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PESSIMISTIC MINIMAX VALUE ITERATION: PROVABLY
EFFICIENT EQUILIBRIUM LEARNING FROM OFFLINE
DATASETS

Han Zhong∗† Wei Xiong‡ Jiyuan Tan§ Liwei Wang¶
Tong Zhang∥ Zhaoran Wang∗∗ Zhuoran Yang††

ABSTRACT

We study episodic two-player zero-sum Markov games (MGs) in the offline set-
ting, where the goal is to find an approximate Nash equilibrium (NE) policy pair
based on a dataset collected a priori. When the dataset does not have uniform
coverage over all policy pairs, finding an approximate NE involves challenges in
three aspects: (i) distributional shift between the behavior policy and the optimal
policy, (ii) function approximation to handle large state space, and (iii) minimax
optimization for equilibrium solving. We propose a pessimism-based algorithm,
dubbed as pessimistic minimax value iteration (PMVI), which overcomes the distri-
butional shift by constructing pessimistic estimates of the value functions for both
players and outputs a policy pair by solving NEs based on the two value functions.
Furthermore, we establish a data-dependent upper bound on the suboptimality
which recovers a sublinear rate without the assumption on uniform coverage of the
dataset. We also prove an information-theoretical lower bound, which suggests
that the data-dependent term in the upper bound is intrinsic. Our theoretical results
also highlight a notion of “relative uncertainty”, which characterizes the necessary
and sufficient condition for achieving sample efficiency in offline MGs. To the best
of our knowledge, we provide the first nearly minimax optimal result for offline
MGs with function approximation.

1 INTRODUCTION

Reinforcement learning (RL) has recently achieved tremendous empirical success, including Go
(Silver et al., 2016; 2017), Poker (Brown and Sandholm, 2019), robotic control (Kober et al., 2013),
and Dota (Berner et al., 2019), many of which involve multiple agents. RL system with multiple
agents acting in a common environment is referred to as multi-agent RL (MARL) where each agent
aims to maximize its own long-term return by interacting with the environment and other agents
(Zhang et al., 2021). Two key components of these successes are function approximation and efficient
simulators. For modern RL applications with large state spaces, function approximations such as
neural networks are used to approximate the value functions or the policies and contributes to the
generalization across different state-action pairs. Meanwhile, an efficient simulator serves as the
environment which allows the agent to collect millions to billions of trajectories for the training
process.

However, for various scenarios, e.g., healthcare (Pan et al., 2017) and auto-driving (Wang et al., 2018)
where either collecting data is costly and risky, or online exploration is not possible (Fu et al., 2020),
it is far more challenging to apply (MA)RL methods in a trial-and-error fashion. To tackle these
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issues, offline RL aims to learn a good policy from a pre-collected dataset without further interacting
with the environment. Recently, there has been impressive progress in the theoretical understanding
about single-agent offline RL (Jin et al., 2020b; Rashidinejad et al., 2021; Zanette et al., 2021; Xie
et al., 2021; Yin and Wang, 2021; Uehara and Sun, 2021), indicating that pessimism is critical for
designing provably efficient offline algorithms. More importantly, these works demonstrate that the
necessary and sufficient condition for achieving sample efficiency in offline MDP is the single policy
(optimal policy) coverage. That is, it suffices for the offline dataset to have good coverage over the
trajectories induced by the optimal policy.

In offline MARL for zero-sum Markov games, agents are not only facing the challenges of unknown
environments, function approximation, and the distributional shift between the behavior policy and
the optimal policy, but also challenged by the sophisticated minimax optimization for equilibrium
solving. Due to these challenges, theoretical understandings of offline MARL remains elusive. In
particular, the following questions remain open:

(i) Can we design sample-efficient equilibrium learning algorithms in offline MARL?
(ii) What is the necessary and sufficient condition for achieving sample efficiency in offline MARL?

To this end, focusing on the two-player zero-sum and finite-horizon Markov Game (MG) with linear
function approximation, we provide positive answers to the above two questions. Our contribution is
threefold:

• For the two-player zero-sum MG with linear function approximation, we propose a compu-
tationally efficient algorithm, dubbed as pessimistic minimax value iteration (PMVI), which
features the pessimism mechanism.

• We introduce a new notion of “relative uncertainty”, which depends on the offline dataset
and (π∗, ν)∪(π, ν∗), where (π∗, ν∗) is an NE and (π, ν) are arbitrary policies. Furthermore,
we prove that the suboptimality of PMVI can be bounded by relative uncertainty up to
multiplicative factors involving the dimension and horizon, which further implies that “low
relative uncertainty” is the sufficient condition for NE finding in the offline linear MGs
setting. Meanwhile, by constructing a counterexample, we prove that, unlike the single-agent
MDP where the single policy (optimal policy) coverage is enough, it is impossible to learn
an approximate NE by the dataset only with the single policy pair (NE) coverage property.

• We also investigate the necessary condition for NE finding in the offline linear MGs setting.
We demonstrate that the low relative uncertainty is exactly the necessary condition by
showing that the relative uncertainty is the information-theoretic lower bound. This lower
bound also indicates that PMVI achieves minimax optimality up to multiplicative factors
involving the dimension and horizon.

In summary, we propose the first computationally efficient algorithm for offline linear MGs which is
minimax optimal up to multiplicative factors involving the dimension and horizon. More importantly,
we figure out that low relative uncertainty is the necessary and sufficient condition for achieving
sample efficiency in offline linear MGs setup.

Related Work. See Appendix A for details.

2 PRELIMINARIES

In this section, we formally formulate our problem, and introduce preliminary concepts used in our
paper.

2.1 TWO-PLAYER ZERO-SUM MARKOV GAME

We consider a two-player zero-sum, finite-horizon MG where one agent (referred to as the max-
player) aims to maximize the total reward while the other agent (referred to as the min-player)
aims to minimize it. The game is defined as a tupleM (H,S,A1,A2, r,P) where H is the number
of steps in each episode, S is the state space, A1,A2 are the action spaces of the two players,
respectively, P = {Ph}Hh=1 is the transition kernel where Ph(·|s, a, b) is the distribution of the next
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state given the state-action pair (s, a, b) at step h, r = {rh(s, a, b)}Hh=1 is the reward function1, where
rh(s, a, b) ∈ [0, 1] is the reward given the state-action pair (s, a, b) at step h. We assume that for each
episode, the game starts with a fixed initial state x ∈ S and it can be straightforwardly generalized to
the case where the initial state is sampled from some fixed but unknown distribution.

Policy and Value functions. Let ∆(X ) be the probability simplex over the set X . A Markov policy
of the max-player is a sequence of functions π = {πh : S → ∆(A1)} where πh(s) is the distribution
of actions taken by the max-player given the current state s at step h. Similarly, we can define the
Markov policy of the min-player by ν = {νh : S → ∆(A2)}. Given a policy pair (π, ν), the value
function V π,ν

h : S → R and the Q-value function Qπ,ν
h : S ×A1 ×A2 → R at step h are defined by

V π,ν
h (sh) :=Eπ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh
]
,

Qπ,ν
h (sh, ah, bh) :=Eπ,ν

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh, ah, bh
]
,

where the expectation is taken over the randomness of the environment and the policy pair. We define
the Bellman operator Bh for any function V : S → R as

BhV (s, a, b) = E [rh(s, a, b) + V (sh+1)|(sh, ah, bh) = (s, a, b)] . (2.1)

It is not difficult to verify that the value function and Q-value function satisfy the following Bellman
equation:

Qπ,ν
h (s, a, b) = (BhV

π,ν
h+1)(s, a, b). (2.2)

2.2 LINEAR MARKOV GAME

We consider a family of MGs whose reward functions and transition kernels possess a linear structure.
Assumption 2.1 (Linear MGs (Xie et al., 2020)). For each (s, a, b) ∈ S ×A1 ×A2, and h ∈ [H],
we have

rh(x, a, b) = ϕ(x, a, b)⊤θh, Ph(· | x, a, b) = ϕ(x, a, b)⊤µh(·), (2.3)

where ϕ : S×A1×A2 → Rd is a known feature map, θh ∈ Rd is an unknown vector, µh = (µ
(i)
h )i∈[d]

is a vector of d unknown signed measure over S . We further assume that ||ϕ(·, ·, ·)|| ≤ 1, ||θh|| ≤
√
d,

and ||µh(S)|| ≤
√
d for all h ∈ [H] where || · || is the ℓ2-norm of vector.

With this assumption, we have the following result.
Lemma 2.2 (Linearity of Value Function). Under Assumption 2.1, for any policy pair (π, ν) and any
(x, a, b, h) ∈ S ×A1 ×A2 × [H], we have

Qπ,ν(x, a, b) = ⟨ϕ(x, a, b), wπ,ν
h ⟩,

where wπ,ν
h = θh +

∫
S V π,ν

h+1(x
′)dµh(x

′).

Proof. The result is implied by Bellman equation in (2.2) and the linearity of rh and Ph in Assumption
2.1.

2.3 NASH EQUILIBRIUM AND PERFORMANCE METRICS

If we fix some max-player’s policy π, then the MG degenerates to an MDP for the min-player. By the
theory of single-agent RL, we know that there exists a policy br(π), referred to as the best response
policy of the min-player, satisfying V

π,br(π)
h (s) = infν V

π,ν
h (s) for all s and h. Similarly, we define

the best response policy br(ν) for the min-player’s policy ν. To simplify the notation, we define

V π,∗
h = V

π,br(π)
h , and V ∗,ν

h = V
br(ν),ν
h .

1For ease of presentation, we consider deterministic reward. Our results immediately generalize to the
stochastic reward function case.
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It is known that there exists a Nash equilibrium (NE) policy (π∗, ν∗) such that π∗ and ν∗ are the
best response policy to each other (Filar and Vrieze, 2012) and we denote the value of them as
V ∗
h = V π∗,ν∗

h . Although multiple NE policies may exist, for zero-sum MGs, the value function is
unique.

The NE policy is further known to be the solution to the following minimax equation:

sup
π

inf
ν
V π,ν
h (s) = V π⋆,ν⋆

h (s) = inf
ν
sup
π

V π,ν
h (s),∀(s, h). (2.4)

We also have the following weak duality property for any policy pair (π, ν) in MG:

V π,∗
h (s) ≤ V ∗

h (s) ≤ V ∗,ν
h (s),∀(s, h). (2.5)

Accordingly, we measure a policy pair (π, ν) by the duality gap:

SubOpt((π, ν), x) = V ∗,ν
1 (x)− V π,∗

1 (x). (2.6)

The goal of learning is to find an ϵ-approximate NE (π̂, ν̂) such that SubOpt((π̂, ν̂), x) ≤ ϵ.

