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Abstract

Complex multi-hop question answering re-001
quires large language models (LLMs) not only002
to retrieve external knowledge but also to rea-003
son over the retrieved information in order to004
arrive at the final solution. This involves two005
key challenges: (i) how to effectively explore006
the solution space and generate more poten-007
tially correct solution candidates, and (ii) how008
to select the optimal solution from multiple009
solution candidates, both of which require a010
training-free approach without introducing a011
more powerful teacher model. To address these012
challenges, we propose Retrieval-Augmented013
Monte Carlo Tree Self-Play with Reasoning014
Consistency (RASPberry), which introduces015
a more flexible action-level sampling granular-016
ity compared to existing methods, leverages017
Monte Carlo Tree Search (MCTS) for effi-018
cient solution space exploration, and utilizes019
an enhanced version of reasoning consistency020
to guide the selection of the optimal solution.021
Experimental results demonstrate that RASP-022
berry effectively tackles the aforementioned023
two challenges, achieving more efficient RAG024
inference-time scaling. Our code is available at025
https://github.com/NLP-LEE/RASPberry.026

1 Introduction027

Retrieval-Augmented Generation (RAG) (Fan et al.,028

2024) enables Large Language Models (LLMs)029

(Brown et al., 2020) to incorporate external doc-030

ument knowledge during the question-answering031

(QA) process, significantly enhancing the perfor-032

mance of LLMs in single-hop QA. However, more033

complex multi-hop QA (Yang et al., 2018; Ho et al.,034

2020) presents greater challenges for LLMs. It re-035

quires LLMs to not only identify relevant knowl-036

edge from multiple documents but also to perform037

reasoning based on it to derive the correct response.038

Although a more powerful reasoner can currently039

be trained through reinforcement learning (RL) to040

extend reasoning capabilities with RAG (Guo et al.,041
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Figure 1: The F1 score achieved in multi-hop QA.
Our RASPberry consistently achieves significant perfor-
mance improvements across all datasets and models.

2025), applying RL itself involves high complexity 042

and requires substantial computational resources. 043

As a result, the community is increasingly focus- 044

ing on a complementary and challenging problem: 045

how to achieve effective inference-time scaling 046

with RAG on a smaller LLM in a training-free 047

way, without the need for stronger teacher model 048

supervision, to address complex multi-hop QA 049

tasks. Specifically, two key challenges need to be 050

addressed to achieve this goal: 051

First, thoroughly exploring the solution space 052

to generate the correct candidate solutions. Al- 053

though current approaches combine chain-like 054

(Wei et al., 2022) or tree-like (Zhang et al., 2024d) 055

thinking structures with retrieval mechanisms, 056

along with multiple sampling strategies (Wang 057

et al., 2023), to achieve inference-time scaling in 058

RAG scenarios, these methods still face significant 059

limitations. Specifically, due to the constraints of 060

chain-like thinking structures, the model’s solution 061

paths often get trapped in local optima. While 062

tree-like structures offer more flexibility in solu- 063

tion exploration, traditional tree structures struggle 064
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Method #Action Re-Retrieval Sample Granularity ⊕ Final Selection

RAG-CoT (Wei et al., 2022) 2 ✗
+Beam: Token-Level ⊕ Log-Likelihood

RQ-RAG (Chan et al., 2024) 4 ✗
+BoN: Sequence-Level ⊕ Log-Likelihood

Self-RAG (Asai et al., 2024) 3 ✗
+SC: Sequence-Level ⊕ Answer Consistency

IRCoT (Trivedi et al., 2023) 3 ✓

RATT (Zhang et al., 2024d) 5 ✓ Sequence-Level ⊕ Correction & Integration

RASPberry (Ours) 7 ✓ Action-Level ⊕ Reasoning Consistency

Table 1: Comparison between the related top-notch baseline methods and our proposed RASPberry.

