

4.3 EXPERIMENT RESULTS OF SPATIAL AND TEMPORAL DEPENDENCY

In this part, we design experiments to proof the effect of spatial and temporal dependencies modeling
by comparing the performance between LRA with two variants: (1) LRA-NoSAE, which feeds input
time series sequences directly to RNNs model (the green part in Figure 2) in the LRA and cancels
encode-decode process of SAE model, this variant system gets fewer time relationships from inputs.
(2) LRA-NoConv, which abandons CNNs model (the pink part in Figure 2) in the LRA, the outputs
of RNNs model become the final output sequences, this mutation of LRA gets less sensitive to space
correlations. Figure 3 shows the learning curve of the above two variants and LRA with regard
of MAE, we keep the parameters of all three models as similar as possible. From the learning
curve, LRA reaches the lowest MAE value, meanwhile, LRA-NoConv has a much higher MAE
value, which illustrates the effect of our spatial dependency modeling. Besides, the learning curve
of LRA-NoSAE almost gets the same level of the LRA, but the speed of convergence is much
slower, this fact proves the effect of time relationship modeling. The Table 2 shows the comparison
results of these three models and their convergent speed. Combine the observations of Figure 3
and Table 2, the superiority of spatial dependency modeling is proved for helping promote accuracy
of prediction, while the aim of temporal dependency modeling is to boost the training progress.

Figure 3: Learning curve of LRA, LRA-
NoConv and LRA-NoSAE on the ENG-HW
dataset.

Table 2: Comparison for LRA, LRA-NoSAE
and LRA-NoConv on the dataset ENG-HW in
prediction horizon of 15 min. Note that the Con-
vergence Speed means the number of iteration
before models get convergent state (numerical
fluctuation < 10%).

MAE Convergence Speed
LRA 22.21 17000

LRA-NoSAE 23.27 26000
LRA-NoConv 30.49 17000

5 CONCLUSION

Traffic flow forecasting is an essential problem in many areas. There have been some methods
performs well in specific conditions, however, a universal method for such problem, especially in
large-scale road network, is absent. In this paper, we modeled the spatial-temporal dependencies and
formulated such task by proposing the layerwise recurrent autoencoder (LRA) model. This model
originally uses driving distance for modeling space dependencies and works well for general flow
prediction. Meanwhile, the superiority and universality of our model are evaluated on both large and
small real-world datasets with comparison to other common and state-of-the-art baselines. For the
future work, we will investigate the following topics: (1) adding weather factors into LRA model for
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more accurate prediction; (2) implementing the proposed model to other spatiotemporal forecasting
tasks, e.g., pedestrian volume forecasting and audience distribution prediction.
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Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. arXiv preprint arXiv:1612.07659, 2016.

Shiliang Sun, Changshui Zhang, and Guoqiang Yu. A bayesian network approach to traffic flow
forecasting. IEEE Transactions on intelligent transportation systems, 7(1):124–132, 2006.

Billy M Williams and Lester A Hoel. Modeling and forecasting vehicular traffic flow as a seasonal
arima process: Theoretical basis and empirical results. Journal of transportation engineering,
129(6):664–672, 2003.

Billy M Williams and Lester A Hoel. Space–time modeling of traffic flow. Computers & Geo-
sciences, 31(2):119–133, 2005.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for
high-dimensional time series prediction. In Advances in Neural Information Processing Systems,
pp. 847–855, 2016.

Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, and Yan Liu. Deep learning: A generic
approach for extreme condition traffic forecasting. In Proceedings of the 2017 SIAM International
Conference on Data Mining (SDM), pp. 777–785, 2017.

Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. Dnn-based prediction model for
spatio-temporal data. In In Proceedings of the 24th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, pp. 92. ACM, 2016.

Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks for citywide
crowd flows prediction. In AAAI, pp. 1655–1661, 2017.

APPENDIX

A NOTATION

Table 3: The main notations used in the paper

Name
G a directed graph
V, vi the set of sensors in the graph and the ith sensor
E the set of weights in the graph
M a space matrix
H(l) the lth layer of GCNs
W (l) the trainable matrix of lth layer in GCNs
L normalized graph Laplacian
U ,Λ the eigenvector matrix and eigenvalue matrix of L
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B THE STRUCTURE OF AUTOENCODER AND SAE

Figure 4: The structure of autoencoder (left) and SAE (right)

C DATASET

We use two real-world datasets for experiments:

• ENG-HW This traffic dataset is collected by British Government, which covers inter-city
freeways between three cities, including Manchester, Liverpool and Blackburn. We select
249 sensors and collect one year of data ranging from January 1st 2014 to December 31st
2014 for the experiments. The total number of the piece of data is 8,724,960, the mean
value of this dataset is 466.

• ST-WB This traffic dataset is collected by SenseTime and Shanghai West Bund Develop-
ment (Group) Co., Ltd. We collect 220 sensors and collect two months of data ranging
from July 1st 2018 to August 31st 2018 for the experiments. The total number of the piece
of data is 3,928,320, the mean value of this dataset is 972.

In the both datasets, we slice time window to 15 minutes, and 70% data is used for training, 10% for
validation and remaining 20% for testing. The distribution of sensors in ENG-HW dataset is shown
in Figure 5.

D THE DETAILED EXPERIMENTAL SETTING

ARMA Autoregressive moving average model, where the lag of AR is set to 3, the lag of MA
is 0. The model is implemented by statsmodels python package.

ARIMA Autoregressive integrated moving average model, in which the number of the AR lag
is 3, the number of integrated term is set to 2, and MA lag is 0. The model is implemented by
statsmodels python package.

ESNs Echo state networks with a reservoir pool that holds 500 neurons, and the sparsity of the
pool is assumed to be 5%; the leaking rate is set to 0.2, spectral radius is equals 0.9.

SAE Stacked autoencoder with three hidden layers, each contains 800 cells, the learning rates
are set to 1e−3, 1

3e
−3 and 1e−4 for three hidden layers. The model is trained with batch size 128.

LSTM Long short term memory with two hidden layers, within each holds 200 memory cells,
L1 weight decay is 2e−4 and L2 weight decay is 2e−5. The model is trained with batch size 128.

DCRNN Diffusion convolutional recurrent neural networks, the setting is the same as its authors
recommend in https://github.com/liyaguang/DCRNN.

LRA Layerwise recurrent autoencoder. In each SAE model, there are three hidden layers with
800 units, the learning rates are set to 1e−3, 1

3e
−3and1e−4 for three hidden layers. In the RNNs

model, there are two hidden layers, each layer has 200 LSTM cells, with L1 and L2 weight decay
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Figure 5: The distribution of sensors in the ENG-HW dataset.

are 2e−4 and 2e−5. As for CNNs model, the number of the node regards to the number of sensors
in the experiments, the number of feature in each node is 1 and number of class is ignorable.

E METRICS

Denote x =
(
x(1), x(2), . . . , x(n)

)
is the ground truth of traffic flow, and x̂ =

(
x̂(1), x̂(2), . . . , x̂(n)

)
is prediction value, and N is the length of the sequence, then:

MAE(x, x̂) =
1

N

N∑
i=1

∣∣x(i) − x̂(i)
∣∣

RMSE(x, x̂) =

√√√√ 1

N

N∑
i=1

(
x(i) − x̂(i)

)2

MAPE(x, x̂) =
1

N

N∑
i=1

∣∣∣x(i) − x̂(i)

x(i)

∣∣∣
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