2.4 OFFLINE DATA COLLECTING PROCESS

We introduce the notion of compliance of dataset.

Definition 2.3 (Compliance of Dataset). Given an MGM and a dataset D = {(sτh, aτh, bτh)}
K,H
τ,h=1,

we say the dataset D is compliant with the MGM if

PD
(
rτh = r, sτh+1 = s|{(sih, aih, bih)}τi=1, {(rih, sih+1)}τ−1

i=1

)
= Ph (rh = r, sh+1 = s|sh = sτh, ah = aτh, bh = bτh) (2.7)

for all h ∈ [H], s ∈ S where P in the right-hand side of (2.7) is taken with respect to the underlying
MGM.

We make the following assumption through this paper.
Assumption 2.4 (Date Collection). The dataset D is compliant with the underlying MGM.

Intuitively, the compliance ensures (i) D possesses the Markov property, and (ii) conditioned on
(sτh, a

τ
h, b

τ
h), (r

τ
h, s

τ
h+1) is generated by the reward function and the transition kernel of the underlying

MG.

As discussed in Jin et al. (2020b), as a special case, this assumption holds if the dataset D is collected
by a fixed behavior policy. More generally, the experimenter can sequentially improve her policy
by any online MARL algorithm as the assumption allows (aτh, b

τ
h) to be interdependent across the

trajectories. In an extreme case, the actions can even be chosen in an adversarial manner.

2.5 ADDITIONAL NOTATIONS

For any real number x and positive integer h, we define the regulation operation as Πh(x) =
min{h,max{x, 0}}. Given a semi-definite matrix Λ, the matrix norm for any vector v is denoted
as ∥v∥Λ =

√
v⊤Λv. The Frobenius norm of a matrix A is given by ||A||F =

√
tr(AA⊤). We

denote λmin(A) as the smallest eigenvalue of the matrix A. We also use the shorthand notations
ϕh = ϕ(sh, ah, bh), ϕτ

h = ϕ(sτh, a
τ
h, b

τ
h), and rτh = rh(s

τ
h, a

τ
h, b

τ
h).

3 PESSIMISTIC MINIMAX VALUE ITERATION

In this section, we introduce our algorithm, namely, Pessimistic Minimax Value Iteration (PMVI),
whose peudocode is given in Algorithm 1.

At a high level, PMVI constructs pessimistic estimations of the value functions for both players and
outputs a policy pair by solving a correlated coarse equilibrium based on these two estimated value
functions.

Our learning process is done through backward induction with respect to the timestep h. We set
V H+1(·) = V H+1(·) = 0, where V H+1 and V H+1 are estimated value functions for max-player and
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Algorithm 1 Pessimistic Minimax Value Iteration
1: Input: Dataset D = {xτ

h, a
τ
h, b

τ
h, r

τ
h}(τ,h)∈[K]×[H].

2: Initialize V H+1(·) = V H+1(·) = 0.
3: for step h = H,H − 1, · · · , 1 do
4: Λh ←

∑K
τ=1 ϕ

τ
h(ϕ

τ
h)

⊤ + I .
5: wh ← Λ−1

h (
∑K

τ=1 ϕ
τ
h(r

τ
h + V h+1(x

τ
h+1))).

6: wh ← Λ−1
h (
∑K

τ=1 ϕ
τ
h(r

τ
h + V h+1(x

τ
h+1))).

7: Γh(·, ·, ·)← β ·
√

ϕ(·, ·, ·)⊤(Λh)−1ϕ(·, ·, ·).
8: Q

h
(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)}.

9: Qh(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}.
10: Let (π̂h(· | ·), ν′h(· | ·)) be the NE of the matrix game with payoff matrix Q

h
(·, ·, ·).

11: Let (π′
h(· | ·), ν̂h(· | ·)) be the NE of the matrix game with payoff matrix Qh(·, ·, ·).

12: V h(·)← Ea∼π̂h(·|·),b∼ν′
h(·|·)Qh

(·, a, b).
13: V h(·)← Ea∼π′

h(·|·),b∼ν̂h(·|·)Qh(·, a, b).
14: end for
15: Output: (π̂ = {π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).

min-player, respectively. Suppose we have obtained the estimated value functions (V h+1, V h+1) at
(h+1)-th step, together with the linearity of value functions (Lemma 2.2), we can use the regularized
least-squares regression to obtain the linear coefficients (wh, wh) for the estimated Q-functions:

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

wh ← argmin
w

K∑
τ=1

[rτh + V h+1(x
τ
h+1)− (ϕτ

h)
⊤w]2 + ∥w∥22,

where ϕτ
h is the shorthand of ϕ(sτh, a

τ
h, b

τ
h). Solving this problem gives the closed-form solutions:

wh ← Λ−1
h (

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(x

τ
h+1))),

wh ← Λ−1
h (

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(x

τ
h+1))),

where Λh ←
K∑

τ=1

ϕτ
h(ϕ

τ
h)

⊤ + I.

(3.1)

Unlike the online setting where optimistic estimations are essential for encouraging exploration (Jin
et al., 2020a; Xie et al., 2020), we need to adopt more robust estimation due to the distributional
shift in the offline setting. Inspired by recent work (Jin et al., 2020b; Rashidinejad et al., 2021; Yin
and Wang, 2021; Uehara and Sun, 2021; Zanette et al., 2021), which shows that pessimism plays a
key role in the offline setting, we also use the pessimistic estimations for both players. In detail, we
estimate Q-functions by subtracting/adding a bonus term:

Q
h
(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh − Γh(·, ·, ·)},

Qh(·, ·, ·)← ΠH−h+1{ϕ(·, ·, ·)⊤wh + Γh(·, ·, ·)}.
(3.2)

Here Γh is the bonus function, which takes the form β
√
ϕ⊤Λ−1

h ϕ, where β is a parameter which
will be specified later. Such a bonus function is common in linear bandits (Lattimore and Szepesvári,
2020) and linear MDPs (Jin et al., 2020a). We remark that Q

h
and Qh are pessimistic estimations for

the max-player and the min-player, respectively. Then, we solve the matrix games with payoffs (Q
h
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and Qh):

(π̂h(· | ·), ν′h(· | ·))← NE(Q
h
(·, ·, ·)),

(π′
h(· | ·), ν̂h(· | ·))← NE(Qh(·, ·, ·)).

The estimated value functions V h(·) and V h(·) are defined by Ea∼π̂h(·|·),b∼ν′
h(·|·)Qh

(·, a, b) and
Ea∼π′

h(·|·),b∼ν̂h(·|·)Qh(·, a, b), respectively. After H steps, PMVI outputs the policy pair (π̂ =

{π̂h}Hh=1, ν̂ = {ν̂h}Hh=1).
Remark 3.1 (Computational efficiency). We remark that our algorithm is computationally efficient
because both the regression (3.1) and finding the NE of a zero-sum matrix game (using linear
programming) can be efficiently implemented. Moreover, we remark that we do not need to compute
Qh(x, ·, ·), Qh

(x, ·, ·), π̂h(·|x), ν′h(·|x), π′
h(·|x), ν̂′h(·|x) for all x ∈ S . Instead, we only do so for the

states we encounter.
Remark 3.2. We remark that the linearity of the reward functions and the transition kernel is strictly
stronger than the linearity of value-function. In the online setting, the recent works (Jin et al.,
2021; Huang et al., 2021) show that the linearity of the value function empowers statistically
efficient learning. However, we consider this stronger assumption because it is likely that it is
essential for computational efficiency due to the lack of computation tractability with general function
approximation and the hardness result in Du et al. (2019) which only assumes near-linearity of value
functions of MDPs (special case of MGs).

In the following theorem, we provide the theoretical guarantees for PMVI (Algorithm 1). Recall that
we use the shorthand ϕh = ϕ(sh, ah, bh).
Theorem 3.3. Suppose Assumptions 2.1 and 2.4 hold. Set β = cdH

√
ζ in Algorithm 1, where c is a

sufficient large constant and ζ = log(2dKH/p). Then for sufficient large K, it holds with probability
1− p that

SubOpt
(
(π̂, ν̂), x

)
≤ 2β

H∑
h=1

Eπ∗,ν′

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
+ 2β

H∑
h=1

Eπ′,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
.

Proof. See Appendix C for a detailed proof.

Theorem 3.3 states that the suboptimality of PMVI is upper bounded by the product of 2β and a
data-dependent term, where β comes from the the covering number of function classes and the
date-dependent term will be explained in the following section.

4 SUFFICIENCY: LOW RELATIVE UNCERTAINTY

In this section, we interpret Theorem 3.3 by characterizing the sufficient condition for achieving
sample efficiency.

4.1 RELATIVE UNCERTAINTY

We first introduce the following important notion of “relative uncertainty”.
Definition 4.1 (Relative Uncertainty). Given an MGM and a dataset D that is compliant withM,
for an NE policy pair (π∗, ν∗), the relative uncertainty of (π∗, ν∗) with respect to D is defined as

RU(D, π∗, ν∗, x)

= max
{
sup
ν

H∑
h=1

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣ s1 = x
]
, sup

π

H∑
h=1

Eπ,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣ s1 = x
]}

where x is the initial state and expectation Eπ∗,ν and Eπ,ν∗ are taken respect to randomness of
the trajectory induced by (π∗, ν) and (π, ν∗) in the underlying MG given the fixed matrix Λh =∑K

τ=1 ϕ
τ
h(ϕ

τ
h)

⊤ + I , respectively.
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We also define the relative uncertainty with respect to the dataset D as

RU(D, x) = inf
(π∗,ν∗) is NE

RU(D, π∗, ν∗, x). (4.1)

Therefore, we can reformulate Theorem 3.3 as:

SubOpt((π̂, ν̂), x) ≤ 4β · RU(D, x). (4.2)

Hence, we obtain that “low relative uncertainty” allows PMVI to find an approximate NE policy pair
sample efficiently, which further implies that “low relative uncertainty” is the sufficient condition for
achieving sample efficiency in offline linear MGs.

Before we provide a detailed discussion of this notion with intuitions and examples, we first contrast
our result with the single policy (optimal policy) coverage identified in the single-agent setting (Jin
et al., 2020b; Xie et al., 2021; Rashidinejad et al., 2021).

