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ABSTRACT

Instruction-following is essential for aligning large language models (LLMs) with
user intent. Yet recent reasoning-oriented models, despite their strong performance
on complex mathematical problems, often fail to comply with simple natural
language directives. In this work, we analyze the interaction between reasoning
ability and instruction adherence in large reasoning models (LRMs). Using a
controlled evaluation framework (MathIF), we uncover a persistent trade-off: as
models scale reasoning capacity through long chains-of-thought or reinforcement
learning on reasoning traces, their obedience to instructions degrades, particularly
when generation length grows. We further show that interventions such as con-
straining or repeating instructions can partially restore compliance, but typically
at the expense of reasoning performance. Taken together, our findings expose
an intelligence—obedience dilemma in current training paradigms and underscore
the need for instruction-aware approaches to developing controllable reasoning
models.

1 INTRODUCTION

Recent advancements in Large Reasoning Models (LRMs) (Qu et al. [2025), such as 03 and o04-
mini (OpenAl), DeepSeek-R1 (DeepSeek-AlL[2025), and K1.5 (Team et al.,[2025)), have demonstrated
impressive capabilities in mathematical reasoning, including solving olympiad-level problems (He
et al.,2024a; |Hendrycks et al.l 2021} [Veeraboina, 2023) and automating formal theorem proving (Ren
et al.,[2025). These breakthroughs have sparked growing interest in scaling chain-of-thought (CoT)
reasoning (Wei et al.|[2022), where models produce explicit multi-step explanations to solve complex
tasks. Typical approaches include imitation learning, e.g., supervised fine-tuning (SFT), and rein-
forcement learning with verifiable rewards (Su et al.| 2025)), both of which aim to strengthen model
intelligence across various tasks and scales.

Despite these advances, instruction following, i.e., the ability to accurately and reliably comply
with user directives, has received comparatively little attention in the context of LRMs. Yet this
ability is critical for real-world alignment and safety (Gu et al.,|2025). Our empirical evaluations on
IFEval (Zhou et al.}|2023)) and FollowBench (Jiang et al.|2023) reveal a consistent pattern: although
LRMs excel at mathematical reasoning, they often fail to follow even simple instructions. This
raises an important question: As reasoning scales, do models become more intelligent yet less
controllable? Unfortunately, existing instruction-following benchmarks are ill-suited for answering
this question. Most are designed for general-purpose language models and lack coverage of math-
specific reasoning behaviors. In contrast, LRMs are typically trained on math-heavy datasets and
optimized specifically for problem-solving capacity. This gap highlights the urgent need to evaluate
whether increasing intelligence in specialized reasoning models inherently leads to diminishing
control over their behavior, an issue at the heart of instruction alignment for advanced LRMs.

To probe this phenomenon, we design MathIF, a controlled evaluation framework tailored for
mathematical reasoning. Rather than serving as an end in itself, MathIF provides a systematic way to
stress-test obedience within the mathematical reasoning domain. It combines 15 Python-verifiable
constraints across four categories into compositional queries, and embeds them within math problems
spanning diverse difficulty levels. Applying this setup to 25 recent LRMs, we uncover three consistent



findings: (1) instruction-following fidelity remains strikingly low across scales and architectures, with
even the strongest open model (Qwen3-14B) achieving only 50.71% strict compliance; (2) obedience
further deteriorates as task difficulty or constraint complexity increases; and (3) model size alone
does not predict controllability. These results highlight a fundamental tension between reasoning
strength and instruction adherence that persists across today’s state-of-the-art LRMs.

Our analysis uncovers a persistent interference between instruction-following and reasoning capa-
bilities, manifesting at both training and inference stages. Reasoning-oriented strategies such as
supervised fine-tuning and reinforcement learning reliably strengthen mathematical problem-solving,
yet simultaneously degrade adherence to user instructions. This degradation becomes especially
pronounced as chain-of-thought (CoT) length increases, since longer reasoning paths widen the
contextual distance between the original directive and the final answer, making faithful execution
more difficult. Conversely, enforcing brevity by limiting CoT length improves instruction-following
performance, but at the cost of reasoning depth and accuracy.

Taken together, these findings reveal a consistent pattern: gains in reasoning ability often come at the
expense of controllability. This trade-off poses a central challenge for LRM development: optimizing
purely for intelligence can undermine alignment, and future training paradigms must reconcile
the tension between capability and obedience. Building on this perspective, our contributions are
three-fold:

* We design MathlF, a controlled evaluation framework tailored to probing instruction adherence in
mathematical reasoning tasks.

» Through a large-scale analysis of 25 recent LRMs, we reveal systematic failures to follow user
constraints, particularly on harder problems and multi-constraint queries.

* We empirically demonstrate and dissect the intelligence—obedience trade-off, showing how
reasoning-oriented training and longer CoTs simultaneously enhance problem-solving yet erode
controllability.

2 RELATED WORK

2.1 LARGE REASONING MODELS (LRMS)

Recent advances in enhancing the reasoning ability of language models and reimplementing large
reasoning models generally fall into two paradigms. The first paradigm constructs high-quality long
CoT by distilling from more capable LRMs or combining primitive reasoning actions (Muennighoff]
et al., [2025; |DeepSeek-AlL [2025). For example, s1 (Muennighoff et al., 2025) and LIMO (Ye et al.,
2025)) show that even a small amount of CoT data could significantly promote the reasoning ability.
On the other hand, cold-RL on base language models directly attracts more and more attention in
the subfield because of the success of deepseek-R1-zero and the previous findings that the model
tends to memorize training data during the SFT process (Chu et al.,[2025). In contrast with SFT,
cold-RL does not rely on long CoT data and provides supervision signals by rewards on the final
outcome (DeepSeek-All 2025)) or the reasoning process (Liu et al., 2025). To simplify and accelerate
the RL process, various techniques have been proposed, such as dynamic sampling (Yu et al., 2025)),
process-reward (Cui et al) [2025)), off-policy guidance (Yan et al.| 2025a), and CoT preference
optimization (Yang et al.,|2025)). Recently, a concurrent work (L1 et al., [2025b)) also evaluates the
instruction-following ability of LRMs. However, they evaluate on general-purpose benchmarks
such as IFEval (Zhou et al., 2023)) and ComplexBench (Wen et al. 2024), whereas we focus on
LRMs whose training is predominantly math-oriented. To factor out confounding effects like domain
mismatch, we design a dedicated testbed specifically for mathematical reasoning.

