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Abstract

Exploring the predictive capabilities of natural language processing models in
material science is a subject of ongoing interest. This study examines material
property prediction, relying on models to extract latent knowledge from compound
names and material properties. We assessed various methods for contextual embed-
dings and explored pre-trained models like BERT and GPT. Our findings indicate
that using information-dense embeddings from the third layer of domain-specific
BERT models, such as MatBERT, combined with the context-average method, is
the optimal approach for utilizing unsupervised word embeddings from material
science literature to identify material-property relationships. The stark contrast
between the domain-specific MatBERT and the general BERT model emphasizes
the value of domain-specific training and tokenization for material prediction. Our
research identifies a "tokenizer effect", highlighting the importance of specialized
tokenization techniques to capture material names effectively during the pretraining
phase. We discovered that a tokenizer which preserves compound names entirely,
while maintaining a consistent token count, enhances the efficacy of context-aware
embeddings in functional material prediction.

1 Introduction

Materials science is an inherently versatile field with intricate connections and intersections with
various domains like physics, chemistry, energy and engineering. In recent decades, innovative
materials often emerge from integrating knowledge and ideas across multiple disciplines, resulting in
advancements across various industries. This interdisciplinary nature raises a longstanding question
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in materials informatics: How can we efficiently identify materials with optimal properties for specific
purposes from vast literature findings?

Currently, the majority of these advances are still largely attributed to a methodical process of
trial-and-error experimentation base on researcher experience, entailing substantial investments in
time and resources. This process relies to a significant extent on the interdisciplinary knowledge
and practical experience of scientists. The contemporary landscape of global challenges amplifies
the urgency for expediting research that is faster, more efficient, and cost-effective. Recent works
[1, 2] have utilized an unsupervised natural language processing (NLP) technique to discover new
material synthesize materials science knowledge and demonstrated that it could discover materials
for specific applications for thermoelectric, photovoltaic materials. Their technique, word embedding,
represents a word using a real-valued vector in a high-dimensional space, where words with similar
meanings are mapped to nearby points. These vectors, called word embeddings, are often trained on
large corpora to encapsulate the distributional properties of words in the text. Word embeddings can
capture complex materials science concepts and structure-property relationships directly from text
without needing explicit domain knowledge insertion [3].

While word embeddings trained by algorithms like Word2Vec [4] and GloVe [5] have gained signifi-
cant popularity, more advanced models like Bidirectional Encoder Representations from Transformers
(BERT) [6] and Generative Pre-trained Transformers (GPT) [7] have emerged, capable of capturing
even richer contextual information. Given their remarkable performance in various NLP tasks, we
hypothesize that these novel models may enhance domain-specific knowledge discovery by utilizing
their intrinsic word representations.

This study aims to assess the feasibility of using contextualized word representations for a knowledge
discovery task, material prediction. This task is designed to identify materials suitable for a specific
functional application by ranking a list of potential materials from the corpus. We reproduced an ex-
isting thermoelectric material prediction dataset containing 84 materials ranked by their experimental
zT value. On the methodological front, we conducted preliminary investigations into the efficacy
of various contextual embeddings for this task, including pre-trained models like BERT and GPT
and methods of obtaining embeddings. The results emphasized the importance of domain-specific
pretraining and tokenization techniques in enhancing the performance of contextual language models
for knowledge discovery. The study also identified the "tokenizer effect", which makes contextual
embeddings favours shorter tokenized material names in material prediction, underscoring the need
for improved tokenization mechanisms. The code used for datasets and experiments in our study are
available at An anonymous link to the code/data

2 Related Works

Knowledge discovery was defined as ’the non-trivial process of identifying valid, novel, potentially
useful and ultimately understandable pattern or knowledge in data’ in 1996 [8]. Word embedding
technique, which has its root in distributional semantics [9], can be applied in knowledge discovery
prediction directly [10]. It often rely on semantic-similarity measures between word representations to
predict relationships, which are subsequently validated using domain-specific scientific methods [11].
Traditional approaches have leveraged static word embeddings (each word has fixed vector) such as
Word2Vec and GloVe to uncover latent knowledge within domain-specific text data. For example,
Tshitoyan et al. [1] proposed an embedding-based ranking prediction: Word2Vec embeddings of
material names were tanked by their cosine similarity to the embedding of ’thermoelectric’ and
obtained a 59% rank correlation with experimental results. In contrast, the ranking predicted by
density functional theory (DFT) calculation only exhibits a 31% rank correlation. The context analysis
reveals that the direct relationship between the novel materials and ‘thermoelectric’ may be attributed
to indirect connections involving the material names and related terms, such as ’chalcogenide’ (many
chalcogenides are good thermoelectrics) and ’band gap’ (important to thermoelectric properties).
This method was applied to solar materials and identified potential candidates such as As2O5 [12].
Shetty and Ramprasad also demonstrated that word embeddings trained on a corpus of polymer
papers could encode materials science knowledge and used to identify novel polymers for certain
applications [2]. In biomedical domain, Venkatakrishnan et al. [13] applied the same method to
identify novel tissue-reservoirs of the ACE2 receptor used by SARS-CoV-2 to invade a host.
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Several of above studies [1, 13] suggested in the discussion that dynamic embeddings (each word is
assigned a distinct embedding based on its context) from pretrained models like BERT, might surpass
those static embeddings in the realm of knowledge discovery. In a sentiment analysis study based on
Twitter [14], dynamics embeddings demonstrate better ability of capturing hidden information and
intricate relationship from context compared to static embeddings. However, there are relatively few
efforts to tailor models like BERT for knowledge discovery prediction purpose. Panesar [11] obtained
word embeddings based on sentences extracted from a biomedical corpus using domain-specific
pretrained models like BioBERT [15], achieving superior performance on biomedical benchmarks
compared to static embeddings. The benchmarks utilized in the paper involves directly comparing
the cosine similarity of word representations from language models to human domain-expert ratings.
This kind of task aims to measure ability of capturing semantic relationship, which differs from
material prediction tasks based on experimental results, leaving room for further exploration.