4.2 SINGLE POLICY (NE) COVERAGE IS INSUFFICIENT

As demonstrated in Jin et al. (2020b); Xie et al. (2021); Rashidinejad et al. (2021), a sufficient
coverage over the optimal policy is sufficient for the offline learning of MDPs. As a straightforward
extension, it is natural to ask whether a sufficient coverage over the NE policy pair (π∗, ν∗) is
sufficient and therefore minimal. However, the situation is more complicated in the MG case and we
have the following impossibility result.
Proposition 4.2. Coverage of the NE policy pair (π∗, ν∗) is not sufficient for learning an approximate
NE policy pair.

Proof. We prove the result by constructing two hard instances and a dataset D such that no algorithm
can achieve small suboptimality for two instances simultaneously. We consider two simplified linear
MGsM1 andM2 with state space S = {X}, action sets A1 = {ai : i ∈ [3]}, A2 = {bi : i ∈ [3]},
and payoff matrices:

R1 =

(
0.5 −1 0
1 0 1
0 −1 0

)
, R2 =

(
0 0 −1
1 0 −1
1 1 0

)
. (4.3)

We consider the dataset D = {(a2, b2, r = 0), (a3, b3, r = 0)} where the choices of action are
predetermined and the rewards are sampled from the underlying game, which implies that D is
compliant with the underlying game. However, we can never distinguish these two games as they are
both consistent with D. Suppose that the output policies are π̂(ai) = pi, ν̂(bj) = qj with i, j ∈ [3],
we can easily find that

SubOpt
M1

((π̂, ν̂), x) = 2− p2 − q2,

SubOpt
M2

((π̂, ν̂), x) = p1 + q1 + p2 + q2,

where the subscriptMi means that the underlying MG isMi. Therefore, we have

SubOpt
M1

((π̂, ν̂), x) + SubOpt
M2

((π̂, ν̂), x) ≥ 2,

which implies that either SubOpt
M1

((π̂, ν̂), x) or SubOpt
M2

((π̂, ν̂), x) is larger than 1.

We remark that the instances constructed in the proof also intuitively illustrate the sufficiency of the
"low relative uncertainty". Suppose that the underlying MG isM1 defined in (4.3) and the dataset D
now contains the information about the set of action pairs:

G = {(a1, b2), (a2, b2), (a2, b1), (a2, b3), (a3, b2)} . (4.4)

Then, the learning agent has the following estimation

R̂ =

( ∗ −1 ∗
1 0 1
∗ −1 ∗

)
, (4.5)
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where ∗ can be arbitrary. In particular, the collected information is sufficient to verify that (a2, b2)
are best response to each other and therefore the NE policy pair.

More generally, for the NE that is possible a mixed strategy, if we have sufficient information
about {(π∗, ν) : ν is arbitrary}, we can verify that ν∗ is the best response of π∗. Similarly, the
information about {(π, ν∗) : π is arbitrary} allows us to ensure that π∗ is the best response policy
to ν∗. Therefore, intuitively, a sufficient coverage over these policy pairs empowers efficient offline
learning of the NE.

More discussions on Theorem 3.3. See Appendix B for more details.

5 NECESSITY: LOW RELATIVE UNCERTAINTY

In this section, we show that the low relative uncertainty is also the necessary condition by establishing
an information-theoretic lower bound.

We have considered two sets of policy pairs, corresponding to two levels of coverage assumptions on
the dataset:

P1 = {(π∗, ν∗) is an NE}; P2 = {(π∗, ν), (π, ν∗) : π, ν are arbitrary}. (5.1)

Clearly, we have P1 ⊂ P2. From the discussion in Section 4, we know that a good coverage of P1 is
insufficient, while a good coverage over P2 is sufficient for efficient offline learning. It remains to ask
whether there is a coverage assumption weaker than P2 but stronger than P1 that empowers efficient
offline learning in our setting. We give the negative answer by providing an information-theoretic
lower bound in the following theorem.

Theorem 5.1. For any algorithm Algo(·) that outputs a Markov policy pair based on D, there exists
a linear gameM and a dataset D that is compliant with the underlying MGM, such that when K is
large enough, it holds that

ED

[
SubOpt (Algo(D);x0)

RU(D, x0)

]
⩾ C ′, (5.2)

where C ′ is an absolute constant and x0 is the initial state. The expectation is taken with respect to
PD where Algo(D) is a policy pair constructed based on the dataset D.

Proof. See Appendix F for a detailed proof.

Notably, the lower bound in Theorem 5.1 matches the suboptimality upper bound in Theorem 3.3
up to β and absolute constant factors and therefore establishes the near-optimality of Algorithm 1.
Meanwhile, Theorem 5.1 states that the relative uncertainty RU(D, x0) correctly captures the hardness
of offline MG under the linear function approximation setting, that is, low relative uncertainty is the
necessary condition for achieving sample efficiency.

6 CONCLUSION

In this paper, we make the first attempt to study the two-player zero-sum linear MGs in the offline
setting. For such an equilibrium finding problem, we propose a pessimism-based algorithm PMVI,
which is the first RL algorithm that can achieve both computational efficiency and minimax optimality
up to multiplicative factors involving the dimension and horizon. Meanwhile, we introduce a new
notion of relative uncertainty and prove that low relative uncertainty is the necessary and sufficient
condition for achieving sample efficiency in offline linear MGs. We believe our work opens up many
promising directions for future work, such as how to perform sample-efficient equilibrium learning in
the offline zero-sum MGs with general function approximations (Jin et al., 2021; Huang et al., 2021).
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A RELATED WORK

There is a rich literature on MG (Shapley, 1953) and RL. Due to space constraint, we focus on
reviewing the theoretical works on two-player zero-sum MG and offline RL.

Two-player zero-sum Markov game. There has been an impressive progress for online two-player
zero-sum MGs, including the tabular MG (Bai and Jin, 2020; Xie et al., 2020; Bai et al., 2020;
Liu et al., 2021), and MGs with linear function approximation (Xie et al., 2020; Chen et al., 2021).
Beyond these two settings, Jin et al. (2021) and Huang et al. (2021) consider the two-player zero-sum
MG with general function approximation and the proposed algorithms can further solve MGs with
kernel function approximation, MGs with rich observations, and kernel feature selection. For offline
sampling oracle, Abe and Kaneko (2020) considers offline policy evaluation under the strong uniform
concentration assumption.

Offline RL. The study of the offline RL (also known as batch RL), has a long history. In the single-
agent setting, the prior works typically require a strong dataset coverage assumption (Precup, 2000;
Antos et al., 2008; Levine et al., 2020), which is impractical in general, particularly for the modern
RL problems with large state spaces. Recently, Jin et al. (2020b) takes a step towards identifying the
minimal dataset assumption that empower provably efficient offline learning. In particular, it shows
that pessimism principle allows efficient offline learning under a much weaker assumption which
only requires a sufficient coverage over the optimal policy. After Jin et al. (2020b), a line of work
(Rashidinejad et al., 2021; Yin and Wang, 2021; Uehara et al., 2021; Zanette et al., 2021; Xie et al.,
2021; Uehara and Sun, 2021) leverages the principle of pessimism to design offline RL algorithms,
both in the tabular case and in the case with general function approximation. These methods are
not only more robust to the violation of dataset coverage assumption, but also provide non-trivial
theoretical understandings of the offline learning, which are of independent interests. Despite the rich
literature on single-agent offline RL, the extension to the MARL is still challenging.

To the best of our knowledge, the current work on sample-efficient equilibrium finding in offline
MARL is only Zhong et al. (2021) and Cui and Du (2022). In particular, Zhong et al. (2021)
studies the general-sum MGs with leader-follower structure and aims to find the Stackelberg-Nash
equilibrium, but we focus on finding the NE in two-player zero-sum MGs with symmetric players.
Our work is most closely related to the concurrent work Cui and Du (2022), which we discuss in
detail below.

Comparison with Cui and Du (2022). Up to now, the concurrent work Cui and Du (2022) seems to
provide the only analysis on tabular two-player zero-sum MG in the offline setting. We comment the
similarities and differences between two works as follows.

In terms of algorithms, both PMVI (Algorithm 1) in this paper and algorithms proposed in Cui and Du
(2022) are pessimism-type algorithms and computationally efficient. Since tabular MG is a special
case of linear MG, our algorithm can naturally be applied to the tabular setting and achieve sample
efficiency under the same coverage assumption.

In terms of theoretical results, our work can be compared to Cui and Du (2022) in the following
aspects. First, both this work and Cui and Du (2022) figure out the necessary and sufficient condition
for achieving sample efficiency in (linear) MGs. Specifically, we introduce a new notion of relative
uncertainty and prove that the low relative uncertainty is the necessary and sufficient condition
for achieving sample efficiency in (linear) MGs. Cui and Du (2022) proposes a similar notion
called unilateral concentration and obtains similar results. Second, by constructing slightly different
hard instances, both this work and Cui and Du (2022) show that the single policy (NE) coverage
assumption is not enough for NE identification in MGs. Third, this work and Cui and Du (2022)
achieve near-optimal results in the linear setting and tabular setting, respectively. Finally, the
information-theoretic lower bound in Cui and Du (2022) can be implied by that for single-agent MDP.
In contrast, our information-theoretic lower bound is construction-based and is a non-trivial extension
from single-agent MDP.

B INTERPRETATION OF THEOREM 3.3

To illustrate our theory more, we make several comments below.
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Data-Dependent Performance Upper Bound. The upper bound in Theorem 3.3 is in a data-
dependent manner, which is also a key idea employed by many previous works. This allows to drop
the strong uniform coverage assumption, which usually fails to hold in practice. Specifically, the
suboptimality guarantee only relies on the the compliance assumption and depends on the dataset D
through the relative uncertainty RU(D, x).
To better illustrate the role of the relative uncertainty, we consider the linear MGM1 constructed in
(4.3). We define nij as the times that (ai, bj) is taken in D. Then, we have

sup
ν

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
= (1 +min

j
n2,j)

−1/2,

sup
π

Eπ,ν∗

[√
ϕ⊤
hΛ

−1
h ϕh

∣∣∣∣s1 = x

]
= (1 +min

i
ni,2)

−1/2,

which implies that
RU(D, x) = RU(D, π∗, ν∗, x) = (1 + n∗)−1/2, (B.1)

where n∗ = mini,j∈[3]{n2,j , ni,2}. Hence, RU(D, x) measures how well the dataset D covers the
action pairs induced by (π∗, ν) and (π, ν∗), where π and ν are arbitrary. In particular, combining
(4.2) and (B.1), we obtain that

SubOpt((π̂, ν̂), x) ≤ 4β · (1 + n∗)−1/2,

where we take β as stated in the theorem. This implies that the suboptimality of Algorithm 1 is small
if the action pair set is covered well by D, which corresponds to a large n∗. More generally, we have
the following corollary:

Corollary B.1 (Sufficient Coverage of Relative Information). Under Assumptions 2.1 and 2.4, we
assume the existence of a constant c1 such that

Λh ⩾ I + c1 ·K ·max

{
sup
ν

Eπ∗,ν

[
ϕhϕ

⊤
h

∣∣s1 = x
]
, sup

π
Eπ,ν∗

[
ϕhϕ

⊤
h

∣∣s1 = x
]}

, (B.2)

with probability at least 1 − p/2. Set β = cdH
√
ζ in Algorithm 1 where c is a sufficient large

constant and ζ = log(4dHK/p). Then for sufficient large K, it holds with probability 1− p that

SubOpt((π̂, ν̂), x) ⩽ c′d3/2H2K−1/2
√
ζ,

where c′ is a constant that only relies on c and c1.