to evaluate all possible solution paths when faced065

with complex problems (Zhang et al., 2024e). In066

other words, neither approach is effective or effi-067

cient in thoroughly exploring the solution space.068

Although recent work has introduced Monte Carlo069

Tree Search (MCTS) (Browne et al., 2012) to guide070

the exploration of the solution space (Zhang et al.,071

2024b; Qi et al., 2024), these methods do not072

consider the actions required to integrate external073

knowledge, and thus lack a suitable action set for074

search tree expansion in RAG scenarios.075

Second, accurately determining the correct076

solution from the collection of generated can-077

didate solutions. Without additional training or078

stronger teacher model supervision, smaller LLMs’079

self-scoring tends to be nearly random, leading080

to failures of self-reward methods such as self-081

verification (Weng et al., 2023). Moreover, since082

smaller LLMs are more likely to produce incor-083

rect solutions during multiple sampling attempts,084

this also results in the failure of self-consistency085

methods. Although the reasoning consistency (Qi086

et al., 2024) alleviates this issue by considering the087

consistency of the reasoning process rather than088

just the answer, its design is tailored for scenarios089

that do not rely on external document support. As090

such, it is not fully applicable in RAG scenarios,091

as it does not take into account the need to ensure092

that the external documents supporting reasoning093

remain consistent when computing consistency.094

To address the two challenges, we propose095

Retrieval-Augmented Monte Carlo Tree Self-Play096

with Reasoning Consistency (RASPberry). Specif-097

ically, RASPberry consists of two components,098

each targeting one of the challenges: (i) Retrieval-099

Augmented Monte Carlo Tree Self-Play enables100

sufficient exploration of the solution space in101

RAG scenarios by integrating the MCTS algorithm,102

which generates a broader set of potentially correct103

candidate solutions; (ii) Retrieval-Retained Rea-104

soning Consistency is used to filter the candidate 105

solution paths obtained in (i), selecting the optimal 106

solution path as the final answer. 107

As shown in Figure 1, without the need for ad- 108

ditional training costs or a stronger teacher model, 109

RASPberry achieves stable and significant improve- 110

ments across three mainstream small LLMs (Bai 111

et al., 2023; Yang et al., 2024; Dubey et al., 2024) 112

and two complex multi-hop question answering 113

datasets (Yang et al., 2018; Ho et al., 2020), en- 114

abling effective inference-time scaling in RAG sce- 115

narios that require external document knowledge. 116

2 Related Work 117

RAG for Multi-Hop Question Answering. 118

Multi-hop question answering (QA) (Yang et al., 119

2018; Ho et al., 2020) presents a greater challenge 120

to the capabilities of LLMs. For example, consider 121

the question: “Which genus of flowering plant is 122

found in an environment further south, Crocosmia 123

or Cimicifuga?” This requires first retrieving doc- 124

uments containing information about Crocosmia 125

and Cimicifuga, then identifying their respective 126

locations, and subsequently reasoning based on 127

geographic information to draw a conclusion. In 128

other words, LLMs cannot directly answer based 129

on the documents alone but must perform a degree 130

of reasoning on top of this information. 131

Existing methods facilitate reasoning over re- 132

trieved documents by iteratively combining RAG 133

with the Chain-of-Thought (CoT) process (Trivedi 134

et al., 2023). Additionally, some works focus on 135

query rewriting and query decomposition prior to 136

retrieval to expand the range of retrieved docu- 137

ments (Chan et al., 2024). Meanwhile, Asai et al. 138

(2024) proposed a self-reflection mechanism for 139

post-reasoning self-correction. Furthermore, re- 140

cent research has explored the combination of tree- 141

like reasoning structures with RAG (Zhang et al., 142

2024d) to further enhance the flexibility of solu- 143
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tion space exploration. However, unguided path144

exploration becomes highly challenging when the145

solution path is too complex. Moreover, the limited146

set of executable actions increases the risk of the147

solution path getting trapped in local optima.148

As shown in Table 1, we propose RASPberry,149

which utilizes Monte Carlo Tree Search (MCTS)150

algorithm. Compared to traditional chain-like and151

tree-like reasoning, MCTS offers more flexible152

action-level sampling granularity and can estimate153

the potential reward of the current path based on154

simulation results to guide path exploration. Ad-155

ditionally, we integrate all of the key RAG mech-156

anisms mentioned above into the MCTS process,157

resulting in a richer action set that further expands158

the search space. We also introduce a final path159

selection method to identify the optimal solution,160

resulting in a more effective inference-time scaling.161

Inference-Time Scaling for Reasoning. Recent162

works primarily guide the optimization and expan-163

sion of reasoning paths in LLMs by combining164

a reward model aligned with human preferences165

(Xie et al., 2024; Zhang et al., 2024a; Chen et al.,166

2024a; Zhang et al., 2024c). However, this in-167

troduces additional training costs. Alternatively,168

some approaches employ MCTS methods for self-169

refinement (Zhang et al., 2024b) or self-play (Qi170

et al., 2024), enabling inference-time scaling in an171

inference-only manner. However, the designs of172

these works are focused on scenarios where only173

the model’s internal parameterized knowledge is174

used for solving, such as mathematical reasoning175

or commonsense reasoning. Since these models do176

not have the ability to access external document177

knowledge, they fail to effectively adapt to the com-178

plex multi-hop QA scenarios in RAG.179

In this work, we propose RASPberry, which in-180

troduces a rich and comprehensive action set tai-181

lored for RAG scenarios, used for tree expansion182

during the MCTS process. This enables an inte-183

gration of the RAG mechanism with the MCTS184

reasoning structure, allowing the LLM to not only185

leverage its internal parameterized knowledge for186

reasoning but also flexibly utilize external retrieved187

documents to provide supportive information.188

3 Preliminary189

We introduce the mechanism of Monte Carlo Tree190

Search (MCTS) (Browne et al., 2012), which is es-191

sential for understanding our proposed RASPberry.192

MCTS is a decision-making algorithm widely ap-193

plied in games and complex decision-making pro- 194

cesses, which builds a search tree based on a pre- 195

defined set of actions and simulates possible out- 196

comes to estimate the value of each action. Typi- 197

cally, the MCTS comprises four key phases: 198

Selection: Starting from the root, the algorithm 199

navigates through promising child nodes based on 200

specific strategies (e.g., Upper Confidence Bound 201

applied to Trees, UCT), continuing until it reaches 202

a leaf node. The UCT is calculated as follows: 203

UCT (s, a) =
Q(s, a)

N(s, a)
+ c

√
lnNparent(s)