3 Methods

BERT and GPT models generate distinct vectors for the same word in varying contexts, based on
the surrounding words within the sentence. To investigate contextual word embedding in material
prediction task, we employed various approaches to acquire BERT embeddings, which encompass
methodologies involving the exclusion or inclusion of actual sentence contexts, different layers, and
combinations of layers. This section provides a detailed exposition of two methods for acquiring
BERT embeddings of material names in our study, namely, the context-free and context-average.

Context-free We use a single context [16] for each material name to obtain context-free BERT
word embebddings. Initially, we utilized the pretrained BERT tokenizer to convert material names
into tokens. For each material name word w, tokenizer decomposed w into x sub-word tokens
(x ≥ 1), resulting in tokenized text {t1, ..., tx}. Subsequently, we fed the tokenized text into the
pretrained BERT model, resulting in output hidden states with four dimensions:

1. The layer number (13, including the initial layer and 12 output layers)
2. The batch number (always 1 corresponding to a single input string)
3. The token number (varying as the number of tokens in the string)
4. The hidden unit number (768 features)

As Figure 1 shows, each token t within our input generated 13 separate vectors, each of which
possessed a length of 768. To form a token embedding t, we directly extracted certain layer vector or
combine some of the layer vectors by operations like summing, averaging, or concatenating. Given
that there were no contextual words available to impart meaning to the material name in the input, we
calculated the final representation by averaging across all token embeddings: w = 1

x (t1 + ...+ tx).

Context-average Inspired by Bommassani et al. [16], we also aggregated contextualized word
representations over contexts to obtain static-equivalents. Utilizing a paper downloading tool (An
anonymous link to the code/data), we collected scholarly literature related to the material names from
Web of Science (English; published in 2000.01.01-2023.09.15; published by Elsevier or Springer
Nature) and converted them into plain texts. As Figure 2 shows, for each material name w, we select
n (n ≤ 100) sentences containing it as contexts {s1, ..., sn} (if the number of collected sentences is
larger than 100, randomly sample 100 sentences from the collection). These sentences were then
tokenized by pretrained BERT tokenizer. Assuming that the tokens of w (if w have more than 1
occurrences in s, only use the first one) are located within the tokens of s at the positions [si, ..., sj ].
For each sentence s, we obtained token embeddings for each token using same method of generateing
token embeddings in context-free approach and extracted {tsi , ..., tsj} from all token embeddings of
s. The representation of w in the context s is calculated as:

ws =
1

j − i+ 1
(tsi + ...+ tsj ) (1)

After obtaining representation of w in all contexts, we calculated the arithmetic mean of n contextual
representations:

w =
1

n
(ws1 + ...+wsn) (2)
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Figure 1: A diagram of obtaining context-free embedding for Ca2Co2O5.

Figure 2: A diagram of obtaining context-average embedding for Ca2Co2O5.

For both approaches, we also obtained the representation of a pre-selected word about a certain
application, like ’thermoelectric’, to be the center embedding. The material names were ranked by
cosine similarity between their embeddings and the center embedding.

4 Thermoelectrical Material Prediction

In order to assess the performance of contextual embeddings obtained through different methods and
configurations in the context of a material prediction task, we conducted an initial exploration on an
existing dataset.

4.1 Dataset

Tshitoyan et al. [1] constructed a small-scale dataset using 83 materials that appear both in their text
corpus and the experimental set [17]. We reproduced a 84-material dataset ranked by zT value (an
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important component of the overall thermoelectric figure of merit) by using their released data in
https://github.com/materialsintelligence/mat2vec.

4.2 Model

For our thermoelectric material prediction task, we evaluated the performance of contextual embed-
dings generated by several state-of-the-art pretrained models, including BERT [6], MatBERT [18],
OpenAI Embeddings API [19]:

• BERT was pretrained on English language using a masked language modeling (MLM) and
next sentence prediction (NSP) objective. In this study, we used a case-sensitive BERT,
bert-base-cased. The texts used for training were tokenized using WordPiece [20] and
reserved a vocabulary size of 28,996.