Proof. See Appendix D for detailed proof.

Oracle Property. Notably, in the above example, the action pair that lies off the set G in (4.4) will
not affect RU(D, x). Such a property is referred as the oracle property in the literature (Donoho and
Johnstone, 1994; Zou, 2006; Fan and Li, 2001). Specifically, since RU(D, x) takes expectation under
the set of policy pairs:

P = {(π∗, ν) : ν is arbitrary}
⋃
{(π, ν∗) : π is arbitrary},

the suboptimality automatically "adapts" to the trajectory induced by this set even though it is
unknown in prior. This property is important especially when the dataset D contains a large amount
of irrelative information as the irrelative information possibly misleads other learning agents. For
instance, suppose that we collect D through a naive policy pair where both the max-player and
the min-player pick their actions randomly. Therefore, all action pairs are sampled approximately
uniformly. We assume that they are equally sampled for K/9 times for simplicity. In this case, since
n∗ = K/9, the suboptimality of Algorithm 1 still decays at a rate of K−1/2. In particular, one
important observation is that the output policy pair (π̂, ν̂) can outperform the naive policy used to
collect the dataset D.

Well-Explored Dataset. As in existing literature (e.g., Duan et al. (2020)), we also consider the case
where the data collecting process explores the state-action space well.
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Corollary B.2 (Well-Explored Dataset). Supposed the dataset D = {(sτh, aτh, bτh, rτh)}
K,H
τ,h=1 is

induced by a fixed behavior policy pair (π, ν) in the underlying MG. We also assume the existence of
a constant c > 0 such that

λmin(Σh) ⩾ c where Σh = Eπ,ν [ϕhϕ
⊤
h ], ∀h ∈ [H].

Set β = cdH
√
ζ in Algorithm 1 where c is a sufficient large constant and ζ = log(4dHK/p). Then

for sufficient large K, it holds with probability 1− p that

SubOpt((π̂, ν̂), x) ⩽ c′dH2K−1/2
√
ζ,

where c′ is a constant that only relies on c and c.

Proof. See Appendix E for a detailed proof.

C PROOF OF THEOREM 3.3

Proof of Theorem 3.3. First, we define the Bellman error as
ιh(x, a, b) = BhV h+1(x, a, b)−Q

h
(x, a, b),

ιh(x, a, b) = BhV h+1(x, a, b)−Qh(x, a, b).

Our proof relies on the following lemma.

Lemma C.1. Let E denote the event that
0 ≤ −ιh(s, a, b) ≤ 2Γh(s, a, b),

0 ≤ ιh(s, a, b) ≤ 2Γh(s, a, b).

for all h ∈ [H] and (s, a, b) ∈ S ×A× B. Then we have Pr(E) ≥ 1− p.

Proof. See Appendix C.1 for a detailed proof.

Under this event, we also have the following lemma to ensure that our estimated value functions are
optimistic.

Lemma C.2. Under the event E , we have

V h(x) ≤ V π̂,∗
h (x), V ∗,ν̂

h (x) ≤ V h(x).

Proof. See Appendix C.2 for a detailed proof.

Back to our proof, we decompose the suboptimality gap as

SubOpt
(
(π̂, ν̂), x

)
= V ∗,ν̂

1 (x)− V π̂,∗
1 (x) = V ∗,ν̂

1 (x)− V ∗
1 (x)︸ ︷︷ ︸

(i)

+V ∗
1 (x)− V π̂,∗

1 (x)︸ ︷︷ ︸
(ii)

. (C.1)

For term (i), by Lemma C.2, we have

(i) ≤ V 1(x)− V ∗
1 (x) ≤ V 1(x)− V π′,ν∗

1 (x), (C.2)
where the last inequality follows from the fact that (π∗, ν∗) is the NE. Then we can use the following
lemma to decompose the term V 1(x)− V π′,ν∗

1 (x).

Lemma C.3 (Value Difference Lemma). Given an MG (S,A,B, r,H). Let π̂ ⊗ ν̂ = {π̂h ⊗ ν̂h :

S → ∆(A1) × ∆(A2)}h∈[H] be a product policy, (π, ν) be a policy pair, and {Q̂h}Hh=1 be any
estimated Q-functions. For any h ∈ [H] , we define the estimated value function V̂h : S → R by
setting V̂h(x) = ⟨Q̂h(x, ·, ·), π̂h(·|x)⊗ ν̂h(·|x)⟩ for all x ∈ S. For all x ∈ S,

V̂1(x)− V π,ν
1 (x) =

H∑
h=1

Eπ,ν

[
⟨Q̂h(sh, ·, ·), π̂h(·|sh)⊗ ν̂h(·|sh)− πh(·|sh)⊗ νh(·|sh)⟩|s1 = x

]
+

H∑
h=1

Eπ,ν

[
Q̂h(sh, ah, bh)− BhV̂h+1(sh, ah, bh)|s1 = x

]
.
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Proof. See Section B.1 in Cai et al. (2020) for a detailed proof.

By Lemma C.3, we obtain

V 1(x)− V π′,ν∗

1 (x) =

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|x)⊗ ν̂h(·|x)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
−

H∑
h=1

Eπ′,ν∗ [ιh(sh, ah, bh)|s1 = x].

(C.3)
The first term can be bounded by the following lemma.

Lemma C.4. It holds that

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|sh)⊗ ν̂h(·|sh)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
≤ 0.

Proof. See Appendix C.3 for a detailed proof.

Applying Lemma C.1 to the second term of (C.3) gives

−
H∑

h=1

Eπ′,ν∗ [ιh(sh, ah, bh)|s1 = x] ≤ 2

H∑
h=1

Eπ′,ν∗ [Γh(sh, ah, bh)|s1 = x].

Putting the above inequalities together we obtain

(i) ≤ 2

H∑
h=1

Eπ′,ν∗ [Γh(sh, ah, bh)|s1 = x] (C.4)

Similarly, we can obtain

(ii) ≤ 2

H∑
h=1

Eπ∗,ν′ [Γh(sh, ah, bh)|s1 = x]. (C.5)

Plugging (C.4) and (C.5) into (C.1), we conclude the proof of Theorem 3.3.

C.1 PROOF OF LEMMA C.1

Proof of Lemma C.1. Throughout this proof, we use the shorthands

ϕτ
h = ϕ(sτh, a

τ
h, b

τ
h), ϕh = ϕ(sh, ah, bh), ϕ = ϕ(s, a, b).

For the simplicity of notation, we also let

ϵτh(V ) = rτh + V (sτh+1)− BhV (sτh, a
τ
h, b

τ
h) (C.6)

By the linear MDP assumption, we have (BhV h+1)(s, a, b) = ϕ(s, a, b)⊤wh, where

wh = θh +

∫
x∈S

V h+1(x)µh(x)dx.
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Then we have∣∣ϕ⊤wh − (BhV h+1)(s, a, b)
∣∣

=

∣∣∣∣∣ϕ⊤

(
Λ−1
h

K∑
τ=1

(
rτh + V h+1(s

τ
h+1)

)
ϕτ
h

)
− (BhV h+1)(s, a, b)

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h

K∑
τ=1

(BhV h+1)(s
τ
h, a

τ
h, b

τ
h)ϕ

τ
h − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤wh − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h + ϕ⊤Λ−1

h (Λh − I)wh − ϕ⊤wh

∣∣∣∣∣
=

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h − ϕ⊤Λ−1

h wh

∣∣∣∣∣
⩽
∣∣ϕ⊤Λ−1

h wh

∣∣︸ ︷︷ ︸
(i)

+

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V h+1)ϕ
τ
h

∣∣∣∣∣︸ ︷︷ ︸
(ii)

. (C.7)

Now we estimate term (i)

|(i)| ⩽ ∥ϕ∥Λ−1
h
∥wh∥Λ−1

h
⩽ ∥wh∥ ∥ϕ∥Λ−1

h
⩽ H
√
d ∥ϕ∥Λ−1

h
, (C.8)

where the second inequality follows from
∥∥Λ−1

h

∥∥
op ⩽ 1 and the third inequality follows from Lemma

G.1. Here ∥ · ∥op denotes the operator norm of a matrix.

Supposed that ∥V − V h+1∥∞ ⩽ ϵ, by the definition of ϵτh(V ) in (C.6), we have∣∣ϵτh(V h+1)− ϵτh(V )
∣∣

=
∣∣rτh + V h+1(s

τ
h+1)− BhV h+1(s

τ
h, a

τ
h, b

τ
h)− rτh − V (sτh+1) + BhV (sτh, a

τ
h, b

τ
h)
∣∣

⩽
∣∣V h+1(s

τ
h+1)− V (sτh+1)

∣∣+ ∣∣BhV h+1(s
τ
h, a

τ
h, b

τ
h)− BhV (sτh, a

τ
h, b

τ
h)
∣∣ ⩽ 2ϵ.