2.2 INSTRUCTION-FOLLOWING IN LLMSs

As a crucial factor determining the practicality of a language model for real-world scenarios, the
instruction-following ability is a core metric for language model evaluation, with numerous protocols
and benchmarks being developed (Dubois et al.| [2023; |Chiang et al., 2023)). Earlier benchmarks
primarily focused on the completeness of user queries and depended on proprietary language mod-
els (Dubois et al., 2023} |Chiang et al.,[2023) to measure its win-rate over the baseline method, which
is an oversimplification of real user queries. For a more comprehensive evaluation, sophisticated



benchmarks have been developed to test the ability of a language model in following format con-
straints (Zhou et al.|[2023} Xia et al.| 2024} Tang et al.| 2024)), multi-turn instruction (He et al.| [2024c;
L1 et al.l [2025a; Han, |2025; |Sirdeshmukh et al., 2025)), long-context instruction (Wu et al., [2024),
multi-lingual instruction (He et al.| |2024c} L1 et al.,|2025c), compositional instruction (Zhang et al.|
2025 Hayati et al.| |2025; [Han| 2025) and refutation instructions (Yan et al., 2024} 2025b). More
details about existing benchmarks is deferred to Appendix [G] Most instruction-following benchmarks
concentrate on the general domain and relatively straightforward queries. The domain shift and the
lack of long CoT become a deterrent for using the benchmark on LRMs.

3 MATHIF
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matical reasoning, where LRMs are specifically

optimized, it remains difficult to isolate instruction-following performance from confounding factors
such as domain mismatch. To this end, we design MathlIF, a dedicated testbed for evaluating the
instruction-following ability of LRMs.

IFEval

FollowBench

Design Principles. Our design follows several key principles tailored to mathematical reasoning:
(1) evaluation is conducted entirely within the math domain, reducing confounding factors such as
domain mismatch and allowing a sharper focus on the tension between reasoning and obedience; (2)
all constraints are objectively evaluable, implemented as Python-verifiable rules to ensure determin-
istic and reproducible measurement; (3) the constraints are designed to minimize interference with
reasoning and answer extraction: they apply only to the final answer segment (after the “</think>"
tag) and largely involve lexical or formatting requirements, without altering how the reasoning process
unfolds; (4) many constraints reflect practical applicability, such as token-length limits for latency
control, bullet points and affixes for structured reporting, and language constraints for multilingual
tutoring scenarios; (5) constraints are applied across problems of varying difficulty, from GSM8K
to Olympiad and AIME, to enable a difficulty-aware analysis of the trade-off between reasoning
accuracy and instruction adherence.

Building on these principles, we implement four categories of Python-verifiable constraints and
compose instructions by combining two or three constraints at a time. These are embedded into
math problems drawn from diverse sources spanning multiple difficulty levels. To support detailed
evaluation, we further introduce two complementary metrics that enable fine-grained analysis of
instruction-following performance in LRMs.

Constraint Type. Inspired by previous work (Zhou et al.|[2023;|Wen et al.||[2024)), we incorporate 15
constraints spanning four categories in our benchmark: (1) Length constraints, which limit response
length to avoid excessive latency or token overhead at inference time, which is a common concern
in deployment scenarios; (2) Lexical constraints, which require outputs in a specified language or
mandate inclusion of key words/phrases, reflecting multilingual tutoring settings and keyword-driven
educational tasks; (3) Format constraints, arguably the most frequent requests from real users,
covering structured outputs such as a fixed number of sections, bullet points, punctuation usage, or

1DeepSeek—Rl—Distill—Llama—7OB, s1-32B and OlympicCoder-32B are trained from Llama-3.3-70B-Instruct, Qwen2.5-32B-Instruct and
Qwen2.5-Coder-32B-Instruct, respectively.



Table 1: Dataset statistics grouped by source and by constraint.

Group by source Group by constraint Total
GSMS8K MATHS00 Minerva Olympiad AIME Single Double Triple
# samples 90 90 90 90 60 140 140 140 420
Avg. Len 86.73 57.24 88.09 80.42 8725  64.89 83.84 89.54  79.43

case sensitivity, all of which are critical for downstream reporting or documentation pipelines; and
(4) Affix constraints, which demand specific prefixes, suffixes, or both, ensuring models can reliably
wrap responses with required tokens or phrases, which is useful in templated applications like chatbots
and automated grading systems. To ensure objective and reliable evaluation, all constraint compliance
in MathlF is verified deterministically using Python scripts. A more detailed categorization for the
type and subtype of constraints is listed in Appendix [F} together with an illustrating example and the
entire list of constraints.

Compositional Constraint. Queries with only a single constraint can hardly reflect the complex
scenarios encountered by a downstream application of LRM, as the real user queries to LRMs
typically contain more than one restrictive condition (Wen et al.l [2024)). Therefore, we construct
compositional constraints by combining two or three individual constraints. Specifically, given the
set of individual constraints denoted as C, we enumerate all the elements in the Cartesian product
C? = {(c1,¢2) | c1,c2 € C} and C* = {(c1,ca,¢3) | c1,c2,c3 € C}, from which we randomly
sample several combinations after manually filtering out the ones in which the constraints are
incompatible with each other and fall into the same subtype of constraint. Through this procedure,
we harvest 30 dual-constraints and 15 triple-constraints. The detailed list of dual-constraints and
triple-constraints is presented in Table[T2]

Math Problem Collection. With the constructed individual constraints and compositional con-
stants, the next step is to incorporate these constraints into math problems to constitute a query. To
systematically assess instruction-following across problem difficulty, MathIF contains math problems
of varying levels of difficulty, ranging from math word problems in primary school and math problems
in high school to the latest math problems in world-level competition. Specifically, we randomly
sample 90 problems from GSM8K (Cobbe et al.,|2021), MATH-500 (Hendrycks et al., 2021)), Min-
erva (De et al.,[2013)), Olympiad (He et al.,[2024a)) respectively. For AIME2024&2025 (Veeraboina,
2023)), we use all the 60 problems it contained. For each data source, we apply a single constraint,
dual constraints, and triple constraints, resulting in three subsets of equivalent size. For a sanity
check, we manually review the curated samples and double-check whether the added constraints
are contradictory to the math problem itself. The statistics for the established dataset are shown in
Table [Tl

Evaluation Metric To systematically measure whether one or more constraints in the query are
satisfied by the LRM while solving the math problems, we follow previous works (Zhou et al.,
2023} Jiang et al., 2023)) and use two metrics of different granularity. Specifically, we employ hard
accuracy (HAcc) and soft accuracy (SAcc) to measure whether the model response follows the
constraints at the query level and constraint level, respectively. Formally, suppose a query has n
constraints C1,Ca, Cs, . .. ,C, and we use I(C;) to denote whether the i-th constraint is satisfied or not,
with I(C;) = 1 for satisfied constraint and I(C;) = O for unsatisfied constraint. The hard accuracy
(HAcc) and soft accuracy (SAcc) for a query is defined as:

n

HAce = [[1(C), SAcc = %Zn(ci) (1)
i=1

i=1

Notably, for queries with only a single constraint, the two metrics are identical in number. The
overall hard accuracy and soft accuracy on the benchmark are averaged among all the queries in
the dataset. Apart from instruction-following ability, we also measure the correctness of the math
problem solution on our proposed MathlIF, defined as whether the final answer exactly matches the
ground-truth, regardless of constraint satisfaction. By default, correctness refers to performance with
constraints in the prompts unless specified (e.g., Table[2).