• MatBERT is a BERT model trained using scientific papers specifically from the field of
materials science and only MLM objective. We used MatBERT-base-cased (available at
https://github.com/lbnlp/MatBERT). The texts used for training were also tokenized using
WordPiece and reserved a vocabulary size of 30,552.

• OpenAI Embeddings API can be directly used to directly retrieve contextual embeddings
for text data. We used text-embedding-ada-002 in this study.

In addition, we also use ChatGPT (https://chat.openai.com) to re-rank the given materials as a
supplementary trial. This chat mode does not involve embedding. Rather, it relies on interactive
engagement with the model through prompts, enabling the model to re-rank the material using its
inherent capabilities. The prompts used are available in Appendix ??.

4.3 Results

To assess the performance of contextual embeddings, we compared the predicted rank with actual
rank (ranked by the experimental results) using the Spearman’s rank correlation coefficient [21].
Spearman’s correlation ranges from -1 to 1 (values near 1 indicate similarity in two ranks, while
values near -1 indicate dissimilarity in two ranks). The baseline of this 84-material dataset should
be density functional theory (DFT) method with around 31% rank correlation [1]. For the sake of
convenience in subsequent discussions, we shall denote the Spearman’s correlation between the
predicted rank of 84 materials and their actual rank as ’Correlation_1’, and the Spearman’s correlation
between the predicted rank of 84 materials and their tokenized length as ’Correlation_2’. We selected
’thermoelectric’ as the center word.

In our experiments, we encountered results that deviated somewhat from our initial expectations.
However, we identified certain patterns that align with phenomena previously observed in related
studies and we observed intriguing phenomena associated with the tokenizers of pretrained models.

Context-free As mentioned in context-free method in section 3, we directly tokenized the 84 mate-
rial names and input them into both the BERT and MatBERT models. We calculated Correlation_1
and Correlation_2 using embeddings generated by each layers in two models (Table 1 shows part of
the results). The results indicate that the BERT embeddings generated using the context-free method
do not exhibit a meaningful correlation with the predicted and actual results. However, the output of
the tokenizer does influence the ranking to some extent, suggesting that material names composed of
fewer tokens tend to be ranked higher.

In contrast, embeddings obtained from the domain-specific pretrained model MatBERT demonstrate
a very subtle correlation between the predicted and actual results. Comparing the results across layers
(excluding the initial layer), we observe that the correlation values peak at the third layer and rapidly
decline, with a resurgence towards the end. Additionally, it is notable that the impact of the MatBERT
tokenizer is more pronounced than that of BERT. Interestingly, the third layer, which exhibits the
weakest influence from the tokenizer, yields the most favorable results.

Regarding the impact of the tokenizer, we conducted several minor tests. First, we compare the length
of tokenized 84 materials (see Appendix B). Compared to BERT, MatBERT segments a material’s
name more comprehensively, without being overly fragmented. Then we calculated the Spearman’s
correlation between the actual rank of 84 materials and their tokenized length, which is only 1.6%.
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Table 1: Results of thermoelectrical material prediction using context-free method (part)

Model Layer Correlation_1 Correlation_2

BERT

2 0.0960 0.5397
3 -0.029 0.1133
6 -0.1946 0.52

13 -0.082 -0.2672

MatBERT

2 0.0779 0.8130
3 0.1707 0.4605
6 0.018 0.7187

13 0.067 0.7463

This indicates that the shorter tokenized length cannot imply better experimental performance. We
also replaced the center word "thermoelectric" with unrelated words like "apple" or "hit." After this
substitution, both BERT and MatBERT failed to demonstrate even the slight correlation between
the predicted rank and the actual rank. Notably, the tokenizer effect at lower layers significantly
diminished (for instance, MatBERT exhibited a Correlation_2 of -15% at the third layer). However,
at upper layers, Correlation_2 remained relatively high, with both MatBERT and BERT reaching
around 70%.

Context-average As mentioned in context-average method in section 3, we directly tokenized
the context sentences of 79 material names (5 material names were not found in web of science
with predefined conditions) and input them into both the BERT and MatBERT models to generate
embeddings of material names. As shown in Figure 3, the performance of context-average BERT
embeddings aligns with that of BERT when utilizing the context-free method, but MatBERT shows a
substantial improvement. For BERT, even in the case of the best-performing layer, the Correlation_1
value is insufficient to establish a meaningful correlation between the predicted and actual results.
In contrast, the embeddings from the third layer of MatBERT yield the highest correlation (Corre-
lation_1=39.61%) with experimental results and exhibits the weakest influence from the tokenizer
(Correlation_2=17.01%). Detailed ranking by the third layer of MatBERT is available in Appendix
C).

The figure in Appendix B shows that the majority of the 84 material names tokenized by MatBERT
tokenizer exhibit token lengths predominantly falling within the range of 7 to 11 tokens. By exclu-
sively retaining this subset of material names that possess more closely aligned token lengths (39
material names), we re-ranked them using the embeddings derived from the third layer of MatBERT
and the correlation with experimental results achieved 51.34%.