Thus we have∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h

∣∣∣∣∣ ⩽
K∑

τ=1

∣∣ϕ⊤Λ−1
h

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h

∣∣
⩽

K∑
τ=1

∣∣ϵτh(V h+1)− ϵτh(V )
∣∣ ∥ϕ∥Λ−1

h
∥ϕτ

h∥Λ−1
h

⩽
K∑

τ=1

∣∣ϵτh(V h+1)− ϵτh(V )
∣∣ ∥ϕ∥Λ−1

h
∥ϕτ

h∥ ⩽ 2ϵK ∥ϕ∥Λ−1
h

,

where the last inequality holds since ∥ϕ∥ ⩽ 1. We define two function classes as

Qh = ΠH−h+1

{
ϕ(·, ·, ·)⊤w − β

√
ϕ⊤Λ−1ϕ

}
,

Qh = ΠH−h+1

{
ϕ(·, ·, ·)⊤w + β

√
ϕ⊤Λ−1ϕ

}
,

(C.9)

where the parameters (w,Λ) satisfy ∥w∥ ≤ H
√
dK and λmin(Λ) ≥ 1. Let Qh,ϵ and Qh,ϵ be the

ϵ-nets of Qh and Qh, respectively. Choose the pair (Q′
h+1

, Q
′
h+1) ∈ Qh,ϵ ×Qh,ϵ such that

∥Qh+1 −Q
′
h+1∥∞ ⩽ ϵ, ∥Q

h+1
−Q′

h+1
∥∞ ⩽ ϵ,
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where ϵ = 1/KH . Let V ′
h+1(s) be the NE value of payoff matrix Q

′
h+1(s, ·, ·). By Lemma G.2 we

have ∣∣V ′
h+1(s)− V h+1(s)

∣∣ ⩽ ϵ.

Then we obtain

|(ii)| =

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V )

)
ϕτ
h + ϕ⊤Λ−1

h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣
⩽

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

(
ϵτh(V h+1)− ϵτh(V

′
h+1)

)
ϕτ
h

∣∣∣∣∣+
∣∣∣∣∣ϕ⊤Λ−1

h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣
⩽ 2ϵK ∥ϕ∥Λ−1

h
+

∣∣∣∣∣ϕ⊤Λ−1
h

K∑
τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∣∣∣∣∣ (C.10)

⩽ 2ϵK ∥ϕ∥Λ−1
h

+

∥∥∥∥∥
K∑

τ=1

ϵτh(V
′
h+1)ϕ

τ
h

∥∥∥∥∥
Λ−1

h

∥ϕ∥Λ−1
h︸ ︷︷ ︸

(iii)

. (C.11)

For any τ ∈ [K], h ∈ [H], we define

Fh,τ−1 := σ
(
{(sjh, a

j
h, b

j
h)}

min{τ+1,K}
j=1 ∪ {(rjh, s

j
h+1)}

τ
j=1

)
,

where σ(·) is the σ−algebra generated by a set of random variables. For all τ ∈ [K], we have
ϕ(sτh, a

τ
h, b

τ
h) ∈ Fh,τ−1, as (sτh, a

τ
h, b

τ
h) is Fh,τ−1−measurable. Besides, for any fix function V :

S → [0, H − 1] and all τ ∈ [K], we have

ϵτh(V ) = rτh + V (sτh+1)− (BhV )(sτh, a
τ
h, b

τ
h) ∈ Fh,τ−1

and {ϵτh(V )}Kτ=1 is a stochastic process adapted to the filtration {Fh,τ}Kτ=0. By Lemma G.4, we
obtain an estimation of term (iii). For any δ ∈ (0, 1),

P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ 2H2 log

(
det(Λh)

1/2

δ det(1I)1/2

) ⩽ δ

Since

∥Λh∥op =

∥∥∥∥∥I +
K∑

τ=1

ϕτ
h(ϕ

τ
h)

⊤

∥∥∥∥∥
op

⩽ 1 +

K∑
τ=1

∥∥ϕτ
h(ϕ

τ
h)

⊤∥∥
op ⩽ 1 +K,

we have det(Λh) ⩽ (1 +K)d, which further implies

P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ H2

(
d log(1 +K) + 2 log(

1

δ
)

)
⩽ P

∥∥∥∥∥
K∑

τ=1

ϵτh(V )ϕτ
h

∥∥∥∥∥
2

Λ−1
h

⩾ 2H2 log

(
det(Λh)

1/2

δ det(I)1/2

) ⩽ δ.

By Lemma G.3,
∣∣∣Qϵ,h ×Qϵ,h

∣∣∣ = N 2
h,ϵ ⩽

(
1 + 4H

√
dK

ϵ

)2d (
1 + 8β2

√
d

ϵ2

)2d2

. Thus, by the union
bound argument we have

|(iii)| ≲ dH
√

ζ∥ϕ∥Λ−1
h
. (C.12)

with probability at least 1− p/2. Combining (C.8), (C.10), and (C.12), we have∣∣ϕ⊤wh − (BhV h+1)(s, a, b)
∣∣ ≤ β∥ϕ∥Λ−1

h
= Γh(s, a, b)
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with probability at least 1− p/2. Then, we have

ϕ⊤wh + Γh(s, a, b) ≥ BhV h+1(s, a, b) ≥ −(H − h+ 1).

The last inequality follows from |rh| ⩽ 1 and
∣∣V h+1(s, a, b)

∣∣ ⩽ H − h. The inequality implies

Qh(s, a, b) = min{H − h+ 1, ϕ⊤wh + Γh(s, a, b)} ≤ ϕ⊤wh + Γh(s, a, b).

Therefore, we have

ιh(sh, ah, bh) = BhV h+1(sh, ah, bh)−Qh(sh, ah, bh)

≥ BhV h+1(sh, ah, bh)− ϕ⊤wh − Γh(sh, ah, bh) ≥ −2Γh(sh, ah, bh). (C.13)

If ϕ⊤wh + Γh(s, a, b) ≥ H − h+ 1, then, we have

Qh(s, a, b) = min{H − h+ 1, ϕ⊤wh + Γh(s, a, b)} = H − h+ 1.

Thus, we further obtain that

ιh(s, a, b) = BhV h+1(s, a, b)−Qh(s, a, b) = BhV h+1(s, a, b)− (H − h+ 1) ≤ 0. (C.14)

Otherwise, ϕ⊤wh + Γh(s, a, b) ≤ H − h+ 1, which implies Qh(s, a, b) = ϕ⊤wh + Γh(s, a, b). In
this situation, we have

ιh(s, a, b) = BhV h+1(s, a, b)−Qh(s, a, b)

= BhV h+1(s, a, b)− ϕ⊤wh − Γh(s, a, b) ≤ 0. (C.15)

Similarly, we can prove

0 ≤ ιh(s, a, b) ≤ 2Γh(s, a, b) (C.16)

with probability at least 1− p/2. Thus, the event E happens with probability at least 1− p, which
concludes our proof.

C.2 PROOF OF LEMMA C.2

Proof of Lemma C.2. We prove the first inequality i.e.,

V h(x) ≤ V π̂,∗
h (x).

We prove it by induction. When h = H + 1, V π̂,∗
h = V h = 0, the inequality holds trivially. Now we

suppose the inequality holds for step h+ 1, we prove it also holds for step h. By definition of value
function,

V π̂,∗
h (x)− V h(x) = Eπ̂,∗

[
Qπ̂,∗

h (x, a, b)
]
− Eπ̂,ν′

[
Q

h
(x, a, b)

]
= Eπ̂,∗

[
Qπ̂,∗

h (x, a, b)−Q
h
(x, a, b)

]
+
(
Eπ̂,∗

[
Q

h
(x, a, b)

]
− Eπ̂,ν′

[
Q

h
(x, a, b)

])
. (C.17)

By the definition that ιh(x, a, b) = BhV h+1(x, a, b)−Q
h
(x, a, b), we have

Qπ̂,∗
h (x, a, b)−Q

h
(x, a, b) = Bh

(
V π̂,∗
h+1(x, a, b)− V h+1(x, a, b)

)
+ ιh(x, a, b) ≥ 0, (C.18)

where the last inequality follows from Lemma C.1 and induction assumption. Hence the first term in
(C.17) has a lower bound of 0. It holds that

Eπ̂,∗

[
Q

h
(x, a, b)

]
− Eπ̂,ν′

[
Q

h
(x, a, b)

]
≥ 0, (C.19)

where the inequality follows from the property of NE. Combining (C.17), (C.18) and (C.19), we get

V π̂,∗
h (x)− V h(x) ≥ 0,

which concludes the proof.
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C.3 PROOF OF LEMMA C.4

Proof of Lemma C.4. We estimate the each term in the summation. By the fact that (π′
h(·|x), ν̂h(·|x))

is the NE of the matrix game with payoff Qh(x, ·, ·) for any x ∈ S, we have

⟨Qh(sh, ·, ·), π′
h(·|sh)⊗ ν̂h(·|sh)− π′

h(·|sh)⊗ ν∗h(·|sh) ≤ 0. (C.20)

Taking summation over h ∈ [H], we obtain

H∑
h=1

Eπ′,ν∗

[
⟨Qh(sh, ·, ·), π′

h(·|sh)⊗ ν̂h(·|sh)− π′
h(·|sh)⊗ ν∗h(·|sh)⟩|s1 = x

]
≤ 0,

which concludes the proof.

D PROOF OF COROLLARY B.1

Proof of Corollary B.1. Fix (π∗, ν). For notational simplicity, we define

Σh(x) = Eπ∗,ν [ϕ(sh, ah, bh)ϕ
⊤(sh, ah, bh)|s1 = x].

By the assumption, we have

Eπ∗,ν

[√
ϕ⊤
hΛ

−1
h ϕh

]
⩽ Eπ∗,ν

[√
ϕ⊤
h (I + c1KΣh(x))−1ϕh|s1 = x

]
= Eπ∗,ν

[√
tr((I + c1KΣh(x))−1ϕhϕ⊤

h )|s1 = x

]
⩽
√
Eπ∗,ν

[
tr((I + c1KΣh(x))−1ϕhϕ⊤

h )|s1 = x
]

=
√
[tr((I + c1KΣh(x))−1Σh(x))]

=

√
1

c1K
·
√

tr((I + c1KΣh(x))−1(c1KΣh(x) + I − I))

=

√
1

c1K
·
√

tr(I − (I + c1KΣh(x))−1) ⩽

√
d

c1K
,

where the second inequality follows from the Cauchy-Schwarz inequality. Thus, for any policy ν, we
have

2β

H∑
h=1

Eπ∗,ν [
√
ϕ⊤
hΛ

−1
h ϕh|s1 = x] ⩽ 2cc

−1/2
1 d3/2H2K−1/2

√
ζ.

Similarly, for any policy π, we have

2β

H∑
h=1

Eπ,ν∗ [
√

ϕ⊤
hΛ

−1
h ϕh|s1 = x] ⩽ 2cc

−1/2
1 d3/2H2K−1/2

√
ζ.