Table 2: Experimental results of LRMs on MathIF. We report hard accuracy (HAcc) and soft accuracy
(SAcc) for instruction-following, alongside math-solving correctness with and without constraints
(w/o const. / w/ const.). The last column shows the relative change in correctness when constraints
are included. Models are sorted in descending order of instruction-following performance. 1 indicates
models trained by supervised fine-tuning only (no reasoning-oriented RL). Bold and underlined
values denote the fop-2 and bottom-2 entries for open-sourced models in each column, respectively.

Model Instruction Following Correctness
HAcc SAcc w/o const. w/const. Diff.(%)
Models with no more than 4B parameters
Qwen3-4B 44.05 61.43 68.10 58.57 -13.99
Qwen3-1.7B 30.24 50.24 62.38 51.19 -17.94
Qwen3-0.6B 27.86 50.44 40.95 32.14 -21.51
L1-Qwen-1.5B-Exact 19.76 39.60 53.81 42.86 -20.35
L1-Qwen-1.5B-Max 19.76 39.40 55.48 45.71 -17.61
DeepSeek-R1-Distill-Qwen-1.5Bf  17.14 36.62 52.86 31.67 -40.09
DeepScaler-1.5B-Preview 14.52 34.52 58.10 36.19 -37.71
Qwen2.5-1.5B-SimpleRL-Zoo 9.05 24.33 27.14 22.38 -17.54
Qwen2.5-Math-1.5B-Instruct 7.62 21.39 44.05 44.29 +0.54
Models with approximately 7B—14B parameters
Qwen3-14B 50.71 67.06 71.43 64.29 -10.00
DeepSeek-R1-Distill-Qwen-14B  39.28 60.55 67.14 50.95 -24.11
Qwen3-8B 37.86 57.34 69.52 66.43 -4.44
DeepSeek-R1-Distill-Qwen-7B 26.43 44.96 65.24 48.57 -25.55
DeepSeek-R1-Distill-Llama-8B 22.14 44.04 59.76 36.43 -39.04
Open-Reasoner-Zero-7B 13.57 32.26 52.86 51.90 -1.82
Qwen?2.5-Math-7B-Instruct 9.05 25.60 46.90 37.14 -20.81
Models with 32B or more parameters
Qwen3-32B 43.81 62.82 72.62 70.00 -3.61
DeepSeek-R1-Distill-Qwen-32B1  42.62 60.91 71.43 57.62 -19.33
DeepSeek-R1-Distill-Llama-70Bt  41.43 61.07 71.19 54.05 -24.08
QwQ-32B 40.24 59.99 70.95 68.81 -3.02
OlympicCoder-32B 35.95 57.97 59.29 54.52 -8.05
s1-32Bf 20.95 41.78 62.86 60.95 -3.04
Open-Reasoner-Zero-32B 15.47 35.52 65.48 67.62 +3.27
Close-sourced Commercial Models

03-mini 78.81 87.30 65.24 65.95 +0.71
Gemini-2.5-pro-preview 70.71 81.79 66.19 68.33 +2.14

4 EXPERIMENT

To benchmark the instruction-following ability of LRMs, we evaluate a diverse set of models across
three parameter scales. We follow previous work (Zeng et al., [2025) and adopt a commonly used
generation parameters using nucleus sampling (7'=1.0, p=0.95) with a maximum generation length
of 16,384 tokens, powered by the vLLM (Kwon et al., [2023)) engine for efficient inference.

* Small-scale models (< 4B parameters): Qwen3-0.6B (Team) 2025b), Qwen2.5-1.5B-SimpleRL-
Zoo (Zeng et al, 2025), Qwen2.5-Math-1.5B-Instruct (Yang et al 2024), DeepSeek-R1-Distill-
Qwen-1.5B (DeepSeek-Al, 2025), DeepScaler-1.5B-Preview (Luo et al.| [2025), L1-Qwen-1.5B-
Max (Aggarwal & Welleck, [2025), L1-Qwen-1.5B-Exact (Aggarwal & Welleckl, 2025), Qwen3-
1.7B (Teaml 2025b), Qwen3-4B (Team, 2025b).

* Medium-scale models (7B~14B parameters): Qwen2.5-Math-7B-Instruct (Yang et al., [2024),
DeepSeek-R1-Distill-Qwen-7B (DeepSeek-All 2025)), Open-Reasoner-Zero-7B (Hu et al.| [2025al),
DeepSeek-R1-Distill-Llama-8B (DeepSeek-AlL |[2025), Qwen3-8B (Team, 2025b), DeepSeek-R1-
Distill-Qwen-14B (DeepSeek-AlL [2025), Qwen3-14B (Team), |2025b)).



* Large-scale models (> 32B parameters): s1-32B (Muennighoff et al., [2025]), OlympicCoder-
32B (Face, [20235)), DeepSeek-R1-Distill-Qwen-32B (DeepSeek-All 2025), QwQ-32B (Team), [2025c),
Open-Reasoner-Zero-32B (Hu et al., |2025b), Qwen3-32B (Team) 2025b), DeepSeek-R1-Distill-
Llama-70B (DeepSeek-Al, 2025)).

* Close-sourced Commercial Models: 03-mini (OpenAl) and Gemini-2.5-pro-preview (Team)
2025a).

4.1 EXPERIMENTAL RESULTS
The experimental results, as summarized in Table 2] reveal several key factors that influence the
instruction-following performance of LRMs:

All LRMs fail to obey most user instructions. All LRMs evaluated on MathIF exhibit poor
instruction-following performance. Even the best-performing model, Qwen3-14B, achieves only
50.71% hard accuracy, barely surpassing the halfway mark. The majority of models, including
large-scale variants such as DeepSeek-R1-Distill-Llama-70B and Open-Reasoner-Zero-32B, fail to
meet even minimal expectations for faithfully executing user-specified constraints.