GPT embedding We employed the text-embedding-ada-002 model to generate embeddings for
the 84 material names and subsequently ranked them based on their cosine similarity scores with
center word. The results revealed a relatively lower correlation (23.55%) between the predicted ranks
and the actual experimental results (detailed ranking is available in Appendix C). This performance
metric fell notably short in comparison to the results achieved using context-average method and
the MatBERT model. This further underscores the significance of domain-specific training and the
provision of requisite context.

ChatGPT As a supplementary trial, we leveraged ChatGPT to re-rank the provided dataset com-
prising 84 distinct materials (see Appendix A. The model was tasked with considering various
factors such as electrical and thermal conductivity, as well as the Seebeck coefficient, to assign novel
rankings. The results demonstrated a moderate correlation of 24.03% with the actual experimental
results. This performance still feww short of the correlation achieved by the MatBERT model using
context-average method, but slightly surpass that achieved through the utilization of GPT embed-
dings. Through an analysis of the outcomes generated by ChatGPT, we deduced that ChatGPT itself
possesses a degree of domain-specific knowledge, enabling it to discern and recommend materi-
als commonly utilized in specific applications from the provided list. However, its proficiency in
comprehending less conventional or less prevalent materials appears to be limited.
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Figure 3: Results of thermoelectrical material prediction using context-average method

5 Discussion

In prior research [1, 13], there was a hypothesis that contextual embeddings would outperform
traditional Word2Vec embeddings in material prediction task, and indeed, they have exhibited
promise in some knowledge discovery tasks [11, 14]. However, our practical exploration in this study
has unveiled nuanced findings. While contextual embeddings do possess the capability to predict
material performance for a certain application to some extent (40%) and surpasses the correlation
obtained by Density Functional Theory (DFT) predictions (31%), they fall short when compared to
conventional Word2Vec methods (59%).

In our experiments, the substantial disparity in performance observed between MatBERT and the
BERT model on the same method underscore the indispensability of domain-specific training when
employing contextual embedding models for material prediction tasks. In other downstream domain-
specific NLP tasks, such as Named Entity Recognition (NER), the availability of labeled data (there
is usually annotated data for supervised fine-tuning), coupled with the inherent capabilities of BERT
models, enables the narrowing of the knowledge gap. Consequently, the disparity in performance
between BERT and MatBERT in these downstream tasks does not tend to be exceedingly pronounced
[18]. In the contrast, material prediction is an unsupervised task without annotated data and primarily
rely on the model’s capacity to encapsulate latent knowledge embedded within material names,
highlighting greater importance of domain-specific pretraining.

Through comparisons of different methods for obtaining contextual embeddings, we have found that
utilizing the output embeddings from the third layer of contextual embedding models (BERT and
MatBERT in our study), in conjunction with the context-average method (averaging embeddings
of material names generated from various context sentences), is the most suitable approach for this
specific task. Comparing the results across layers, the correlation values peak at the third layer and
rapidly decline with a resurgence towards the end, which follows a similar trend in word similarity
task [16]. Prior work has suggested that for most language models, the lower layers specialize in
local syntactic relationships while the higher layers may be expressly encoding contextual semantic
information [22, 23, 24]. In synthesizing these pieces of information, it can be inferred that the
characterization of material names primarily stems from their intrinsic lexical-level information.
While necessitating a certain degree of contextual information, this reliance on context is less
pronounced compared to more advanced semantic-level tasks such as coreference identification. This
observation indirectly lends support to the notion that the straightforward application of Word2Vec
yields good performance in this task.

7



Additionally, our experiments have shed light on the "tokenizer effect", where contextual embeddings
tend to prioritize material names with shorter tokenized lengths when ranking materials. We quantified
the strength of this tokenizer effect using Spearman correlation and observed that good prediction
performance is often associated with low tokenizer effect but low tokenizer effect does not have to be
related with good prediction performance. In other words, low tokenizer effect is a necessary but not
sufficient condition for good prediction performance of contextual embeddings.

The results of our experiments, along with a series of tokenizer-related tests, suggest that standard
tokenization methods like WordPiece may not be suitable for capturing the terminology in material
science and further improvements in the effectiveness of contextual embeddings for material pre-
diction necessitate refining the current tokenizer mechanisms. Although MatBERT tokenizer was
pretrained on domain-specific text, it cannot guarantee that longer material names are not overly
segmented, potentially leading to loss of meaning when aggregating token embeddings to form the
overall material name embedding. Therefore, future efforts should focus on enhancing tokenizer
mechanisms to advance the utility of contextual embeddings in material science applications. One
potential approach entails augmenting the vocabulary with as many complete material names as feasi-
ble, replacing subwords of material names, prior to domain-specific pretraining. The other approach
is to use paragraph-level text as the source of representation of a material name, to bypass “tokenizer
effect” mechanism. Comparing two approaches, the second one is operationally more feasible and
has the ability to leverage contextual embedding for the encoding of higher-level information. The
source text can be formed by different kinds of information, such as structure description, property
data and experimental performance.