Let c′ = 4cc
−1/2
1 , by the definition of related uncertainty, we obtain

4β · RU(D, x) ⩽ c′d3/2H2K−1/2
√

ζ.

Combined with Theorem 3.3, we further obtain

SubOpt(PMVI(D), x) ⩽ c′d3/2H2K−1/2
√

ζ,

which concludes our proof.
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E PROOF OF COROLLARY B.2

Proof of Corollary B.2. The proof consists of two steps. In the first step, we use Lemma G.5 for
concentration. In the second step, we estimate the suboptimality. Recall that we denote ϕh =
ϕ(sh, ah, bh) and ϕτ

h = ϕ(sτh, a
τ
h, b

τ
h). Let

Zh =

K∑
τ=1

Aτ
h, Aτ

h = ϕτ
h(ϕ

τ
h)

⊤ − Zh, ∀h ∈ [H].

Clearly, we have Eπ,ν [A
τ
h] = 0. Since the trajectories are induced by the behavior policy (π, ν), the

K trajectory are i.i.d. and {Aτ
h} are i.i.d.. By Assumption 2.1, we have ∥ϕ(s, a, b)∥ ⩽ 1 for any

(s, a, b) ∈ S ×A1 ×A2, which further implies
∥∥ϕτ

h(ϕ
τ
h)

⊤
∥∥

op ⩽ 1. Then, we have

∥Σh∥op =
∥∥Eπ,ν [ϕ

τ
h(ϕ

τ
h)

⊤]
∥∥

op ⩽ Eπ,ν

[∥∥ϕτ
h(ϕ

τ
h)

⊤∥∥
op

]
⩽ 1.

Thus, we obtain
∥Aτ

h∥op ⩽ ∥Σh∥op +
∥∥ϕτ

h(ϕ
τ
h)

⊤∥∥
op ⩽ 2,

and ∥∥Aτ
h(A

τ
h)

⊤∥∥
op ⩽ ∥Aτ

h∥
2
op ⩽ 4.

Since {Aτ
h}τ∈[K are i.i.d. and mean-zero, for any h ∈ [H], we have∥∥Eπ,ν [Z

⊤
h Zh]

∥∥
op =

∥∥∥∥∥
K∑

τ=1

Eπ,ν [A
τ
h(A

τ
h)

⊤]

∥∥∥∥∥
op

= K ·
∥∥Eπ,ν [A

τ
h(A

τ
h)

⊤]
∥∥

op ⩽ 4K.

Similarly, we can obtain
∥∥Eπ,ν [ZhZ

⊤
h ]
∥∥

op ⩽ 4K. By lemma G.5, we have ,

P(∥Zh∥op ⩾ t) ⩽ 2d · exp
(
− t2/2

4K + 2t/3

)
, ∀t > 0.

Let t =
√
10K log (4dH/p), we have

P(∥Zh∥op ⩾ t) ⩽
p

2H
.

By the definition of Λh, we have

Zh =

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤ −KΣh = Λh − I −KΣh.

When K > 40/c · log (4dH/p), it holds with probability at least 1− p/2 that
λmin(Λh) = λmin(Zh + I +KΣh)

⩾ Kλmin(Σh)− ∥Zh∥op ⩾ K
(
c−

√
10/K · log (4dH/p)

)
⩾ Kc/2

for all h ∈ [H]. Let c′′ =
√
2/c, with probability 1− p/2, we have∥∥Λ−1

h

∥∥
op ⩽ c′′2K−1

for all h ∈ [H]. Combined the fact that ∥ϕ∥ (·, ·, ·) ⩽ 1, for all h ∈ [H], we have√
ϕ⊤
hΛ

−1
h ϕh ≤

∥∥Λ−1
h

∥∥
op ⩽ c′′K−1/2.

Then, for any policy pair (π, ν), we have
H∑

h=1

Eπ,ν

[√
ϕ⊤
hΛ

−1
h ϕh|s1 = x

]
⩽ c′′HK−1/2.

Together with Theorem 3.3, we have

SubOpt(PMVI(D), x) ⩽ c′dH2K−1/2
√
ζ

with probability at least 1− p with c′ = 4cc′′. Therefore, we finish the proof.
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F PROOF OF THE INFORMATION-THEORETIC LOWER BOUND

The proof is organized as follows. First, we construct a class of linear MGs M and a dataset
collecting process for D which is compliant with the underlying MG. Then, given a policy pair (π, ν)
constructed based on D, we find two hard MGsM1,M2 from the class M such that the policy pair
cannot achieve a desired suboptimality simultaneously. Before continuing, we introduce another
notion of suboptimality, defined as

SubOptw((π, ν), x0) = |V ∗
1 − V π,ν | ≤ V ∗,ν

1 − V π,∗
1 = SubOpt((π, ν), x0),

due to the weak duality property given in (2.5). Therefore, we can prove the lower bound for
SubOptw((π, ν), x0) which implies the original theorem.

F.1 CONSTRUCTION OF THE LINEAR MG CLASS M

The class M is defined to be

M = {M(p1, p2, p3) : p1, p2 ∈ [1/4, 3/4], p3 = min{p1, p2}},

where M(p1, p2, p3) is a MG with H ⩾ 2, state space S = {x0, x1, x2} and action space |A1| =
|A2| = {yi}Ai=0 with A = |A1| ≥ 3. We fix the initial state as x0. Now we define the transition
kernel of the game at step h = 1 to be

P1 (x1 | x0, y1, yj) = p1 P1 (x2 | x0, y1, yj) = 1− p1, ∀j ∈ {1, · · · , A},
P1 (x1 | x0, y2, yj) = p2, P1 (x2 | x0, y2, yj) = 1− p2, ∀j ∈ {1, · · · , A},
P1 (x1 | x0, yi, yj) = p3, P1 (x2 | x0, yi, yj) = 1− p3, ∀i ≥ 3,∀j ∈ {1, · · · , A}.

According to the construction, we can see that the transition is determined by the max-player’s action
at step h = 1. At subsequent step h ≥ 2, we set

Ph(x1|x1, yi, yj) = Ph(x2|x2, yi, yj) = 1,∀i, j ∈ {1, · · · , A}.

In other words, the states x1 and x2 are absorbing. The reward functions of the game are defined as

r1(x0, yi, yj) = 0, ∀i, j ∈ {1, · · · , A},
rh(x1, yi, yj) = 1, rh(x2, yi, yj) = 0, ∀h ≥ 2,∀i, j ∈ {1, · · · , A}.

We further illustrate the class M in Figure F.1. To show that the gameM(p1, p2, p3) is indeed a
linear MG, we define the feature map ϕ(s, a, b) to be

ϕ(x0, yi, yj) = (e(i−1)A+j , 0, 0) ∈ RA2+2 ϕ(x1, yi, yj) = (0A2 , 1, 0) ∈ RA2+2

ϕ(x2, yi, yj) = (0A2 , 0, 1) ∈ RA2+2 ∀i, j ∈ {1, · · · , A},

where en ∈ RA2

is a vector whose components are all zero except for the n-th one.

F.2 DATASET COLLECTING PROCESS

We speficy the dataset collecting process in this subsection. Given an MG M(p1, p2, p3) ∈ M,
the dataset D = {(sτh, aτh, bτh, rτh)}

K,H
τ,h=1 consists of K trajectories starting from the initial state x0,

namely, xτ
1 = x0 for all τ ∈ [K]. The actions taken at the first step {aτ1 , bτ1}Kτ=1 are predetermined.

The transitions at step h = 1 are sampled fromM and are independent across K trajectories. The
rewards are also generated by theM. The subsequent actions {aτh, bτh}Kτ=1, h ≥ 2 are arbitrary since
they do not affect the transition and reward generation. In this case, the dataset is compliant with the
underlying MGM.

Before continuing, we define

nij =

K∑
τ=1

1{aτ1 = yi, b
τ
1 = yj}, κj

i =

K∑
τ=1

1{aτ1 = yi, s
τ
2 = xj},

nk
min = min{min

j
nkj ,min

i
nik}, ni =

A∑
j=1

nij , mi =

K∑
τ=1

1{sτ2 = xi}.
(F.1)
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x0

x1

x2

P1(x1 |x0, yi, yj) = pi

P1(x2 |x0, yi, yj) = 1− pi

Figure 1: Illustration of the GameM(p1, p2, p3): In the first step with initial state x0, the game is
totally determined by the max-player’s action. The game has a probability of pi to enter state x1 if
the max-player takes action a1 = yi. Meanwhile, x1 and x2 are absorbing states.

In other words, in the dataset D, the action pair (yi, yj) is taken by two players at step h = 1 for nij

times; the event that the max-player takes action yi at step h = 1 and the next state is xj happens for
κj
i times; the max-player takes action yi at step h = 1 for ni times; and the initial state x0 transits to

xi for mi times. Finally, nk
min measures how well the dataset D covers the state action pairs where

one action is fixed to be k.

Since x1 and x2 are absorbing states, for learning the optimal policy π∗, the original dataset D
contains the same information as the reduced one D1 := {(xτ

1 , a
τ
1 , b

τ
1 , x

τ
2 , r

τ
2 )}Kτ=1. Recall that the

actions at step h = 1 are predetermined. The randomness of the dataset generation only comes from
the transiton at the first step and we can write:

PD∼M (D1) =

K∏
τ=1

PM (s2 = xτ
2 | s1 = xτ

1 = x0, a1 = aτ1 , b1 = bτ1)

=

A∏
j=1

(
p
k1
j

j (1− pj)
k2
j

)
.

(F.2)

F.3 LOWER BOUND OF THE SUBOPTIMALITY

In this subsection, we constructed two MGs and show that the suboptimality of any algorithm that
outputs a policy based on the dataset D is lower bounded by the hypothesis testing risk and the risk
can be further lower bounded by some tuning parameters.
Lemma F.1 (Reduction to Testing). For the dataset D collected as specified in Section F.2, there
exists two MGsM1(p

∗, p, p),M2(p, p
∗, p) ∈M where p∗ > p satisfy p, p∗ ∈ [1/4, 3/4], such that

the output policy Algo(D) of any algorithm satisfies:

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)]

⩾ (H − 1)(p∗ − p) (ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)]) ,

It further holds that

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)] ⩾ 1/2(H − 1)(p∗ − p).
(F.3)

The right-hand side of (F.3) is the risk of a (randomized) test function about the hypothesis testing
problem:

H0 :M =M1 versus H1 :M =M2.