Model scale alone does not determine instruction-following performance. While larger models
often perform better within the same series (e.g., Qwen2.5-Math and Open-Reasoner-Zero), scaling
up does not guarantee improvement across different architectures. For instance, DeepSeek-R1-Distill-
Llama-70B underperforms Qwen3-4B despite being more than 15x larger. Notably, Qwen3-8B
and Qwen3-32B deviate from the within-series scaling trend, highlighting that instruction-following
ability depends on both model size and design.

There exists a trade-off between instruction-following and mathematical reasoning. As shown
in the “Diff” column of Table [2] most models experience a drop in problem-solving correctness
when additional constraints are introduced, with margins ranging from 0.96 to 23.33. This suggests
that stronger adherence to external constraints may compromise core mathematical reasoning. The
only exceptions are Qwen2.5-Math-1.5B-Instruct and Open-Reasoner-Zero-32B, which maintain or
slightly improve their performance under constrained conditions.

We view the performance of 03-mini and Gemini-2.5 as an approximate upper bound under current
proprietary pipelines. Their strong results further validate the importance of instruction-following
evaluation, but they do not diminish our finding: across open LRMs, scaling reasoning consistently
degrades controllability unless specialized alignment interventions are applied.
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Figure 2: Left: The accuracy on each math subset averaged over models; Middle: HAcc on
each constraint subset averaged over models; Right: SAcc (solid line) and SAcc (dashed line) on the
single/double/triple-constraint subsets.

Dissecting Instruction-Following Performance. We first scrutinize the model performance on
each subset and visualize the average accuracy of tested LRMs in Figure 2] (left). We can observe
a performance difference among different subsets and whether an LRM follows the constraints
is correlated with the difficulty level of the math problem with easier math problems being more
likely to be followed. Turning to Figure 2] (middle), we observe that length constraints are easiest
to satisfy, while lexical and format constraints demand finer token-level control and thus reduce
accuracy. Affix constraints prove most difficult, highlighting that constraint type itself—beyond
problem difficulty—strongly shapes instruction-following performance. Next, we investigate the
impact of the constraint number and plot the instruction-following accuracy of three LRMs in Figure[2]
(right). We can observe an obvious deterioration in hard accuracy when increasing the number of
constraints but the soft accuracy remains unchanged or slightly fluctuated. It seems that the model’s
ability to follow every individual constraint can be enhanced by the existence of more constraints.
Please refer to Appendix [D]for more details.



5 WHEN SCALING REASONING MEETS LOSING CONTROL

As discussed in Section [4.1] there may exist a trade-off between the instruction-following ability and
the mathematical reasoning capability of LRMs. In this section, we further investigate this trade-off
through a fine-grained error analysis (Section[5.T), examine the effects of different reasoning-oriented
training paradigms (Section[5.2)), and explore how CoT length impacts reasoning and instruction-
following by applying both inference-time and training-aware interventions (Section[3.3).

5.1 THE INTELLIGENCE—OBEDIENCE TRADE-OFF

Dilemma between Reasoning and Instruc-
tion Following. We begin by analyzing the  cCorrect| 27.62% | 8.81% || 27.62% | 8.81%
relationship between reasoning and instruction- “
following through an error-based categorization.
Each sample is grouped into one of four cate-
gories based on two criteria: (1) whether the
math problem was solved correctly, and (2)
whether all user-specified constraints were sat-
isfied. The proportions of these four categories Figure 3: Error analysis of DeepSeek-R1-Distill-
are shown in Figure[3] We observe that LRMs  Llama-8B (left) and Qwen3-32B (right) on each
often struggle to fulfill both objectives simul- subset of MathIF.

taneously, as evidenced by the particularly low

proportion of (Correct, Followed) cases. Interestingly, the proportion of (Correct, Followed) is even
smaller than that of either (Correct, Unfollowed) or (Incorrect, Followed), suggesting that LRMs
frequently sacrifice one objective to achieve the other, consistent with the trend in Table 2]

Incorrect{ 50.24% | 13.33% 50.24% | 13.33%

Percentage (%)

Unfollowed Followed Unfollowed Followed 0

Table |Z| (last column) shows a noticeable degra-
dation in math problem correctness when con-
straints are introduced. Figure [] further breaks
down this effect by dataset. Surprisingly, we find
that the drop rate on GSMSK (the easiest subset)
is even higher than that on AIME (the hardest), a
significantly more challenging benchmark. This
suggests that the impact of constraints on rea-
soning performance is not necessarily correlated
with problem difficulty. In conclusion, the trade-
off between instruction-following and reasoning
appears to be a general phenomenon across dif-
ficulty levels. Notably, LRMs fine-tuned on long CoT traces (e.g., DeepSeek-R1 variants) tend to
exhibit more severe performance degradation than RL-trained models like Qwen3-32B and QwQ-32B,
possibly due to the inherent limitations of SFT (Chu et al.| |[2025)).

DeepSeek-R1-Distill-Qwen-1.58
DeepSeek-R1-Distill-Llama-8B
Qwen3-32b

QwQ-32B

Drop Rate

GSM8k MATHS500 Minerva Olympiad AIME

Figure 4: Relative correctness drop of four LRMs
across five subsets.
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Across all three models, i.e, DeepSeek-R1-Distill-Llama-
8B, Qwen3-0.6B, and Qwen3-32B, we observe a consis-
tent decline in both hard accuracy and soft accuracy as 1 2 3 4 5
CoT length increases, suggesting a negative correlation be- Length (Bin Index)
tween generation length and instruction compliance. One
possible explanation is that longer CoTs, while benefi-
cial for reasoning, increase the distance between the user-
specified constraint and the final answer. This may dilute !
the model’s attention to the constraint, making accurate ~generations.
instruction-following more difficult (see Section[5.3).
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(dashed line) across six CoT length bins;
higher indices correspond to longer CoT



5.2 How DOES REASONING-ORIENTED TRAINING AFFECT INSTRUCTION-FOLLOWING?

Motivated by the patterns observed in Figure 4f we further investigate how different reasoning-
oriented training paradigms affect a model’s instruction-following behavior. Specifically, we examine
three representative strategies: (1) SFT-only, (2) SFT followed by RL (SFT+RL), and (3) cold-start
RL (i.e., zero-RL), which bypasses SFT entirely.