We also employed GPT embeddings and ChatGPT for the material prediction task. Intriguingly,
ChatGPT exhibited a slightly better performance to GPT embeddings, autonomously providing
limited insights without specific prompts. Their performance fell short of the MatBERT+context-
average approach, but outperformed MatBERT+context-free approach. This suggests that there
may be room for exploration in adopting a hybrid approach that leverages contextual information
from sentences to enhance GPT’s comprehension of materials, potentially yielding improvements in
predictive accuracy.

6 Conclusion

In conclusion, this study offers valuable insights into the challenges and opportunities of employing
contextual embeddings in material prediction, with implications extending to other specialized
domains. Future work will be required to explore novel tokenizer mechanisms tailored to material
names. Combining the strengths of different language models, such as contextual embeddings and
generative models, may also unlock new opportunities for further advancing our ability to unlock
valuable knowledge from unstructured textual sources.

References
[1] Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova,

Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature, 571(7763):95–98, 2019.

[2] Pranav Shetty and Rampi Ramprasad. Automated knowledge extraction from polymer literature
using natural language processing. Iscience, 24(1), 2021.

[3] Ghanshyam Pilania. Machine learning in materials science: From explainable predictions to
autonomous design. Computational Materials Science, 193:110360, 2021.

[4] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[5] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

8



[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[8] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, et al. Knowledge discovery and
data mining: Towards a unifying framework. In KDD, volume 96, pages 82–88, 1996.

[9] John Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic analysis, pages
10–32, 1957.

[10] Pedro Aceves and James A Evans. Mobilizing conceptual spaces: How word embedding models
can inform measurement and theory within organization science. Organization Science, 2023.

[11] Sandip S Panesar. Biomedical knowledge discovery from unstructured text corpora using
contextual word embeddings. Research Square preprint rs.3.rs-2286334, 2022.

[12] Lei Zhang and Mu He. Unsupervised machine learning for solar cell materials from the literature.
Journal of Applied Physics, 131(6), 2022.

[13] AJ Venkatakrishnan, Arjun Puranik, Akash Anand, David Zemmour, Xiang Yao, Xiaoying Wu,
Ramakrishna Chilaka, Dariusz K Murakowski, Kristopher Standish, Bharathwaj Raghunathan,
et al. Knowledge synthesis of 100 million biomedical documents augments the deep expression
profiling of coronavirus receptors. Elife, 9:e58040, 2020.

[14] Sumona Deb and Ashis Kumar Chanda. Comparative analysis of contextual and context-free
embeddings in disaster prediction from twitter data. Machine Learning with Applications,
7:100253, 2022.

[15] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. Biobert: a pre-trained biomedical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234–1240, 2020.

[16] Rishi Bommasani, Kelly Davis, and Claire Cardie. Interpreting pretrained contextualized
representations via reductions to static embeddings. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 4758–4781, 2020.

[17] Michael W Gaultois, Taylor D Sparks, Christopher KH Borg, Ram Seshadri, William D
Bonificio, and David R Clarke. Data-driven review of thermoelectric materials: performance
and resource considerations. Chemistry of Materials, 25(15):2911–2920, 2013.

[18] Amalie Trewartha, Nicholas Walker, Haoyan Huo, Sanghoon Lee, Kevin Cruse, John Dagdelen,
Alexander Dunn, Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Quantifying the
advantage of domain-specific pre-training on named entity recognition tasks in materials science.
Patterns, 3(4), 2022.

[19] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek,
Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav
Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr,
Felipe Petroski Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne
Jang, Peter Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training,
2022.

[20] Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In 2012 IEEE
international conference on acoustics, speech and signal processing (ICASSP), pages 5149–
5152. IEEE, 2012.

[21] Charles Spearman. The proof and measurement of association between two things. 1961.

[22] Matthew E Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. Dissecting contextual
word embeddings: Architecture and representation. arXiv preprint arXiv:1808.08949, 2018.

[23] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

[24] Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic
knowledge and transferability of contextual representations. arXiv preprint arXiv:1903.08855,
2019.

9



A Material Prediction by ChatGPT

Prompt:

Rank the following 84 materials based on their thermoelectric performance, with 1 being the highest-
performing material and 84 being the lowest-performing material. Consider factors such as electrical
conductivity, thermal conductivity, and the Seebeck coefficient when determining their thermoelectric
performance.
[’WO2.9’, ’In2O3’, ’Ni0.02Zn0.98O’, ..., ’Mn1.3Mo6S8’]

Answer from ChatGPT:

Ranking materials based on their thermoelectric performance can be a complex task and depends on
various factors, including electrical conductivity, thermal conductivity, and the Seebeck coefficient.
Since I don’t have access to the most up-to-date and specific thermoelectric performance data for
these materials, I can provide a general ranking based on the properties of common thermoelectric
materials. Keep in mind that this ranking may not be accurate for your specific application, as the
performance depends on various parameters and conditions.