This construction mirrors the Le Cam method (Le Cam, 2012; Yu et al., 1997). See the Section 5.3.2
of Jin et al. (2020b) for a detailed discussion.
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Proof of Lemma F.1. We first notice that by the construction ofM1 andM2, the games degrade to
the MDPs. Therefore, we have

ED∼M1 [SubOptw(Algo(D);x0)] = ED∼M1

[
|V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)|

]
= ED∼M1

[
V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)

]
,

where we use the fact that the Nash value is the V-value of the induced MDP in the last equality.
Clearly, forM1, π∗

1 puts probability 1 for action y1 given the state x0. In this case, we have the
following calculation:

ED∼M1

[
V π∗,ν∗

1 (x0)− V π̂,ν̂
1 (x0)

]
= (H − 1)

(
p∗ −

A∑
i=1

ED∼M1 [π̂1(yi)] pi

)

= (H − 1)ED∼M1

p∗(1− π̂1(y1))−
∑
i ̸=1

π̂i(yi)p


= (H − 1)(p∗ − p)ED∼M1 [1− π̂1(y1)] ,

where we use
∑A

j=1 π̂1(yj) = 1 in the last equality. Therefore, we have

ED∼M1 [SubOptw(Algo(D);x0)] = (H − 1)(p∗ − p)ED∼M1 [1− π̂1(y1)] .

Similarly,

ED∼M2 [SubOptw(Algo(D);x0)] = (H − 1)(p∗ − p)ED∼M2 [1− π̂1(y2)] .

It follows that

ED∼M1 [SubOptw(Algo(D);x0)] + ED∼M2 [SubOptw(Algo(D);x0)]

⩾ (H − 1)(p∗ − p) (ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)]) ,
(F.4)

where we use π̂1(y1) ≤ 1 − π̂1(y2). This concludes the proof of (F.3). It remains to find a lower
bound for the right-hand side. We have:

ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)] ⩾ 1− TV (PD∼M1
,PD∼M2

)

⩾ 1−
√

KL (PD∼M1
||PD∼M2

) /2 (F.5)

where TV(·, ·) and KL(·||·) are the total variation distance of probability measures and Kullback-
Leibler (KL) divergence of two distributions, respectively. Here the first inequality comes from
the definition of total variation distance, and the last inequality follows from Pinsker’s inequality.
Intuitively, we set p and p∗ carefully to makeM1 andM2 hard to be distinguished.

As stated in (F.2), we can explicitly write down the probability of the reduced dataset D1 as

PD∼M1
(D1) = (p∗)κ

1
1 · (1− p∗)κ

2
1 · p

∑
i̸=1 κ1

i · (1− p)
∑

i̸=1 κ2
i ;

PD∼M2
(D1) = (p∗)κ

1
2 · (1− p∗)κ

2
2 · p

∑
i̸=2 κ1

i · (1− p)
∑

i̸=2 κ2
i .

We recall κj
i =

∑K
τ=1 1{aτ1 = yi, s

τ
2 = xj}. Since the randomness only comes from the state

transition at the first step forD1 and these transitions are independent across K trajectories. It follows
that

KL (PD∼M1
||PD∼M2

)

= ED∼M1

[ (
κ1
1 − κ1

2

)
log

(
p∗

p

)
+
(
κ2
1 − κ2

2

)
log

(
1− p∗

1− p

)]
= (p∗n1 − pn2) log

(
p∗

p

)
+ ((1− p∗)n1 − (1− p)n2) log

(
1− p∗

1− p

)
= n1

(
p∗ log

p∗

p
+ (1− p∗) log

1− p∗

1− p

)
+ n2

(
p log

p

p∗
+ (1− p) log

1− p

1− p∗

)
. (F.6)
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It remains to carefully set p and p∗ to obtain the desired lower bound. To this end, we set

p =
1

2
− 1

16

√
2

n1 + n2
, p∗ =

1

2
+

1

16

√
2

n1 + n2
,

such that p, p∗ ∈ [1/4, 3/4] and

p∗ − p <
1

4
< min{p, p∗, 1− p∗, 1− p}.

As a result of the inequality log(1 + x) ⩽ x, ∀x > −1, we have

p∗ log
p∗

p
+ (1− p∗) log

1− p∗

1− p
⩽

(p∗ − p)2

p(1− p)
⩽ 16(p∗ − p)2,

p log
p

p∗
+ (1− p) log

1− p

1− p∗
⩽

(p∗ − p)2

p∗(1− p∗)
⩽ 16(p∗ − p)2.

Thus,

KL (PD∼M1
||PD∼M2

) ⩽ 16n1(p
∗ − p)2 + 16n2(p

∗ − p)2 ⩽ 16(n1 + n2)(p
∗ − p)2 ≤ 1

2
.

It follows that

ED∼M1 [1− π̂1(y1)] + ED∼M2 [π̂1(y1)] ⩾ 1−
√

KL (PD∼M1
||PD∼M2

) /2 ⩾
1

2
.

Combined this with (F.4) and (F.5), we conclude that

ED∼M1 [SubOptw(Algo(D);x0)]+ED∼M2 [SubOptw(Algo(D);x0)] ⩾
1

2
(H−1)(p∗−p). (F.7)

Therefore, we conclude the proof.

F.4 UPPER BOUND OF RU(D, x0)

We recall that we are concerning about

ED∼M

[
SubOptw (Algo(D);x0)

RU(D, x0)

]
.

We still need to find an upper bound of RU(D, x0) for the constructed linear MGs.
Lemma F.2 (Upper Bound of RU(D, x0)). Suppose the Assumption 2.4 holds and the underlying
MG isM ∈ M. We define j∗ = argmaxj∈{1,2} pj (we assume that p1 ̸= p2). Then, the optimal
policy satisfies π∗

1(yj∗) = 1 and we further take ν∗1 (yj∗) = 1. Then, for Algorithm 1, it holds that
H∑

h=1

sup
ν

Eπ∗,ν

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| x0

]
≤ 1√

1 + nj∗

min

+ (H − 1) ·
(

pj∗√
1 +m1

+
1− pj∗√
1 +m2

)
,

H∑
h=1

sup
π

Eπ,ν∗

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| x0

]

≤ sup
π

 1√
1 + nj∗

min

+
∑
i∈[A]

π1(yi)(H − 1) ·
(

pi√
1 +m1

+
1− pi√
1 +m2

) .

(F.8)

Furthermore, with probability at least 1− 1
K , the following event holds

E = {mi ⩾ K/4−
√
2K log(2K) | i = 1, 2},

where the probability is taken with respect to PD∼M. Under E , for K ⩾ 32 log(2K), we can obtain

RU(D, π∗, ν∗, x0) ≤
1√
nj∗

min

+
2
√
2(H − 1)√

K
≤ 2
√
2H√
nj∗

min

. (F.9)
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Proof of Lemma F.2. Proof of (F.8). We first consider supν Eπ∗,ν . By xτ
1 = x0 for all τ ∈ [K] and

the definition of Λh, we have

Λ1 = I +

K∑
τ=1

ϕ (x0, a
τ
1 , b

τ
1)ϕ (x0, a

τ
1 , b

τ
1)

⊤

= diag (1 + n11, 1 + n12 . . . , 1 + nAA, 1, 1) ∈ R(A2+2)×(A2+2),

where the second equality follows from the definition of ϕ. For h ≥ 2, the state is x1 or x2, so we
have

Λh = I+

K∑
τ=1

ϕ (xτ
h, a

τ
h, b

τ
h)ϕ (xτ

h, a
τ
h, b

τ
h)

⊤
= diag (1, 1, . . . , 1, 1 +m1, 1 +m2) ∈ R(A2+2)×(A2+2),

where the second equality follows from the definition of ϕ. Under (π∗, ν), we know that

Pπ∗,ν(s2 = x1) = pj∗ , Pπ∗,ν(s2 = x2) = 1− pj∗ .

It follows that

sup
ν

Eπ∗,ν

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| s1 = x0

]

≤


(
1 + nj∗

min

)−1/2

, h = 1,

pj∗ · (1 +m1)
−1/2

+ (1− pj∗) · (1 +m2)
−1/2

, h ∈ {2, . . . ,H},

where we use the definition of ϕ, and the fact that nj∗

min ≤ nj∗i for all i ∈ [A].

For supπ Eπ,ν∗ , the main difference lies in the distribution of s2:

Pπ,ν∗(s2 = x1) =
∑
j∈[A]

π1(yj)pj , Pπ,ν∗(s2 = x2) = 1−
∑
j∈[A]

π1(yj)pj .

It follows that

Eπ,ν∗

[(
ϕ (sh, ah, bh)

⊤
Λ−1
h ϕ (sh, ah, bh)

)1/2
| s1 = x0

]

≤


(
1 + nj∗

min

)−1/2

, h = 1,∑
i∈[A] π1(yi)(H − 1) ·

(
pi√

1+m1
+ 1−pi√

1+m2

)
, h ∈ {2, . . . ,H},

where we use the definition of ϕ, and the fact that nj∗

min ≤ nij∗ for all i ∈ [A]. This concludes the
proof of (F.8).

We now turn to the high-probability event:

E =

{
mi ⩾ K/4−

√
1

2
K log(2K) | i = 1, 2

}
.

By construction, we know that 3
4 ≥ p1, p2 ≥ 1

4 . Therefore, we know that E[mi] ⩾ 1/4K for i = 1, 2.
By Hoeffding’s inequality, for any ξ ∈ (0, 1), with probability at least 1 − ξ , the following event
happens {

mi ⩾ K/4−
√

1

2
K log(2/ξ) | i = 1, 2

}
.

Setting ξ = 1/K, we obtain the desired result.

Proof of (F.9). In particular, for K ⩾ 32 log(2K), with probability at least 1− 1/K, we have

mi ⩾ K/8, ∀i ∈ {1, 2}.

The (F.9) follows directly from (F.8) and mi ⩾ K/8.
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F.5 PROOF OF THEOREM 5.1

We now invoke Lemma F.1 and Lemma F.2 to give a detailed proof of Theorem 5.1.