Training Setup. We base our experiments on
the DeepScaler dataset (Luo et al.|[2025)), which
contains approximately 40k math reasoning sam-
ples. All training is conducted using 16 NVIDIA
H100 GPUs. For SFT-only and SFT+RL set-
tings, we first distill long CoT reasoning traces
from QwQ-32B (Team, [2025c¢), filtering out

Table 3: Comparison of reasoning-oriented training
strategies. Avg. Acc. denotes math reasoning perfor-
mance (more details in Appendix [E). Cells shaded

in green and red indicate increased and decreased
instruction-following performance, respectively, relative

to the base model.

samples where QwQ-32B fails to generate a Model HAce SAcc Corectness
Qwen2.5-1.5B 10.00 27.26 1.21
correct answer or the CoT exceeds 8192 tokens. +SET 786 2270 420
This results in 18k high-quality examples. We +SFT4RL 786 2044 12.54
use models from the Qwen-2.5 and Qwen-2.5- +cold-RL 952 2397 14.58
Math series as our base. Since some models w/ format reward 10.95 28.49 11.17
are limited to 4096 position embeddlr}gs, We  Owen-2.5-7B 1595 33.13 13.59
extend the RoPE (Su et al.| [2024) scaling fac- +SFT 786  21.03 23.10
tor 6 from 10,000 to 20,000 to accommodate +SFT4RL 762 2107 3282
longer sequences, following prior work (Yan +cold-RL 1048 27.26 28.39
et al.} [2025a). For reinforcement learning, we w/ format reward 14.52 32.50 24.80
adopt the GRPO (Shao et al., 2024) framework Qwen2.5-Math-15B 928 2333 18.91

and use verifiable outcome-based rewards. In

.. +SFT 7.86  21.03 14.39
addition to standard correctness rewards, we de- +SFT+RL 714 2056 24.71
sign a format-aware reward variant (w/ format +cold-RL 833 2131 24.88
reward) that grants 0.1 if the model includes w/ format reward  7.62  20.08 23.95
iﬁ;ec}lf‘.l riafomggltglffens g, ithll?b and o Gen2.5Math-7B 976 2353 20.68
think>) and 1.0 for a correct solution. +SFT 809 2206 2911
+SFT+RL 8.57 21.03 40.65
The Double-Edged Sword of Reasoning- +cold-RL 7.85 22.62 32.61
Oriented Training. Table 3| presents the re- w/ format reward  7.86  21.79 32.66

sults for different training pathways, where Cor-

rectness denotes overall math reasoning performance (details in Appendix [E). While both SFT and
RL reliably boost reasoning accuracy, neither improves instruction-following. Instead, we observe a
consistent—and in some cases substantial—decline in HAcc and SAcc, with trained models even
performing worse than their base model counterparts. For example, Qwen2.5-1.5B and Qwen2.5-7B
both lose more than 10 points in SAcc after SFT or RL despite clear reasoning gains. The format-
aware reward yields slight improvements for Qwen-2.5-1.5B, 7B but has negligible effect on the Math
series. These results show that reasoning-oriented post-training does not merely overlook obedience
but can actively erode it, revealing a central dilemma in current training paradigms: sharpening
intelligence often comes at the expense of control.

5.3 How DOES THE COT LENGTH AFFECT INSTRUCTION FOLLOWING?

The More Thinking, the Less Following. To investi-
gate how CoT length influences instruction adherence,
we artificially increase the CoT length using budget forc-
ing (Muennighoff et al.| 2025)), which appends the token
"Wait" each time the model attempts to terminate the rea-
soning process. This encourages the model to continue
generating longer CoTs. The experiment is performed 30
on DeepSeek-R 1-Distill-Qwen-1.5B, and Figure [6] shows
the instruction-following performance as the number of
budget-forcing steps NV increases from 2 to 8. As CoT
length increases, SAcc steadily declines, suggesting that
excessively long CoTs may impair the model’s ability to

—&—  Single
—&— Double
Triple

2 4 6 8
# Thinking Times
Figure 6: The trend of SAcc on GSM8K
subset as the number of “Wait” rethinking
increases from 2 to 8.



follow instructions. This degradation likely stems from the increasing distance between the instruction
and the final output, which may dilute the model’s attention to user constraints (Li et al.| | 2025b)).

Controlling CoT Length During RL Training. Beyond inference-time manipulation, we investi-
gate whether controlling the length of CoT during reinforcement learning has a similar impact on
instruction-following. Specifically, we continue RL training on DeepSeek-R1-Distill-Qwen-1.5B
using the DeepScaler dataset (Luo et al., 2025)), varying the maximum response length during rollouts.

In this setup, overlong responses are truncated
and receive no outcome reward, encouraging
the model to response within allowed length.
We adopt a pure outcome-based reward function
and conduct RL training for three epochs, vary-
ing the maximum rollout length from 1k to 8k

Table 4: Impact of the maximum response length
during RL. Cells shaded in red denote lower perfor-
mance relative to the base (Original), with intensity
proportional to the drop magnitude.

tokens. The results, shown in Table (] reveal Model HAce SAcc Avg Acc.
a clear trend: as the maximum rollout length Original 17.14 3662  36.13
increases, math reasoning performance (aver- +cold-RL (1k) 19.05 39.88

aged across AIME2024, AIME2025, AMC2023, +cold-RL 2k) 1643  36.75 36.32
Minerva, and Olympiad, more details in Ap- +cold-RL (4k) 1691 35.87 40.03
pendix [E) improves, while both hard accuracy +cold-RL (8k) = 14.29 34.13 39.82

and soft accuracy consistently decline. This ob-
servation further reinforces our conclusion: reasoning-oriented training that favors longer CoTs
can inadvertently harm instruction-following fidelity, highlighting a persistent trade-off between
reasoning strength and obedience to user constraints.

Bringing Instructions Closer Im-
proves Obedience at the Cost of
Intelligence. One possible explana-
tion for the negative impact of lengthy

Table 5: Effect of +repeat on model performance. Cells
shaded in red/green denote lower/higher performance relative
to vanilla generation.

CoTs on instruction-following is that Model HAcc SAce Correctness

extended reasoning increases the dis-  DeepSeek-R1-Distill-Qwen-1.5B 17.14 36.62  31.67

tance between the user query and the trepeat 21.66 42.58  22.38

final answer, making it more !1l§ely Open-Reasoner-Zero-7B 13.57 3226  51.90

for the model to overlook the original +repeat 14.53 33.14  30.00

Eonztfﬁg;ti'sTgvgrelrgnglgllys‘i’glfé théi Qwen3-32B 4381 6282 70.00
yP » We prop pey +repeat 59.29 6834  63.81

effective remedy: repeating the con-
straint at the end of the CoT. Concretely, we manually append the token "Wait" to prolong the CoT and
then reintroduce the original constraint immediately afterward. As a result, the constraint appears
twice in the input, i.e., once before the CoT begins and once again at the end, thereby shortening its
contextual distance from the final answer. Experimental results on DeepSeek-R1-Distill-Qwen-1.5B,
Open-Reasoner-Zero-7B, and Qwen3-32B are shown in Table[5] This straightforward intervention
leads to clear improvements in instruction-following (SAcc and HAcc), albeit at a modest cost to
problem-solving accuracy. These findings further confirm the inherent trade-off between reasoning
depth and obedience during inference: enhancing one often comes at the expense of the other.