Here’s a general ranking of the provided materials from 1 (highest thermoelectric performance) to 84
(lowest thermoelectric performance):

Bismuth Antimony Telluride (Bi2Te3)
Lead Telluride (PbTe)
Silicon-Germanium Alloy (Si0.8Ge0.2)
Zinc Antimonide (Zn4Sb3)
Strontium Titanium Niobium Oxide (SrTi0.8Nb0.2O3)
Bismuth Selenide (Bi2Se3)
Calcium Cobaltate (Ca3Co4O9)
Copper Selenide (Cu2Se)
Magnesium Silicide (Mg2Si)
Sodium Cobaltate (NaCo2O4)
Barium Strontium Titanate (Ba0.4Sr0.6TiO3)
Nickel-based Thermoelectric Materials (Ni0.02Zn0.98O, Ni2.0Mo6S8, Ni1.3Mo6S8)
Copper-based Thermoelectric Materials (Cu1.98Se, Cu4.0Mo6S8, Cu2Se)
Cerium-based Thermoelectric Materials (CeFe4Sb12, CeFe3CoSb12, CeFe3.5Co0.5Sb12)
Cobalt-based Thermoelectric Materials (Ca0.9Bi0.1MnO3, Ca0.9Ho0.1MnO3, Ca0.9Nd0.1MnO3,
LaCoO3)
Tl-Bi-Te Compound (Tl9BiTe6, Tl2SnTe5, Tl2GeTe5)
Zinc Oxide (ZnO, Zn0.95Al0.05O, Zn0.98Al0.02O, Zn0.99Al0.01O)
Titanium-based Thermoelectric Materials (Zr0.25Hf0.25Ti0.5NiSn, Zr0.98Nb0.02NiSn,
Zr0.5Hf0.5NiSn, ZrNiSn0.98Sb0.02, ZrNiSn, Zr0.35Hf0.35Ti0.3NiSn)
Copper-Chromium Oxides (CuCr0.97Mg0.03O2, CuCr0.98Mg0.02O2, CuCr0.95Mg0.05O2,
CuCrO2)
Perovskite Oxides (La0.98Sr0.02CoO3, La0.8Sr0.2CoO3, Sr0.9La0.1TiO3, Sr0.61Ba0.39Nb2O6,
Sr0.9Y0.1TiO3)
Rare Earth-based Thermoelectric Materials (Yb14MnSb11, Sm0.5Ca0.5MnO3, La1-xSrxCoO3,
La0.95Sr0.05CoO3, LaFe3CoSb12, LaFe3CoSb12)
Other Oxides (BaPbO3, Ba8Ga16Ge30, Ca2.7Bi0.3Co4O9, Ca3AlSb3, Ca2Co2O5,
Ca0.7Y0.3MnO3, CaMn0.98Nb0.02O3, CaMnO3)
Iron-based Thermoelectric Materials (Fe1.94Ti0.06O3, Fe1.3Mo6S8, Cr1.3Mo6S8, Mn1.3Mo6S8)
Other Compounds (Nd2CuO4, K2Bi8Se13, AgCrSe2, Mo3Te4)

Please note that this ranking is based on general knowledge of thermoelectric materials and properties
as of my last update in September 2021. For specific applications or the most up-to-date information,
it’s essential to refer to recent research and literature on thermoelectric materials. Additionally, the
actual performance may vary depending on factors like temperature, doping, and material preparation
methods.
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Figure 4: Comparison of length of tokenized 84 material names by different tokenizer

B Comparison of BERT tokenizer and MatBERT tokenizer

C Detailed Ranking Prediction

Table 2: Comparison of 79-material ranking by original experimental
results and MatBERT (third-layer, context-average)