N(s, a)
, (1) 204

where Q(s, a) and N(s, a) denote the estimated 205

value and visit count of node s under action a, re- 206

spectively (initialized to 0), while Nparent(s) rep- 207

resents the visit count of s’s parent node. c is a 208

constant that balances exploitation and exploration, 209

which is empirically set to 2 in this work. Specif- 210

ically, if a node has no children, the node itself is 211

selected. If a node has children but not all have 212

been explored, an unexplored child is randomly 213

selected. If all children have been explored, the 214

child with the maximum UCT score is selected. 215

Expansion: At the leaf node, if it does not repre- 216

sent a terminal state (e.g., reaching the maximum 217

depth or arriving at the final solution), feasible child 218

nodes are added based on the current node’s action 219

set to represent potential future moves. 220

Simulation: From the newly added node, the 221

algorithm performs random simulations (often 222

termed rollouts), arbitrarily selecting moves until 223

the game reaches its terminal state, thereby evalu- 224

ating the node’s potential (estimated value Q). 225

Backpropagation: After the simulation, the 226

value of the terminal node (calculated based on 227

a custom reward function) is propagated back to 228

the root, updating the statistical data (visit counts 229

N , estimated values Q) of all visited nodes during 230

the simulation to guide future decisions. 231

Through iterative execution of these stages, 232

MCTS incrementally builds a decision tree, op- 233

timizing strategies in scenarios where the vast state 234

space makes direct computation infeasible. 235

4 RASPberry 236

As shown in Figure 2, our proposed RASP- 237

berry consists of two main components: Retrieval- 238

Augmented Monte Carlo Tree Self-Play (RA-MCT 239
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Retrieval-Augmented Monte Carlo Tree Self-Play Retrieval-Retained Reasoning Consistency

Selection Expansion Simulation Backpropagation

Repeated N times Question: What type of sport does Sergio Casal and Manuel Orantes have in common? 

Candidate Solution: 

Masked Solution: 

Record Candidate 
Solution Paths

(b) 

(a) MCTS with RAG 

<Rephrased Question> <Subquestions> <Retrieved Documents>

<Rephrased Question> <Subquestions> <Retrieved Documents>

To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have experience in tennis.  <Answer> Tennis </Answer>

To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have experience in tennis.  <Answer> Tennis </Answer>

Completed Solution 1: <Rephrased Question> <Subquestions> <Retrieved Documents>
To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have baseball in common.  <Answer> Baseball </Answer> 

Completed Solution 2: <Rephrased Question> <Subquestions> <Retrieved Documents>
To answer the question, through document analysis, we derive: ... both Sergio Casal and
Manuel Orantes have tennis in common.  <Answer> Tennis </Answer>  

Inconsistent

Consistent

Nodes on the current path
Newly expanded node
Simulated answer node

...

...

...

...

Figure 2: Our proposed RASPberry consists of Retrieval-Augmented Monte Carlo Tree Self-Play (left) for solution
candidates generation and Retrieval-Retained Reasoning Consistency (right) for final solution discrimination.

Self-Play in §4.1) for solution space exploration240

and generation of candidate reasoning paths, and241

Retrieval-Retained Reasoning Consistency (RR-242

RC in §4.2) for optimal final path selection.243

4.1 Retrieval-Augmented MCT Self-Play244

As shown in Figure 2 (left) (a), we tightly inte-245

grate the MCTS in §3 with RAG, where each tree246

node represents the response generated by the LLM247

given all previously generated content along the248

current path after executing a specific action, serv-249

ing as a unit in constructing the overall solution250

path. The details are as follows:251

Reasoning Actions in the RAG Setting. In order252

to make the MCTS algorithm more adaptable to253

the RAG setting, we design a comprehensive action254

set that incorporates nearly all the key concepts of255

RAG for constructing the search tree. Specifically,256

the action set consists of seven actions, which are:257

258

◦ A1: Query decomposition (Zhou et al., 2023).259

◦ A2: Query rephrasing (Ma et al., 2023).260

◦ A3: Document retrieval (Ram et al., 2023).261

◦ A4: Document analysis (Wei et al., 2022).262

◦ A5: Answer extraction (Wei et al., 2022).263

◦ A6: Critical rethinking (Asai et al., 2024).264

◦ A7: Document re-retrieval (Trivedi et al., 2023).265

266

{A1, A2} are query optimization actions, aimed at267

enhancing query understanding and improving the268

retrieval of relevant documents by decomposing269

the query into multiple subqueries or rephrasing270

it in different ways. {A3, A7} are actions for271

document retrieval, with A7 differing from A3 in272

requiring an assessment of the need for further273

retrieval and the construction of a follow-up query274

based on existing information before execution.275

{A4, A5, A6} are reasoning and analysis actions 276

based on the retrieved documents, incorporating 277

self-reflection for error correction and ultimately 278

extracting an answer that addresses the user query. 279

Based on these, we define the action set A = 280

{A1, A2, A3, A4, A5, A6, A7}. At each step i, 281

MCTS executes an action ai from A. We then use 282

ai to prompt the LLM to generate the next node 283

state si, based on the previously generated solution 284

path r⊕s1⊕s2⊕ ...⊕si−1, where r represents the 285

root, i.e., the user query, and s represents the rea- 286

soning steps (node states) generated by the LLM. 287

Additionally, it is important to note that certain ac- 288

tions require partial orders. For example, {A6, A7} 289

can only happen after A4, and {A4, A5} can only 290

happen after A3. More details on action-related 291

prompts can be found in Appendix B. 292

MCTS Reward Function. For the calculation 293

of the estimated value Q of each node, we adopt 294

a method similar to that used in AlphaGo (Silver 295

et al., 2017), scoring each intermediate node based 296

on its contribution to the final correct answer. That 297

is, actions that more frequently lead to the correct 298

answer are given higher scores, making them more 299

likely to be selected during the tree expansion. 300

During the simulation, when a valid answer node 301

is reached, we score the answer node using Self- 302

Consistency (SC) (Wang et al., 2023). Specifically, 303

we sample M candidate answers and choose the 304

most frequent answer as the final answer for the 305

current path. The estimated value of the answer 306

node sd is given by Q(sd, ad) = m/M , where 307

m is the count of the most frequent answer. This 308

score is then backpropagated along the solution 309

path P = r ⊕ s1 ⊕ s2 ⊕ ... ⊕ sd, meaning the 310

score of each intermediate node si is updated as 311

Q(si, ai) = Q(si, ai) +Q(sd, ad). 312
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Solution Space Exploration with MCTS Rollout.313