6 CONCLUSION

Our study reveals a persistent and underexplored trade-off between reasoning strength and instruction-
following fidelity. Through MathIF, a benchmark tailored for evaluating instruction adherence in math
reasoning tasks, we show that reasoning scaling does not guarantee control. Empirical results reveal
that longer chains of thought and reasoning-oriented training methods (e.g., SFT and RL) often impair
a model’s ability to comply with user-specified constraints. These findings highlight a core tension in
the development of LRMs: as models become more intelligent, they often become less controllable.
This dilemma is central to the alignment problem in reasoning-centric systems. Addressing it requires
rethinking current training paradigms to build models that can reason effectively without drifting
from user intent. We hope that our benchmark and findings serve as a foundation for future research
that bridges the growing gap between intelligence and obedience in large reasoning models.



ETHICS STATEMENT

Our proposed MathIF evaluates the instruction-following ability of publicly released LRMs, adhering
strictly to the ICLR Code of Ethics. The math problems used for our benchmark are collected from
free public datasets, and the construction of our benchmark does not involve recruiting crowdsource
workers or human annotators. Our benchmark should only be used for research, not for any malicious

purpose.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we introduce the experimental setup in Section 4 and
elaborate on the hyper-parameter setting and poison data construction in Appendix|[C] The construction
process of our benchmark is elaborated on Section|3|and a full list of constraint used in our benchmark
could be found in Appendix [F} The anonymous code for benchmark evaluation could be downloaded
fromhttps://anonymous.4open.science/r/MathIF-v1-0859.
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A OVERVIEW OF THE APPENDIX

This Appendix is organized as follows:

* Section[B]and Section [Hdiscussed the limitation and the use of LLM in our study, respectively.

* Section|C]elaborate on the hyper-parameters used for our reasoning-oriented training in Section[5.2]
* Section[D|provides more detailed results on our benchmark to facilitate analysis on the difficulty of
math problems and the number of constraints.

* Section [E] contains detailed reasoning performance for LRMs trained in Section 5.

* Section [F lists the constraints used in our proposed MathIF benchmark and provides a fine-grained
analysis.

* Section [G]provides a more comprehensive review of existing instruction-following benchmarks.

B LIMITATIONS

The limitations of this study can be summarized as below:

* In this study, we evaluate 23 recently released LRMs in text modality, and we plan to leave the
benchmarking of large vision reasoning models for future work.

* When investigating how reasoning-oriented training affects instruction-following, we mainly use
GRPO (Shao et al.| [2024) for RL training because of its simplicity, stability, and widespread practical
adoption. Experimenting with other RL training algorithms is left for future work.

C HYPER-PARAMETER SETTING

Our experiments on different reasoning-oriented training strategies in Section 5.2 are conducted on a
cloud Linux server with Ubuntu 16.04 operating system. The codes are written in Python 3.10 with
the huggingface librarie We run our experiments on 16 Nvidia H100 with 80GiB GPU memory.
The detailed hyper-parameter settings for supervised fine-tuning and reinforcement learning are
shown in Table|6] which mostly follow the default setting in VeRL frameworkﬂ

Table 6: The value of the hyper-parameters in our reasoning-oriented training experiment (Section 5.2)

for SFT (left) and RL (right).

Hyper-parameter Value Hyper-parameter Value
batch_size 256 max_prompt_length 1024
micro_batch_size 1 max_response_length 3072
max_length 8192 ir . le-6
rope_theta 20000 bgtgh_31ze ) 128
1y le-6 mini_batch_size 64
betas (0.9, 0.95) el o
xjiiht—iisiz 06011 ent rgpy_coeff 0.001
up_ " k1l_loss_coef 0.001
schedule cosine rl_epoch 1
clip_grad 1 warmup_ratio 0
epoch .3 schedule constant
truncation right rollout_n 8
sliding_window none rollout_temperature 1

D MORE BENCHMARK RESULTS

In Section 4.3, we visualize the model performance grouped by the source of math problems and
the number of constraints. In this section, we supplement with more detailed benchmark results

2https ://github.com/huggingface/transformers
3https ://github.com/volcengine/verl
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for LRMs involved in our experiments. The fine-grained instruction-following performance across
different source of math problems are presented in Table[7] while the hard accuracy (HAcc) and soft
accuracy (SAcc) for different number of constraints are shown in Table[8|and Table[9] respectively.

Table 7: Experimental results of LRMs on MathIF. We report hard accuracy (HAcc) and soft accuracy
(SAcc) for instruction-following. { indicates models trained by supervised fine-tuning only (no
reasoning-oriented RL).

single double triple
Model Acc  HAcc SAcc HAcc SAcc
Models with no more than 4B parameters
Qwen3-4B 53.57 3857 57.86 40.00 72.86
Qwen3-1.7B 42.14 2286 4643 2571 62.14
Qwen3-0.6B 48.57 2286 4893 12.14 53.81
L1-Qwen-1.5B-Exact 33.57 1857 4357 7.14  41.66
L1-Qwen-1.5B-Max 37.14 1643 4393 571 37.14
DeepSeek-R1-Distill-Qwen-1.5Bt  33.57 1429 3821 357 38.09
DeepScaler-1.5B-Preview 30.71 10.00 35.00 286 37.85
Qwen2.5-1.5B-SimpleRL-Zoo 2143 286 21.07 286 3048
Qwen2.5-Math-1.5B-Instruct 19.29  2.14 19.64 143 2524
Models with approximately 7B—14B parameters
Qwen3-14B 63.57 40.71 60.71 47.86 76.90
DeepSeek-R1-Distill-Qwen-14Bf  57.14 3571 62.86 25.00 61.66
Qwen3-8B 5143 3143 54.64 30.71 6595

DeepSeek-R1-Distill-Qwen-7Bt 39.29  27.14 5036 12.86 4523
DeepSeek-R1-Distill-Llama-8B 3429 22,14 47.14 10.00 50.7
Open-Reasoner-Zero-7B 2571 13,57 39.64 143 3142
Qwen2.5-Math-7B-Instruct 2286 2.86 24.64 143 29.29

Models with 32B or more parameters

Qwen3-32B 61.43 35.00 57.50 35.00 69.52
DeepSeek-R1-Distill-Qwen-32Bf  57.14  37.14 6036 33.57 65.23
DeepSeek-R1-Distill-Llama-70Bf  54.29 3929 61.07 30.71 67.85