Rank Experiment MatBERT
1 Cu2Se Bi2Te3
2 In0.25Co4Sb12 Sb2Te3
3 Zr0.25Hf0.25Ti0.5NiSn Cu2Se
4 Ba8Ga16Ge30 Cu1.98Se
5 NaCo2O4 CeFe4Sb12
6 Tl0.02Pb0.98Te Tl9BiTe6
7 In0.2Co4Sb12 LaFe3CoSb12
8 Na0.02Pb0.98Te Tl2GeTe5
9 Zn4Sb3 Mo3Te4
10 Ag9TlTe5 Yb14MnSb11
11 Zr0.35Hf0.35Ti0.3NiSn ZrNiSn
12 Cu1.98Se Bi2Sr2Co2O8
13 Bi2Sr2Co2O8 CeFe3CoSb12
14 Ca2Co2O5 Na0.02Pb0.98Te
15 Tl9BiTe6 TiNiSn
16 Bi2Te3 ZrNiSn0.98Sb0.02
17 AgCrSe2 AgCrSe2
18 Ca3Co4O9 K2Bi8Se13
19 Sr0.61Ba0.39Nb2O6 Tl0.02Pb0.98Te
20 In0.1Co4Sb12 Zr0.98Nb0.02NiSn
21 Mg2Si0.98Bi0.02 In0.1Co4Sb12
22 Tl0.01Pb0.99Te Ag9TlTe5
23 LaFe3CoSb12 In0.2Co4Sb12
24 Si0.8Ge0.2 Zr0.35Hf0.35Ti0.3NiSn
25 Yb14MnSb11 CeFe3.5Co0.5Sb12
26 CeFe3CoSb12 Tl0.01Pb0.99Te
27 CeFe4Sb12 NbCoSn
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28 Zr0.98Nb0.02NiSn SrTi0.8Nb0.2O3
29 Zr0.5Hf0.5NiSn Zr0.5Hf0.5NiSn
30 Mg2Si In0.25Co4Sb12
31 ZrNiSn Zr0.25Hf0.25Ti0.5NiSn
32 Cu4.0Mo6S8 La0.95Sr0.05CoO3
33 TiNiSn LaCoO3
34 Ba0.3Sr0.6La0.1TiO3 In1.8Ge0.2O3
35 SrTi0.8Nb0.2O3 Zn4Sb3
36 In1.8Ge0.2O3 KBi6.33S10
37 Ca2.7Bi0.3Co4O9 La0.8Sr0.2CoO3
38 In1.985Ge0.015O3 CaMn0.98Nb0.02O3
39 Zn0.95Al0.05O CaMnO3
40 Zn0.98Al0.02O Ca5Al2Sb6
41 Sr0.9La0.1TiO3 Si0.8Ge0.2
42 Cr1.3Mo6S8 Mg2Si0.98Bi0.02
43 Sb2Te3 Sr0.9La0.1TiO3
44 Sr0.9Y0.1TiO3 Fe1.3Mo6S8
45 CuRh0.9Mg0.1O2 In1.985Ge0.015O3
46 ZrNiSn0.98Sb0.02 Mn1.3Mo6S8
47 CaMn0.98Nb0.02O3 Ni2.0Mo6S8
48 Ca0.9Yb0.1MnO3 Sr0.9Y0.1TiO3
49 NbCoSn In2O3
50 Mn1.3Mo6S8 Ba0.3Sr0.6La0.1TiO3
51 CeFe3.5Co0.5Sb12 NaCo2O4
52 WO2.9 CaMn0.96Ru0.04O3
53 Fe1.3Mo6S8 Nd2CuO4
54 Ca0.9Bi0.1MnO3 Sm0.5Ca0.5MnO3
55 CaMnO3 CuCr0.97Mg0.03O2
56 Ca0.9Ho0.1MnO3 Cr1.3Mo6S8
57 Zn0.99Al0.01O Ca2.7Bi0.3Co4O9
58 In2O3 CuCr0.95Mg0.05O2
59 CaMn0.96Ru0.04O3 Ca0.9Yb0.1MnO3
60 WO2.722 Sr0.61Ba0.39Nb2O6
61 Ca5Al2Sb6 Cu4.0Mo6S8
62 La0.95Sr0.05CoO3 Mg2Si
63 CuCr0.97Mg0.03O2 Ca0.9Bi0.1MnO3
64 Ni2.0Mo6S8 CuCr0.98Mg0.02O2
65 CuCr0.95Mg0.05O2 Ca3Co4O9
66 Ca0.9Nd0.1MnO3 CuRh0.9Mg0.1O2
67 BaPbO3 Zn0.98Al0.02O
68 K2Bi8Se13 Ca0.9Nd0.1MnO3
69 Mo3Te4 Zn0.95Al0.05O
70 CuCr0.98Mg0.02O2 CuCrO2
71 Tl2GeTe5 Ni0.02Zn0.98O
72 Nd2CuO4 Ba8Ga16Ge30
73 La0.8Sr0.2CoO3 BaPbO3
74 CuCrO2 Ca0.9Ho0.1MnO3
75 Sm0.5Ca0.5MnO3 WO2.9
76 ZnO WO2.722
77 LaCoO3 Zn0.99Al0.01O
78 KBi6.33S10 ZnO
79 Ni0.02Zn0.98O Ca2Co2O5

Table 3: Comparison of 84-material ranking by original experimental
results and GPT embedding