Starting from the root node r (the user query), we314

iteratively explore solution space by following the315

MCTS procedure outlined in §3, performing multi-316

ple rounds of simulation (rollout) to achieve more317

accurate node value estimations. When the search318

reaches a terminal node (either the answer node or319

the maximum tree depth), we obtain a solution path320

from the root node r to the terminal node sd.321

However, while traditional MCTS selects one322

path as the final solution based on a specific met-323

ric (Browne et al., 2012), defining a reliable single324

metric to select a solution path that contains the325

correct answer is challenging without incurring326

additional training costs (Qi et al., 2024). There-327

fore, as shown in Figure 2 (left) (b), we collect328

all valid paths (paths containing the answer node)329

generated during the MCTS rollout as candidate330

solution paths. Subsequently, an additional valida-331

tion process (in §4.2) is applied to filter the final332

path, significantly reducing the difficulty for small333

LLMs in selecting the optimal solution path.334

4.2 Retrieval-Retained Reasoning Consistency335

Inspired by the Reasoning Consistency (RC) in336

rStar (Qi et al., 2024), we propose Retrieval-337

Retained Reasoning Consistency (RR-RC) to better338

adapt to the RAG setting. Unlike RC, which ran-339

domly selects a reasoning step to begin masking,340

RR-RC ensures that, after masking, the retrieved341

documents in the remaining solution path provide342

sufficient information to support subsequent rea-343

soning steps, as illustrated in Figure 2 (right).344

Specifically, for solution path P = [r ⊕ s1 ⊕345

s2...⊕ sk]⊕ ...⊕ sd, we mask the reasoning steps346

starting from a randomly selected step i (i < d),347

which is behind the last document retrieval step348

(i > k). And the content before the last document349

retrieval step k is kept unchanged to ensure that350

the necessary retrieved information accessible to351

the model is retained. Subsequently, we provide352

masked solution path Pmasked = [r⊕ s1 ⊕ s2...⊕353

sk] ⊕ ... ⊕ si−1 as prior information to the LLM354

to complete the subsequent reasoning steps. As355

shown in Figure 2 (right), we compare the gen-356

erated answer after completion with the original357

answer. If they are consistent, we consider the358

solution path to be a valid path for final selection.359

To improve efficiency, unlike the peer discrimi-360

nation mechanism introduced by rStar (which re-361

quires extra effort to select a model with similar362

capabilities), RR-RC uses the same model for self-363

discrimination as the one used to generate the solu- 364

tion paths. Additionally, during the completion 365

process in RR-RC, we introduce the Best-of-N 366

Sampling (BoN) mechanism to encourage the com- 367

pletion of more diverse solution paths. The under- 368

lying intuition is that, in the absence of a teacher 369

providing feedback, one can self-verify by adopt- 370

ing different reasoning approaches while given a 371

predefined solution path. If the same answer can 372

be obtained through different reasoning paths, we 373

can consider the answer more likely to be correct, 374

without the need for peer verification from others. 375

Final Solution Path Selection. After applying 376

RR-RC to all candidates, we compute the final 377

score of each solution path in the filtered solution 378

paths by integrating its reward with the estimated 379

value of the answer node obtained from rollouts. 380

Specifically, given the filtered answer set Af after 381

applying RR-RC and the unfiltered answer set Au 382

before its application, we compute the final score 383

R(ans) of each answer ans in Af as: 384

R(ans) = Q(ans) +
Nf (ans)

Nu(ans)
, (2) 385

where Nf (ans) and Nu(ans) represent the fre- 386

quency of ans in Af and Au, respectively. We 387

posit that answers retained to a greater extent af- 388

ter RR-RC filtering are more likely to be correct. 389

Q(ans) denotes the estimated value of answer ans 390

during simulation. Finally, we select the solution 391

path corresponding to the answer with the highest 392

final score R as the final solution path. 393

5 Experiments 394

In this work, we select three mainstream small 395

LLMs, namely LLaMA-3.1-8B-Instruct (Dubey 396

et al., 2024), Qwen-2.5-7B-Instruct (Yang et al., 397

2024), and Qwen-2-7B-Instruct (Bai et al., 398

2023). Additionally, we choose two commonly 399

used knowledge-intensive multi-hop QA datasets, 400

namely HotpotQA (Yang et al., 2018) and 2Wiki- 401

MultiHopQA (2WikiQA) (Ho et al., 2020), both 402

of which are based on wiki documents. We divide 403

the supporting documents in the dataset by their 404

respective topics, embed them into text vectors us- 405

ing a mainstream dense retriever (BGE-M3 (Chen 406

et al., 2024b)), and then use FAISS (Douze et al., 407

2024) to maintain a local vector database for re- 408

trieval. Furthermore, we include a wide range of 409

baseline methods for comparison, categorized into 410

single-round and multi-round RAG baselines: 411
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Dataset Method
LLaMA-3.1-8B-Ins Qwen-2.5-7B-Ins Qwen-2-7B-Ins

P R F1 P R F1 P R F1

HotpotQA

RAG-CoT 38.42 51.77 38.55 41.54 42.77 41.06 39.33 39.92 38.84
RQ-RAG 34.97 36.92 34.63 32.50 31.20 31.23 41.56 42.24 41.01
Self-RAG 28.57 30.00 28.99 29.60 28.27 28.59 28.18 29.33 27.55
IRCoT 37.32 39.93 37.24 39.78 40.35 39.42 44.66 46.42 44.35
RATT 58.72 60.89 58.29 18.98 19.77 18.87 13.92 15.18 14.34
RASPberry (Ours) 70.54 69.44 68.89 59.98 65.43 60.51 56.69 60.72 56.85

2WikiQA

RAG-CoT 20.33 20.13 20.04 24.97 25.67 25.26 23.27 23.62 23.39
RQ-RAG 26.67 27.17 26.60 25.50 25.00 25.07 27.68 28.78 28.02
Self-RAG 14.40 15.47 14.72 17.42 18.03 17.56 14.75 15.03 14.87
IRCoT 31.63 31.07 31.13 34.67 37.32 35.21 27.77 29.17 27.75
RATT 34.70 35.50 34.35 15.23 15.90 15.07 13.49 15.38 14.06
RASPberry (Ours) 45.00 44.83 44.87 52.07 56.37 53.25 35.19 36.23 35.27

Table 2: Overall performance comparison, P represents precision, while R represents recall.