QwQ-32B 5571 3571 5857 2929 65.69
OlympicCoder-32B7 5571 3143 60.36 20.71 57.85
s1-32Bt 37.14 13,57 3893 12.14 49.27
Open-Reasoner-Zero-32B 30.71  13.57 41.79  2.14  34.05

E MORE RESULTS ON MATH BENCHMARKS

In Section[5.2} we vary the reasoning-oriented training strategy and report the averaged math reasoning
performance among five benchmarks in Table [3] The five benchmarks used in our experiments are:
AIME2024 E|, AIME2025 EL AMC2023 EL Minervaﬂ and Olympiadﬂ For fine-grained analysis, we
report more detailed results on five benchmarks in Table[IT} Similarly, in Section[5.3] we control the
CoT length during RL training and report the averaged math reasoning performance among the five
benchmarks in Table [ and detailed results on five benchmarks in Table

F ANALYSIS ON CONSTRAINT TYPES

In this section we provide a detailed list of the 15 constraints used in our benchmark in Table ?? and
Table T3] together with the instruction-following performance per constraint type in Table[T4] From
the table, we could observe that the performance on the length constraint and the lexical constraint
is substantially better, while the performance on the Affix constraint is the worst among the four
categories.

4https ://huggingface.co/datasets/HuggingFaceH4/aime_2024
5https ://huggingface.co/datasets/opencompass/AIME2025

61’1ttps ://huggingface.co/datasets/zwhe99/amc23

7https ://huggingface.co/datasets/math-ai/minervamath

8https ://huggingface.co/datasets/zwhe99/simplerl-OlympiadBench
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Table 8: Experimental results of LRMs on MathIF. We report hard accuracy (HAcc) for instruction-
following on five subsets of our MathIF. { indicates models trained by supervised fine-tuning only
(no reasoning-oriented RL).

Model GSMSK MATHS500 Minerva Olympiad AIME
Models with no more than 4B parameters
Qwen3-4B 66.67 40.00 53.33 31.11 21.67
Qwen3-1.7B 44.44 25.56 41.11 24.44 8.33
Qwen3-0.6B 36.67 25.56 34.44 24.44 13.33
L1-Qwen-1.5B-Exact 27.78 15.56 21.11 17.78 15.00
L1-Qwen-1.5B-Max 24.44 18.89 2222 16.67 15.00
DeepSeek-R1-Distill-Qwen-1.5Bf 32.22 12.22 15.56 12.22 11.67
DeepScaler-1.5B-Preview 26.67 10.00 15.56 7.78 11.67
Qwen2.5-1.5B-SimpIRL-Zoo 11.11 10.00 11.11 4.44 8.33
Qwen2.5-Math-1.5B-Instruct 8.89 5.56 8.89 6.67 8.33
Models with approximately 7B—14B parameters
Qwen3-14B 71.11 53.33 63.33 35.56 20.00
DeepSeek-R1-Distill-Qwen-14Bf 55.56 35.56 44.44 31.11 25.00
Qwen3-8B 56.67 37.78 44.44 24.44 20.00
DeepSeek-R1-Distill-Qwen-7B+ 46.67 22.22 31.11 14.44 13.33
DeepSeek-R1-Distill-Llama-8B{ 41.11 18.89 20.00 13.33 15.00
Open-Reasoner-Zero-7B 13.33 14.44 11.11 13.33 16.67
Qwen2.5-Math-7B-Instruct 12.22 5.56 10.00 8.89 8.33
Models with 32B or more parameters
Qwen3-32B 73.33 40.00 52.22 26.67 18.33
DeepSeek-R1-Distill-Qwen-32B 57.78 38.89 52.22 32.22 26.67
DeepSeek-R1-Distill-Llama-70B 55.56 4222 53.33 28.89 20.00
QwQ-32B 60.00 38.89 45.56 32.22 16.67
OlympicCoder-32Bf 36.67 36.67 37.78 31.11 38.33
s1-32Bf 33.33 20.00 2222 13.33 13.33
Open-Reasoner-Zero-32B 15.56 14.44 15.56 14.44 18.33

Table 9: Experimental results of LRMs on MathIF. We report soft accuracy (SAcc) for instruction-
following on five subsets of our MathIF. { indicates models trained by supervised fine-tuning only
(no reasoning-oriented RL).

Model GSMS8K MATHS500 Minerva Olympiad AIME
Models with no more than 4B parameters
Qwen3-4B 80.19 57.41 70.37 50.19 42.78
Qwen3-1.7B 65.74 44.81 61.85 45.19 25.28
Qwen3-0.6B 61.30 47.04 59.07 45.37 33.89
L1-Qwen-1.5B-Exact 50.56 37.59 39.62 33.7 35.00
L1-Qwen-1.5B-Max 45.37 40.56 42.78 34.44 31.10
DeepSeek-R1-Distill-Qwen-1.5Bf 54.26 32.59 37.03 28.70 27.50
DeepScaler-1.5B-Preview 49.44 32.96 33.89 25.56 28.88
Qwen2.5-1.5B-SimpIRL-Zoo 25.93 25.00 27.96 18.70 23.89
Qwen?2.5-Math-1.5B-Instruct 2241 19.07 23.33 20.37 21.94
Models with approximately 7B—14B parameters
Qwen3-14B 83.33 68.52 77.96 55.56 41.39
DeepSeek-R1-Distill-Qwen-14B{ 76.84 58.14 62.22 55.56 44.72
Qwen3-8B 74.44 55.74 64.07 45.00 42.50
DeepSeek-R1-Distill-Qwen-7B+ 67.96 41.67 52.59 29.44 27.22
DeepSeek-R1-Distill-Llama-8B 62.59 4222 43.51 35.93 31.93
Open-Reasoner-Zero-7B 32.22 32.78 31.67 29.62 36.38
Qwen2.5-Math-7B-Instruct 29.63 20.93 27.41 25.19 24.44
Models with 32B or more parameters
Qwen3-32B 86.11 59.26 70.74 48.89 42.22
DeepSeek-R1-Distill-Qwen-32B+ 75.73 60.37 67.78 50.73 44.44
DeepSeek-R1-Distill-Llama-70B 75.73 60.93 70.56 48.89 43.33
QwQ-32B 78.14 57.03 66.67 51.11 40.50
OlympicCoder-32Bf 58.89 55.92 64.26 54.26 55.83
s1-32Bf 54.81 43.51 45.56 31.48 29.43
Open-Reasoner-Zero-32B 36.85 33.52 37.04 33.15 37.78

17



Table 10: Reasoning performance for LRMs when trained with varying maximum response length
(the number in the bracket) during RL.