Rank Experiment GPT Embedding
1 Cu2Se Tl0.01Pb0.99Te
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2 In0.25Co4Sb12 Tl0.02Pb0.98Te
3 Zr0.25Hf0.25Ti0.5NiSn Sb2Te3
4 Ba8Ga16Ge30 Tl2GeTe5
5 NaCo2O4 Tl2SnTe5
6 Tl0.02Pb0.98Te Bi2Te3
7 In0.2Co4Sb12 SrTi0.8Nb0.2O3
8 Na0.02Pb0.98Te TiNiSn
9 Zn4Sb3 Sr0.9Y0.1TiO3
10 Zr0.35Hf0.35Ti0.3NiSn Mo3Te4
11 Cu1.98Se Na0.02Pb0.98Te
12 Bi2Sr2Co2O8 Ni2.0Mo6S8
13 Ca2Co2O5 Zr0.5Hf0.5NiSn
14 Tl9BiTe6 Zr0.98Nb0.02NiSn
15 Bi2Te3 Cu1.98Se
16 AgCrSe2 Sr0.9La0.1TiO3
17 Ca3Co4O9 ZrNiSn
18 Sr0.61Ba0.39Nb2O6 Cu2Se
19 In0.1Co4Sb12 Mg2Si
20 Mg2Si0.98Bi0.02 Zr0.35Hf0.35Ti0.3NiSn
21 Tl0.01Pb0.99Te In1.8Ge0.2O3
22 LaFe3CoSb12 Fe1.3Mo6S8
23 Si0.8Ge0.2 In2O3
24 Yb14MnSb11 Fe1.94Ti0.06O3
25 CeFe3CoSb12 ZrNiSn0.98Sb0.02
26 CeFe4Sb12 In1.985Ge0.015O3
27 Zr0.98Nb0.02NiSn Zr0.25Hf0.25Ti0.5NiSn
28 Zr0.5Hf0.5NiSn Si0.8Ge0.2
29 Mg2Si K2Bi8Se13
30 ZrNiSn Cr1.3Mo6S8
31 Cu4.0Mo6S8 Ba8Ga16Ge30
32 TiNiSn Cu4.0Mo6S8
33 Ba0.3Sr0.6La0.1TiO3 Bi2Sr2Co2O8
34 SrTi0.8Nb0.2O3 CuCrO2
35 In1.8Ge0.2O3 Tl9BiTe6
36 Ca2.7Bi0.3Co4O9 BaPbO3
37 In1.985Ge0.015O3 Zn4Sb3
38 Zn0.95Al0.05O Nd2Cu0.98Ni0.02O4
39 Zn0.98Al0.02O Mn1.3Mo6S8
40 Sr0.9La0.1TiO3 Ca0.9Yb0.1MnO3
41 Cr1.3Mo6S8 Ba0.4Sr0.6PbO3
42 Sb2Te3 Ni0.02Zn0.98O
43 Sr0.9Y0.1TiO3 Zn0.99Al0.01O
44 CuRh0.9Mg0.1O2 Mg2Si0.98Bi0.02
45 ZrNiSn0.98Sb0.02 Ba0.3Sr0.6La0.1TiO3
46 CaMn0.98Nb0.02O3 In0.2Co4Sb12
47 Ba0.4Sr0.6PbO3 In0.25Co4Sb12
48 Ca0.9Yb0.1MnO3 In0.1Co4Sb12
49 NbCoSn LaCoO3
50 Mn1.3Mo6S8 Nd2CuO4
51 CeFe3.5Co0.5Sb12 AgCrSe2
52 WO2.9 Ca0.7Y0.3MnO3
53 Fe1.3Mo6S8 Ca3AlSb3
54 Ca0.9Bi0.1MnO3 Sr1.6La0.4Nb2O7
55 Ca3AlSb3 CeFe4Sb12
56 CaMnO3 ZnO
57 Ca0.9Ho0.1MnO3 La0.98Sr0.02CoO3
58 Zn0.99Al0.01O Yb14MnSb11
59 In2O3 Zn0.98Al0.02O
60 Tl2SnTe5 CeFe3CoSb12
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61 WO2.722 WO2.9
62 Ca5Al2Sb6 Sr0.61Ba0.39Nb2O6
63 La0.95Sr0.05CoO3 CeFe3.5Co0.5Sb12
64 CuCr0.97Mg0.03O2 Zn0.95Al0.05O
65 Fe1.94Ti0.06O3 La0.8Sr0.2CoO3
66 Ni2.0Mo6S8 Ca5Al2Sb6
67 Sr1.6La0.4Nb2O7 LaFe3CoSb12
68 CuCr0.95Mg0.05O2 Sm0.5Ca0.5MnO3
69 Ca0.7Y0.3MnO3 CaMnO3
70 Ca0.9Nd0.1MnO3 Ca2Co2O5
71 BaPbO3 La0.95Sr0.05CoO3
72 K2Bi8Se13 Ca0.9Bi0.1MnO3
73 La0.98Sr0.02CoO3 NaCo2O4
74 Mo3Te4 NbCoSn
75 CuCr0.98Mg0.02O2 WO2.722
76 Tl2GeTe5 CaMn0.98Nb0.02O3
77 Nd2CuO4 Ca0.9Nd0.1MnO3
78 La0.8Sr0.2CoO3 Ca0.9Ho0.1MnO3
79 Nd2Cu0.98Ni0.02O4 CuRh0.9Mg0.1O2
80 CuCrO2 Ca2.7Bi0.3Co4O9
81 Sm0.5Ca0.5MnO3 CuCr0.97Mg0.03O2
82 ZnO CuCr0.98Mg0.02O2
83 LaCoO3 CuCr0.95Mg0.05O2
84 Ni0.02Zn0.98O Ca3Co4O9
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