(a) Single-Round RAG Baselines. (i) RAG-CoT,412

which is RAG combined with naive CoT (Wei et al.,413

2022). (ii) RQ-RAG (Chan et al., 2024), which414

adds query rewriting and subquery decomposition.415

(iii) Self-RAG (Asai et al., 2024), which incorpo-416

rates self-reflection for reasoning results.417

(b) Multi-Round RAG Baselines. (i) IRCoT418

(Trivedi et al., 2023), which enables iterative in-419

terleaving of RAG and CoT. (ii) RATT (Zhang420

et al., 2024d), which integrates RAG with a tree-421

like structure (Tree-of-Thought (Yao et al., 2024)).422

It is important to note that for all methods in423

our experiments, we adopt a unified dense retrieval424

mechanism and set the number of returned docu-425

ments per retrieval to 4 by default. Design differ-426

ences and further implementation details are pro-427

vided in Table 1 and Appendix A.428

5.1 Main Results429

As shown in Table 2, we compare the performance430

of various baselines with our proposed RASPberry.431

Notably, except for RATT and RASPberry, which432

adopt a unique final path selection strategy, all other433

baselines employ the commonly used Best-of-N434

(BoN) strategy based on likelihood evaluation of435

generated sequences. Notably, except for RATT436

and RASPberry, which adopt a unique final path437

selection strategy, all other baselines employ the438

commonly used Best-of-N (BoN) strategy based439

on likelihood evaluation of generated sequences.440

Additionally, since RAG-CoT, RQ-RAG, and Self-441

RAG are all single-round RAG processes, we set442

their sampling sequence count to 3 (BoN@3) by443

default. On the other hand, IRCoT, RATT, and 444

RASPberry are multi-round RAG processes, so in 445

addition to setting their sampling count to 3, we 446

configure the number of RAG rounds/rollouts to 8. 447

It is worth noting that RASPberry consistently 448

outperforms the baseline across all datasets and 449

models. Although RATT, which incorporates tree- 450

like thinking structure, demonstrates superior per- 451

formance under certain experimental settings (us- 452

ing LLaMA-3.1-8B-Instruct on HotpotQA), even 453

in such cases, RASPberry achieves a 10.6 point 454

higher F1 score. Furthermore, RASPberry consis- 455

tently maintains a significant performance improve- 456

ment over RATT across all experimental settings. 457

5.2 Comparison of Sampling Strategies 458

Meanwhile, we also explore the use of alternative 459

sampling strategies, beyond BoN, for the remaining 460

baselines, specifically Beam Search (Beam) and 461

Self-Consistency (SC). As shown in Table 3, al- 462

though Beam Search, which applies a finer-grained 463

token-level sampling strategy, and SC, which clus- 464

ters answers based on semantic similarity, can al- 465

leviate some of the issues caused by the coarser 466

sequence-level sampling of BoN, token-level sam- 467

pling tends to get stuck in local optima. Further- 468

more, due to the capability limitations of small 469

LLMs, the correct answers obtained through sam- 470

pling are often in the minority, which leads to sub- 471

optimal performance with SC on small LLMs. 472

In contrast, our proposed RASPberry adopts 473

a more flexible action-level sampling granularity 474

(which lies between token-level and sequence-level, 475

with different actions having different preset output 476
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Method Beam@3 BoN@3 SC@3

LLaMA-3.1-8B-Ins
RAG-CoT 54.47 38.55 56.39
RQ-RAG 56.47 34.63 49.94
Self-RAG 47.15 28.99 42.81
IRCoT 56.70 37.24 43.23

RATT ———— 58.29 ————
RASPberry (Maj) ———— 66.27 ————
RASPberry (Ours) ———— 68.89 ————

Qwen-2.5-7B-Ins
RAG-CoT 49.42 41.06 51.94
RQ-RAG 52.31 31.23 49.11
Self-RAG 53.69 28.59 49.32
IRCoT 53.12 39.42 47.05

RATT ———— 18.87 ————
RASPberry (Maj) ———— 60.02 ————
RASPberry (Ours) ———— 60.51 ————

Table 3: Comparison with different sampling strategies
on HotpotQA. Maj represents (answer) majority vote.
All configurations are the same as those in Table 2.