Proof of Theorem 5.1. Since the actions are predetermined, we can additionally assume that

1

c
⩽

n1
min

n2
min

⩽ c,
1

c
⩽

n2i

n2
min

⩽ c,
1

c
⩽

n1i

n2
min

⩽ c ∀i ∈ {1, · · · , n},

where c is a positive constant. This assumption means that the numbers of action pairs whose
components contain y1 or y2 are relatively uniform. By Lemma F.1, there exist two gamesM1,M2

such that

max
i∈{1,2}

√
ni

minED∼Mi
[SubOptw (Algo(D), x0)]

⩾

√
n1

minn
2
min√

n1
min +

√
n2

min

(ED∼M1 [SubOptw (Algo(D), x0)] + ED∼M2 [SubOptw (Algo(D), x0)])

⩾

√
n1

minn
2
min√

n1
min +

√
n2

min

1

2
(H − 1)(p∗ − p) =

√
2

16
· (H − 1) ·

√
n1

minn
2
min√

n1
min +

√
n2

min

· 1√
n1 + n2

,

where the first inequality is because max{x, y} ≥ ax+ (1− a)y for all a ∈ [0, 1] and x, y ≥ 0 and
the second inequality follows from Lemma F.1. Note that

n1 + n2 =

A∑
i=1

(n1i + n2i) ⩽ 2cAn2
min.

Therefore, we have

max
i∈{1,2}

√
ni

minED∼Mi
[SubOptw (Algo(D), x0)] ⩾

1

16
√
cA
· (H − 1) ·

√
n1

min/n
2
min√

n1
min/n

2
min + 1

⩾ C,

(F.10)

where C =
1

16
√
cA
· (H − 1) · 1

1 +
√
c

. Here the last inequality is because f(t) = t
1+t is increasing

for t ≥ 0. We now take the optimal policy of gameMi to be π∗
1(yi) = ν∗1 (yi) = 1. It follows that

max
i∈{1,2}

ED∼Mi

[
SubOptw (Algo(D), x0)

RU(D, x0)

]
⩾ max

i∈{1,2}
ED∼Mi

[
SubOptw (Algo(D), x0)

RU(D, x0)
1E

]
⩾ max

i∈{1,2}
ED∼Mi

[
1

C1

√
ni

min SubOptw(Algo(D), x0)1E

]
= max

i∈{1,2}
ED∼Mi

[
1

C1

√
ni

min SubOptw (Algo(D), x0)

]
− ED∼Mi

[
1

C1

√
ni

min SubOptw (Algo(D), x0) · 1Ec

]
⩾

C

C1
−
√
K

C1
· 2H · 1

K

⩾
C

2C1
:= C ′ > 0,

where C ′ =
C

2C1
, C1 = 2

√
2H , and C =

1

16
√
cA
· (H − 1) · 1

1 +
√
c

. The second inequality

follows from (F.9). The third inequality is because (F.10), SubOptw(Algo(D), x0) ≤ 2H , ni
min ≤

K, and P(E) ≤ 1
K . The forth inequality holds for K ⩾

16H2

C2
. By SubOpt(Algo(D), x0) ≥

SubOptw(Algo(D), x0), we conclude the proof of Theorem 5.1.
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G TECHNICAL LEMMAS

Recall that we use shorthands

ϕh = ϕ(sh, ah, bh), ϕτ
h = ϕ(sτh, a

τ
h, b

τ
h), rτh = r(sτh, a

τ
h, b

τ
h).

Lemma G.1. For any dataset D, we define

wh = θh +

∫
x∈S

V h+1(x)µh(x)dx,

where V h+1(x) are the value function constructed in Algorithm 1, then wh as well as wh in Algorithm
1 satisfy

∥wh∥ ⩽ H
√
d, ∥wh∥ ⩽ H

√
Kd, i = 1, 2.

Proof of Lemma G.1. By definition of wh,

∥wh∥ =
∥∥∥∥θh +

∫
x∈S

V h+1(x)µh(x)dx
∥∥∥∥ ⩽ ∥θh∥+

∥∥∥∥∫
x∈S

V h+1(x)µh(x)dx
∥∥∥∥

⩽
√
d+ (H − h)

∫
x∈S
∥µh(x)∥ dx ⩽

√
d+ (H − h)

√
d ⩽ H

√
d

where the second and the last inequities follow from the regulation assumption in Assumption 2.1
that ∥θh∥ ⩽

√
d and

∫
x∈S ∥µh(x)∥ dx ⩽

√
d , while the construction in Algorithm 1 guarantees

V h+1(x) ⩽ H − h, which implies the third inequality.

By construction of wh in Algorithm 1,

∥wh∥ =

∥∥∥∥∥Λ−1
h

K∑
τ=1

ϕτ
h(r

τ
h + V h+1(sh+1))

∥∥∥∥∥ ⩽ H

K∑
τ=1

∥∥Λ−1
h ϕτ

h

∥∥ ,
where the last inequality follows from triangle inequality and |rτh| ⩽ 1, V h+1(x) ⩽ H − h. Note that∥∥Λ−1

h ϕτ
h

∥∥ =

√
(ϕτ

h)
⊤Λ

−1/2
h Λ−1

h Λ
−1/2
h ϕτ

h ⩽
(
(ϕτ

h)
⊤Λ−1

h ϕτ
h

)1/2
.

The last inequality follows from
∥∥Λ−1

h

∥∥
op ⩽ 1. Thus,

H

K∑
τ=1

∥∥Λ−1
h ϕτ

h

∥∥ = H

K∑
τ=1

(
(ϕτ

h)
⊤Λ−1

h ϕτ
h

)1/2
⩽ H
√
K

(
K∑

τ=1

(ϕτ
h)

⊤Λ−1
h ϕτ

h

)1/2

= H
√
K

(
tr(Λ−1

h

K∑
τ=1

ϕτ
h(ϕ

τ
h)

⊤)

)1/2

= H
√
K
(
tr(Λ−1

h (Λh − 1I))
)1/2

⩽ H
√
K (tr(I))

1/2
= H
√
Kd,

where the first inequality follows from Cauchy-Schwarz inequality.

Lemma G.2 (Non-Expansive Property of Nash Value). For any integer n and matrix A ∈ Rn×n, we
denote f(A) = maxx∈∆ miny∈∆ xTAy, where ∆ = {x ∈ Rn : xi ≥ 0,

∑n
i=1 xi = 1}. Fix ϵ > 0,

given any matrices A1, A2 ∈ Rn×n satisfying ∥A1 −A2∥∞ ≤ ϵ, we have

|f(A1)− f(A2)| ≤ ϵ.

Proof. Fix x, we have

min
y∈∆

xTA1y = min
y∈∆

xT(A1 −A2 +A2)y ≥ min
y∈∆

xTA2y − ϵ,

where the inequality follows from the fact that ∥A1 −A2∥∞ ≤ ϵ. Hence, we can further obtain

f(A1) = max
x∈∆

min
y∈∆

xTA1y ≥ max
x∈∆

min
y∈∆

xTA2y − ϵ = f(A2)− ϵ. (G.1)

Symmetrically, we can obtain f(A2) ≥ f(A1)− ϵ. Therefore, we conclude the proof.
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Lemma G.3 (ϵ−Covering). For any ϵ > 0, the ϵ−covering number Nh,ϵ of Qh (and Qh) with
respect to ℓ∞ norm satisfies

Nh,ϵ ⩽

(
1 +

4H
√
dK

ϵ

)d(
1 +

8β2
√
d

ϵ2

)d2

,

Here the function classes Qh and Qh are defined in (C.9).

Proof of Lemma G.3. We only estimate the covering number of Qh. Suppose Q1 with parameters
(w1, A1) and Q2 with parameters (w2, A2) are in the function class Qh, then

∥Q1 −Q2∥∞ = sup
ϕ:∥ϕ∥⩽1

∣∣∣ΠH−h+1

(
ϕ⊤w1 + β

√
ϕ⊤A1ϕ

)
−ΠH−h+1

(
ϕ⊤w2 + β

√
ϕ⊤A2ϕ

)∣∣∣
⩽ sup

ϕ:∥ϕ∥⩽1

∣∣∣(ϕ⊤w1 + β
√
ϕ⊤A1ϕ

)
−
(
ϕ⊤w2 + β

√
ϕ⊤A2ϕ

)∣∣∣
⩽ sup

ϕ:∥ϕ∥⩽1

∣∣ϕ⊤(w1 − w2)
∣∣+ sup

ϕ:∥ϕ∥⩽1

β
√
|ϕ⊤(A1 −A2)ϕ|

⩽ ∥w1 − w2∥+ β
√
∥A1 −A2∥F ,

where the second inequality follows from the inequality
√
x−√y ⩽

√
|x− y|. Thus ϵ/2-covering

of Cw = {w ∈ Rd : ∥w∥ ⩽ H
√
dK} and

ϵ2

4β2
−covering of CA = {A ∈ Rd×d : ∥A∥F ⩽

√
d} are

sufficient to form an ϵ-cover of Qh. We obtain the covering number of Qh satisfies

Nh,ϵ ⩽

(
1 +

4H
√
dK

ϵ

)d(
1 +

8β2
√
d

ϵ2

)d2

.

The inequality follows from the standard bound of the covering number of Euclidean Balls (cf.
Lemma 2 in Vershynin (2010)).

Lemma G.4 (Concentration for Self-normalized Processes (Abbasi-Yadkori et al., 2011)). Suppose
{ϵt}t⩾1 is a scalar stochastic process generating the filtration {Ft}t⩾1, and ϵt|Ft−1 is zero mean
and σ-subGaussian. Let {ϕt}t⩾1 be an Rd-valued stochastic process with ϕt ∈ Ft−1. Suppose
Λ0 ∈ Rd×d is positive definite, and Λt = Λ0 +

∑t
s=1 ϕsϕ

⊤
s . Then for each δ ∈ (0, 1), with

probability at least 1− δ, we have

∥
t∑

s=1

ϕsϵs∥2Λ−1
t

⩽ 2σ2log
(

det(Λt)
1
2

δdet(Λ0)
1
2

)
, ∀t ⩾ 0.

Lemma G.5 (Matix Bernstein Inequality). Supposed that {Ak}nk=1 are independent random matrix
in Rd1×d2 . They satisfy E[Ak] = 0 and ∥Ak∥op ⩽ L. Let Z =

∑n
k=1 Ak and

v(Z) = max
{∥∥E[ZZ⊤]

∥∥
op ,
∥∥E[Z⊤Z]

∥∥
op

}
= max

{∥∥∥∥∥
n∑

k=1

E[AkA
⊤
k ]

∥∥∥∥∥
op

,

∥∥∥∥∥
n∑

k=1

E[A⊤
k Ak]

∥∥∥∥∥
op

}
.

We have,

P(∥Z∥op ⩾ t) ⩽ (d1 + d2) · exp
(
− t2/2

v(Z) + L/3 · t

)
, ∀t > 0.

Proof. See Theorem 1.6.2 of Tropp (2015) for detailed proof.
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