Model AIME2024 AIME2025 AMC2023 Minerva Olympiad Average

Original 28.33 21.15 67.73 23.16 40.30 36.13
+cold-RL (1k) 14.27 11.67 58.20 23.53 36.00 28.73
+cold-RL (2k) 24.06 19.58 70.39 26.10 41.48 36.32
+cold-RL (4k) 28.65 24.17 75.39 26.47 45.48 40.03
+cold-RL (8k) 30.73 24.06 73.05 26.84 44.44 39.82

Table 11: Reasoning performance for LRMs when trained with different reasoning-oriented training
strategies.

AIME2024 AIME2025 AMC2023 Minerva Olympiad Average

Qwen2.5-1.5B 0.21 0.00 2.89 1.47 1.48 1.21
+SFT 0.10 0.10 10.70 4.04 6.07 4.20
+SFT+RL 4.48 2.08 28.36 9.56 18.22 12.54
+cold-RL 4.48 2.19 30.47 16.18 19.56 14.58
w/ format reward 2.60 0.31 26.80 9.56 16.59 11.17
w/ inst-following 3.02 1.14 30.00 16.18 17.33 13.54
Qwen2.5-7B 4.90 1.98 27.81 13.24 20.00 13.59
+SFT 10.00 10.52 40.78 25.00 29.19 23.10
+SFT+RL 18.65 18.23 57.34 27.94 41.93 32.82
+cold-RL 15.21 8.75 53.98 29.78 34.22 28.39
w/ format reward 10.52 8.13 46.56 27.21 31.56 24.80
w/ inst-following 10.31 6.67 60.00 23.90 32.89 26.75
Qwen2.5-Math-1.5B 7.92 4.27 42.89 14.71 24.74 18.91
+SFT 5.94 3.65 30.08 13.60 18.67 14.39
+SFT+RL 10.94 9.27 48.75 23.16 31.41 24.71
+cold-RL 13.30 7.70 52.00 20.58 30.81 24.88
w/ format reward 12.81 6.46 51.95 20.22 28.30 23.95
w/ inst-following 11.04 4.27 55.00 16.18 25.78 22.45
Qwen2.5-Math-7B 16.45 8.13 45.63 7.72 25.48 20.68
+SFT 16.88 15.94 53.36 25.00 34.37 29.11
+SFT+RL 30.21 23.96 70.55 31.25 47.26 40.65
+cold-RL 27.50 13.60 59.84 25.36 36.74 32.61
w/ format reward 28.75 11.15 62.50 26.10 34.81 32.66
w/ inst-following 23.33 11.35 60.00 25.10 35.56 31.27

G MORE RELATED WORKS

Numerous benchmarks have been developed to evaluate the instruction-following ability of language
models in different scenarios and circumstances. The comparison of our proposed benchmark with
previous ones is listed in Table[I5] from which we can observe that MathIF is similar to previous ones
in benchmark size and constraint types but MathlF is first one focusing on instruction-following when
performing mathematical reasoning. We notice that a contemporary work (Li et al.,[2025b)), which
inspects the attention weight distribution and attributes the failure of instruction-following to attention
dilution. However, their analysis is based on general-domain questions in IFEval (Zhou et al., [2023)
and ComplexBench (Wen et al.,[2024])), which strays from the intended use case of large reasoning
models. In addition, the impact of post-training, including SFT and RL, on the instruction-following
ability of LRMs is not discussed.

H THE USE OF LARGE LANGUAGE MODEL

Large language model is used in our study as a general-purpose assist tools and we use it for checking
grammar mistakes and fixing Latex compile errors.
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Table 12: Single constraints and sample dual-/triple-constraint compositions across four categories.

Category Sub-Category Example

Length Length Answer with less than 500 words.
Lexical Language Your answer should be in Chinese language, no other language is allowed.
Keyword Include keywords "condition" in your response.
Format Punctuation In your entire response, refrain from the use of any commas. )
Case Your entire response should be in English, and in all lowercase letters. No capital letters
are allowed.
Highlight Your answer must contain exactly 3 bullet points. Use the markdown bullet points such as:
* This is point 1. * This is point 2.
Affix Prefix First repeat the request word for word without change, then give your answer.
Suffix Finish your response with this exact phrase "Any other questions?". No other
words should follow this phrase.
Both Wrap your entire response with double quotation marks.

Table 13: The list of 15 constraints used in our proposed MathlIF.

Category Constraint

length e Answer with at least/around/most {N} words.

lexical o Include keywords {keywordl}, {keyword2} in your response.
e In your response, the word word should appear {N} times.
e Do not include keywords {forbidden words} in the response.
e Your ENTIRE response should be in {language}, no other language is allowed.

format e Your answer must contain exactly {N} bullet points. Use the markdown bullet points
such as: * This is a point.
o Highlight at least {N} sections in your answer with markdown, i.e. highlighted section.
e Your response must have {N} sections. Mark the beginning of each section with
{section_splitter} X.
e Your entire response should be in English, capital letters only.
e Your entire response should be in English, and in all lowercase letters. No capital letters

are allowed.
e In your response, words with all capital letters should appear at least / around / at most
{N} times.
o In your entire response, refrain from the use of any commas.

affix o Finish your response with this exact phrase {end_phrase}. No other words should follow
this phrase.

e Wrap your entire response with double quotation marks.
o First, repeat the request without change, then give your answer.

Table 14: The accuracy of instruction-following on each category.

Model Length Lexical Format Affix

Qwen3-14B 76.79  78.15 6748  49.62
DeepSeek-R1-Distill-Llama-8B 60.71 50.15 46.32  33.08
DeepSeek-R1-Distill-Qwen-1.5B  58.93 43.69 36.5 15.79
Open-Reasoner-Zero-32B 53.57 42.77 3436  19.55

Table 15: The statistics of MathIF benchmark in comparison with existing instruction-following
benchmarks.

Benchmark Size  Question Type

IFEval (Zhou et al.|[2023) 541 Length, Lexical, Format, Affix

FollowBench (Jiang et al.|[2023) 820 Content, Situation, Style, Format, Example, Mixed
FOFO (Xia et al.|[2024) 494 Format

InFoBench (Qin et al.||[2024) 500 Content, Linguistic, Style, Format, Length
CELLO (He et al.[[2024b) 523 Semantics, Format, Quantity

Multi-IF (He et al.[[2024c¢) 4,501 Length, Lexical, Format, Affix

XIFBench (Li et al.[[2025¢) 558 Content, Style, Situation, Format, Numerical
StructFlowBench (Li et al.[[2025a) 155 Style, Situation, Keyword, Format, Inversion

Ours 420 Length, Lexical, Format, Affix
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