lengths). Additionally, by integrating the MCTS al-477

gorithm, previously executed actions (stored as tree478

node states) can be reused in different subsequent479

actions, further extending the sampling scope of480

the solution space. Combined with RR-RC, which481

guides the final path selection by considering the482

solution paths’ validity, RASPberry consistently483

achieves superior performance compared to exist-484

ing methods that use various sampling strategies.485

5.3 Scaling Efficiency Analysis486

To validate the scalability advantage of our pro-487

posed RASPberry (i.e., analyzing whether the488

method can incorporate more correct candidate so-489

lutions as the number of samples increases), we490

configured different rollouts (reflecting the number491

of samples) and compared it with various scalable492

baselines. It is important to note that we only com-493

pared methods capable of multi-round retrieval,494

specifically IRCoT and RATT, to ensure that the re-495

trieved information is similarly scalable, avoiding496

issues related to insufficient external information in497

single-round RAG that could skew the comparison498

of their scalability. We measured the maximum499

achievable F1 score under ideal configurations (i.e.,500

selecting the optimal answer from the candidate501

solutions) as the number of rollouts increased. To502

evaluate the scalability, we fitted a linear model to503

the performance expansion and used the slope of504

the fitting line to quantify the scalability (a larger505
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Figure 3: Performance comparison on HotpotQA under
different number of rollouts. The dashed line represents
the linear fit, with the slope indicated.

slope indicates better scalability). 506

As shown in Figure 3, even with a relatively 507

low number of samples (2 rollouts), our proposed 508

RASPberry outperforms the baseline methods. Fur- 509

thermore, both variants of IRCoT (IRCoT-BoN 510

and IRCoT-SC) and RATT fail to achieve effective 511

scalability in reasoning, as they exhibit minimal 512

or even deteriorating performance with an increas- 513

ing number of rollouts (with slopes less than 1, or 514

even negative). In contrast, RASPberry demon- 515

strates effective and efficient scalability, achieving 516

a performance scaling slope greater than 2. This 517

confirms that our proposed RASPberry is able to 518

more thoroughly explore the solution space and is 519

less likely to get stuck in local optima. 520

5.4 The Effectiveness of RA-MCT Self-Play 521

To independently verify the effectiveness of RA- 522

MCT Self-Play in exploring the solution space 523

within RASPberry, we removed RR-RC, which 524

is responsible for final path selection, and instead 525

simply employed a majority vote mechanism to 526

select the most frequent answer from the candi- 527

date solutions. As shown in Table 3, even in this 528

scenario, our proposed method demonstrates non- 529

7



trivial performance improvement, confirming that530

RA-MCT Self-Play alone is capable of effectively531

exploring more correct answers as candidate solu-532

tions. However, it is important to note that applying533

our proposed, more tailored RR-RC further leads534

to a significant performance gain.535

Moreover, as shown in Figure 3, as the number536

of MCTS rollouts increases, RA-MCT Self-Play537

gradually explores more correct solutions, rather538

than being confined to local optima like other base-539

lines. This further demonstrates the effectiveness540

of RA-MCT Self-Play in RASPberry.541

Method (BoN+SC)@3 RR-RC (Ours)

LLaMA-3.1-8B-Ins
RAG-CoT 31.39 45.79
RQ-RAG 41.96 43.42
Self-RAG 28.53 35.39
IRCoT 40.31 52.89

Table 4: Performance of baselines with simple joint ef-
fect (BoN+SC) and our proposed RR-RC on HotpotQA.

5.5 The Effectiveness of RR-RC542

To independently verify the effectiveness of RR-543

RC, which is responsible for path selection in544

RASPberry, we first applied RR-RC to the baseline545

methods. As shown in Table 4, although our pro-546

posed RR-RC incorporates the evaluation strategies547

of BoN and SC, it differs from directly merging548

BoN and SC evaluations (where the total score,549

obtained by summing the scores from BoN and550

SC methods, is considered as the final evaluation551

score). RR-RC, on the other hand, integrates both552

the consistency and validity of reasoning paths553

into the evaluation criteria, ensuring that the final554

selected solution is more reliable. Compared to555

merely merging BoN and SC, RR-RC is able to556

select a more accurate final solution. However, it557

is important to note that, due to the inherent limita-558

tions in the exploration efficiency of the baselines’559

solution space, the RR-RC method may not directly560

yield significant advantages, as its evaluation still561

requires considering the confidence in the candi-562

date paths generated during the process.563

However, for our proposed RA-MCT Self-Play,564

which can effectively explore the solution space,565

combining it with the RR-RC method yields sig-566

nificant advantages. As shown in Table 5, we567

compared various mainstream solution selection568

methods and confirmed that, for small LLMs, the569

Model Discrimination F1

LLaMA-3.1-8B-Ins

Random Select 51.79
Majority Vote 66.27
Self-Verification 55.09
Self-Integration 16.95

RR-RC (Ours)
Self-Naive 64.75
Self-BoN 68.89
GPT-4o-Mini 70.39

Optimal 87.75

Table 5: Performance on HotpotQA with different final
solution selection methods (discriminator). Optimal
represents the performance upper bound achieved when
always selecting the optimal solution.

performance difference between Self-Verification 570

(which is based on self-scoring) and Random Se- 571

lect (which randomly chooses a candidate solution 572

as the final answer) is minimal. Additionally, when 573

we apply RR-RC without the BoN strategy, using 574

only a single sampled path to complete the reason- 575

ing process (Self-Naive) introduces a certain level 576

of randomness, leading to performance instability, 577

which is due to the inherent limitations of small 578

LLMs. However, when we use a stronger teacher 579

model as a discriminator, such as GPT-4o-Mini, 580

even without the BoN strategy, it can still select a 581

larger number of correct final solutions. It is worth 582

noting that when the BoN strategy is applied to RR- 583

RC on small LLMs (Self-BoN), the performance 584

achieved is comparable to that of using a stronger 585

model, further demonstrating the efficiency and 586

scalability of our proposed RR-RC method. 587

6 Conclusion 588

For complex multi-hop question answering, exist- 589

ing methods fail to ensure (i) effective exploration 590

of the solution space and (ii) correct selection of the 591

final solution. To address these challenges, we pro- 592

pose RASPberry. Compared to existing methods, 593

RASPberry uses a more flexible sampling granu- 594

larity, enabling more effective solution space ex- 595

ploration. Additionally, we adopts an enhanced 596

version of reasoning consistency tailored to the 597

RAG scenario, offering a more comprehensive final 598

solution selection. Overall, our proposed RASP- 599

berry achieves more effective and efficient RAG 600

inference-time scaling in a training-free manner, 601

without the need for a stronger teacher model. 602
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Limitations603

Although our proposed RASPberry achieves effec-604

tive and efficient inference-time scalability in multi-605

hop QA, due to computational limitations, we have606

only explored a training-free, inference-only design607

path. Future work could focus on treating MCTS608

as a automatic process for synthesizing long rea-609

soning chains, and then filtering out high-quality610

reasoning paths that align with human preferences.611

These solution paths could be used as preference612

data to fine-tune the LLM’s internal parameters via613

reinforcement learning, enabling the model to di-614

rectly generate the desired high-quality reasoning615

chains during inference. This would facilitate a616

more integrated and streamlined process.617

Ethical Considerations618

It is widely acknowledged that LLMs are capable619

of generating predictions that exhibit bias. This620

issue becomes especially pronounced when the in-621

put queries possess sensitive characteristics. In622

light of some potential issues, this study advocates623

for usage under research purposes. Appropriate624

care should thus be taken when applying such ap-625

proaches for any non-research purpose.626

In this study, our use of existing artifacts is627

consistent with their intended purposes. All the628

datasets and models used in this work are publicly629

available. Specifically, LLaMA-3.1-8B-Instruct630

have Llama 3.1 Community License Agreement1.631

Qwen-2.5-7B-Instruct, Qwen-2-7B-Instruct, Hot-632

potQA dataset, and 2WikiMultiHopQA (2WikiQA)633

dataset have Apache-2.0 license2.634
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A Implementation Details791

In this work, we set the default configurations of792

RASPberry as follows:793

Parameter Default Value

MCTS Configuration
Number of Rollouts 8
Max Tree Depth 10
MCTS Exploration Weight 2.0

LLM Configuration
Number of Votes 3
Temperature 0.8
Top-K 40
Top-P 0.95

Table 6: Default configurations of our RASPberry.

In the experiments, we used the following794

datasets: HotpotQA3 and 2WikiMultiHopQA4795

(2WikiQA). The LLMs employed are LLaMA-3.1-796

8B-Instruct5, Qwen-2.5-7B-Instruct6, and Qwen-2-797

7B-Instruct7. For all baseline methods, we set the798

model configurations identical to those in Table 6.799

For single-round RAG baselines, we set the round800

to 1. For multi-round RAG baselines, we set the801

round to 8, aligning with the number of rollouts in802

MCTS to ensure fairness.803

B Prompt Examples804

Since both the HotpotQA and 2WikiQA datasets805

are multi-hop question-answering datasets based806

on wiki knowledge, we construct a unified set of807

prompts for these datasets. For each action that808

requires generation by the LLM, we provide five809

demonstrations in the prompts. Specifically, the810

prompts for different actions are provided in the811

color boxes below.812

3https://hotpotqa.github.io
4https://github.com/Alab-NII/2wikimultihop
5https://huggingface.co/meta-llama/Llama-3.1-

8B-Instruct
6https://huggingface.co/Qwen/Qwen2.5-7B-Instr

uct
7https://huggingface.co/Qwen/Qwen2-7B-Instruc

t
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A1: Query Decomposition

Given an input question, decompose it into multiple smaller and indivisible sub-questions. The orig-
inal question will be enclosed in <Original Question> and </Original Question>. Corresponding
sub-questions should be enclosed in <Subquestions> and </Subquestions> tags.
<Question>
In what school district is Governor John R. Rogers High School, named after John Rankin Rogers,
located?
</Question>
<Subquestions>
1.Where is Governor John R. Rogers High School geographically located?
2.What is the name of the school district that includes Governor John R. Rogers High School?
</Subquestions>
<Question>
Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Question>
<Subquestions>
1.Which 44-lap race was won by a driver for the Red Bull Racing team?
2.Which Australian racing drivers are part of the Red Bull Racing team?
3.Which Australian racing driver, as part of the Red Bull Racing team, won the 44-lap race?
</Subquestions>
<Question>
What star of *Parks and Recreation* appeared in November?
</Question>
<Subquestions>
1.Which actors are considered stars of *Parks and Recreation*?
2.What event or appearance involving a star of *Parks and Recreation* occurred in November?
3.Which specific star of *Parks and Recreation* made an appearance in November?
</Subquestions>
<Question>
Which genus of flowering plant is found in an environment further south, Crocosmia or Cimicifuga?
</Question>
<Subquestions>
1.What are the typical environments where the genus Crocosmia is found?
2.What are the typical environments where the genus Cimicifuga is found?
3.Which environment, associated with Crocosmia or Cimicifuga, is located further south?
</Subquestions>
<Question>
In what year did the man who shot the Chris Stockley, of The Dingoes, die?
</Question>
<Subquestions>
1.Who was the man who shot Chris Stockley, a member of The Dingoes?
2.In what year did the man who shot Chris Stockley die?
</Subquestions>
<Question>
{User Query}
</Question>
<Subquestions>
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A2: Query Rephrasing

Given an input question, rephrase it into a more intuitive and easier-to-understand version. The
original question is enclosed within <Original Question> </Original Question> tags, and the corre-
sponding rephrased question is enclosed within <Rephrased Question> </Rephrased Question>
tags.
<Original Question>
In what school district is Governor John R. Rogers High School, named after John Rankin Rogers,
located?
</Original Question>
<Rephrased Question>
What school district is Governor John R. Rogers High School in?
</Rephrased Question>
<Original Question>
Which Australian racing driver won the 44-lap race for the Red Bull Racing team?
</Original Question>
<Rephrased Question>
Who is the Australian racing driver that won a 44-lap race for the Red Bull Racing team?
</Rephrased Question>
<Original Question>
What star of *Parks and Recreation* appeared in November?
</Original Question>
<Rephrased Question>
Which actor from *Parks and Recreation* made an appearance in November?
</Rephrased Question>
<Original Question>
Which genus of flowering plant is found in an environment further south, Crocosmia or Cimicifuga?
</Original Question>
<Rephrased Question>
Between Crocosmia and Cimicifuga, which plant genus is typically found further south?
</Rephrased Question>
<Original Question>
In what year did the man who shot the Chris Stockley, of The Dingoes, die?
</Original Question>
<Rephrased Question>
What is the year of death for the man who shot Chris Stockley, of The Dingoes?
</Rephrased Question>
<Original Question>
{User Query}
</Original Question>
<Rephrased Question>
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A4: Document Analysis

...{Previous Actions}...
To answer the question, through document analysis, we derive: Based on the content provided in
the document:
<Document Analysis>
1.Document 1 describes Rogers High School in Arkansas, managed by the Rogers School District.
This is not relevant to the query about “Governor John R. Rogers High School.”
2.Document 2 describes Rogers High School in Minnesota, part of Elk River School District 728.
This is also not related to the query.
3.Document 3 describes John R. Rogers High School in Spokane, Washington, part of Spokane
Public Schools (District No. 81). While it shares a connection with John Rankin Rogers, it is not
the school in question.
4.Document 4 provides information about Governor John R. Rogers High School, located in the
Puyallup School District of Washington, United States. It specifically states that this school is
named after the former governor John Rankin Rogers and opened in 1968.
**Conclusion:** Governor John R. Rogers High School is located in the **Puyallup School
District**.
</Document Analysis>

...{4× demonstrations}...

...{Previous Actions}...
To answer the question, through document analysis, we derive: Based on the content provided in
the document:
<Document Analysis>
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A5: Answer Extraction

...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Puyallup School District of Washington
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Barcelona
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Lowestoft
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
Crocosmia
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
1987
</Answer>
...{Previous Actions}...
Summarizing the information above, now we extract the answer, the answer is:
<Answer>
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A6: Critical Rethinking

...{Previous Actions}...
By rethinking the above content, we can find that:
<Rethinking>
To critically rethink whether the information and analysis provided can reliably generate the
conclusion that “Governor John R. Rogers High School is located in the Puyallup School District
of Washington,” let’s analyze the key points and logical consistency:
**Review of the Provided Information:**
1.**Documents Relevant to the Query:**
• **Document 4** explicitly mentions **Governor John R. Rogers High School** and states that
it is in the **Puyallup School District of Washington, United States**. It also confirms the school’s
name, connection to John Rankin Rogers, and establishment date (1968).
• **Document 3** discusses a similarly named **John R. Rogers High School**, located in
Spokane, Washington, and part of Spokane Public Schools. While related to the same individual, it
is a different school.
2.**Irrelevant Documents:**
• **Documents 1 and 2** describe Rogers High Schools in Arkansas and Minnesota, respectively.
These schools do not match the query’s specified name or location.
3.**Analysis of Document Alignment:**
• Document 4 directly matches the query by providing the specific name, location, and school
district of Governor John R. Rogers High School.
• The analysis appropriately dismisses Documents 1, 2, and 3 as unrelated to the query.
**Reconsideration of Logical Flow:**
1.The document analysis correctly identifies Document 4 as the authoritative source for answering
the query.
2.The irrelevant documents do not introduce any conflicting information.
3.The naming distinction between “Governor John R. Rogers High School” (Puyallup) and “John
R. Rogers High School” (Spokane) is clearly maintained.
**Conclusion Verification:**
Based on the information provided in Document 4, the conclusion that “Governor John R. Rogers
High School is located in the Puyallup School District of Washington” is well-supported and
logically derived. There is no ambiguity or conflicting evidence that undermines this conclusion.
</Rethinking>

...{4× demonstrations}...

...{Previous Actions}...
By rethinking the above content, we can find that:
<Rethinking>
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Re-retrieval Necessity in A7: Document Re-retrieval

<Document Analysis>
Based on the retrieved documents, there is insufficient information to conclusively answer the
question ...
To accurately answer the question, additional context or documents specifically detailing ... Ex-
panding the scope of the search to include ... may help locate the necessary information.
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response: Yes
<Document Analysis>
Based on the content provided in the document:
...
**Conclusion:** The team that featured in both the 2011 and 2012 Copa del Rey Finals is
**Barcelona**.
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response: No

...{3× demonstrations}...

</Document Analysis>
{Current Document Analysis}
</Document Analysis>
According to the document analysis, do we need to retrieve more documents to answer the question?
Respond with Yes or No.
Response:
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Remaining Query Construction in A7: Document Re-retrieval

<Original Question>
In what year did the man who shot Chris Stockley, of The Dingoes, die?
</Original Question>
<Document Analysis>
...
</Document Analysis>
Given the original question and the document analysis, please create a remaining question that
requires further retrieval.
<Remaining Question>
What is the year of death for Dennis Allen, the Melbourne drug dealer who shot Chris Stockley of
The Dingoes?
</Remaining Question>

...{4× demonstrations}...

<Original Question>
{User Query}
</Original Question>
<Document Analysis>
...
</Document Analysis>
Given the original question and the document analysis, please create a remaining question that
requires further retrieval.
<Remaining Question>
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