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ABSTRACT

The visual examination of tissue biopsy sections is fundamental for cancer diag-
nosis, with pathologists analyzing sections at multiple magnifications to discern
tumor cells and their subtypes. However, existing attention-based multiple in-
stance learning (MIL) models used for analyzing Whole Slide Images (WSIs) in
cancer diagnostics often overlook the contextual information of tumor and neigh-
boring tiles, leading to misclassifications. To address this, we propose the Context-
Aware Multiple Instance Learning (CAMIL) architecture. CAMIL incorporates
neighbor-constrained attention to consider dependencies among tiles within a WSI
and integrates contextual constraints as prior knowledge into the MIL model. We
evaluated CAMIL on subtyping non-small cell lung cancer (TCGA-NSCLC) and
detecting lymph node (CAMELYON16 and CAMELYON17) metastasis, achiev-
ing test AUCs of 97.5%, 95.9%, and 88.1%, respectively, outperforming other
state-of-the-art methods. Additionally, CAMIL enhances model interpretability
by identifying regions of high diagnostic value1.

1 INTRODUCTION

Deep learning (DL) methods have revolutionized the development of highly accurate diagnostic
machines (Morales et al., 2021) that rival or even surpass the performance of expert pathologists
(Tong et al., 2014; Melendez et al., 2015; Quellec et al., 2016; Das et al., 2018; Srinidhi et al., 2019;
Wang et al., 2021). These advancements have been facilitated by the emergence of weakly super-
vised learning, which eliminates the need for laborious pixel-level annotations. Models trained using
weakly supervised learning, relying solely on slide-level labels, have demonstrated exceptional clas-
sification accuracy on whole slide imaging (WSI) data, paving the way for scalable computational
decision support systems in clinical practice (Xu et al., 2014; Courtiol et al., 2018; Xu et al., 2019;
Zhou et al., 2021).

In the context of cancer histopathology, WSIs are not processed as a single image by DL models.
Instead, WSIs are frequently subdivided into smaller tiles, which serve as an input. The task is, then,
to classify the WSI based on the features extracted from the individual tiles. Most current methods
for weakly supervised WSI classification use the Multiple Instance Learning (MIL) framework,
which considers each WSI as a ‘bag’ of tiles and attempts to learn the slide-level label without prior
knowledge about the labels of the individual tiles.

A major bottleneck in the deployment of MIL models, and the weakly-supervised learning paradigm
in general, is that the MIL model is either permutation invariant, meaning that the tiles within a WSI
exhibit no ordering among each other (Sharma et al., 2021; Xie et al., 2020), or permutation-aware
without explicit information guidance. In other words, the spatial relationship of one tile to another is
either ignored, or the dependencies between the tiles are implicitly modeled during training without
requiring direct instructions (Shao et al., 2021; Landini et al., 2020; Campanella et al., 2019).

However, explicit knowledge about a tile’s spatial arrangement is particularly relevant in cancer
histopathology, where cancer and normal cells are not necessarily distributed randomly inside an

1Our code is available at https://github.com/olgarithmics/ICLR_CAMIL.
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image. Contextual insights into the cellular landscape, such as the spatial dispersion of cells, the
arrangement of cell clusters, and the broader characteristics of the tissue microenvironment, provide
a more comprehensive view of the tile’s local environment, enabling a better assessment of subtle
variations and abnormalities that may indicate the presence of cancer.

In this paper, we propose a novel framework dubbed Context-Aware Multiple Instance Learning
(CAMIL) to harness the dependencies among the individual tiles within a WSI and impose contex-
tual constraints as prior knowledge on the multiple instance learning model. By explicitly accounting
for contextual information, CAMIL aims to enhance the detection and classification of localized tu-
mors and mitigate the potential misclassification of isolated or noisy instances, thereby contributing
to an overall improvement in performance for both individual tiles and WSIs. Moreover, the atten-
tion weights enhance the interpretability of the model by highlighting sub-regions of high diagnostic
value within the WSI.

2 RELATED WORK

Under the MIL formulation, the prediction of a WSI label (i.e., cancerous or not) can come either
directly from the tile predictions (instance-based) (Campanella et al., 2019; Landini et al., 2020; Hou
et al., 2016; Xu et al., 2019), or from a higher-level bag representation resulting from the aggregation
of the tile features (bag embedding-based) (Ilse et al., 2018; Lu et al., 2021; Sharma et al., 2021;
Wang et al., 2018). The bag embedding-based approach has empirically demonstrated superior
performance (Sharma et al., 2021; Wang et al., 2018). Most recent bag embedding-based approaches
employ attention mechanisms (Vaswani et al., 2017), which assign an attention score to every tile
reflecting its relative contribution to the collective WSI-level representation. Attention scores enable
the automatic localization of sub-regions of high diagnostic value in addition to informing the WSI-
level label (Zhang et al., 2021; BenTaieb & Hamarneh, 2018; Lu et al., 2021).

Attention-based MIL models vary in how they explore tissue structure in WSIs. Many are permu-
tation invariant, assuming the tiles are independent and identically distributed. Building upon this
assumption, Ilse et al. (2018) proposed a learnable attention-based MIL pooling operator that com-
putes the bag embedding as the average of all tile features in the WSI weighted by their respective
attention score. This operator has been widely adopted and modified with the addition of a clus-
tering layer (Lu et al., 2021; Li et al., 2021b; Yao et al., 2020) to further encourage the learning of
semantically-rich, separable and class-specific features. Another variation of the same model uses
‘pseudo bags’ (Zhang et al., 2022), splitting the WSI into several smaller bags to alleviate the issue
of the limited number of training data. Recently, data augmentation has been adopted to inflate the
number of bags (Gadermayr et al., 2023; Liu et al., 2023; Shao et al., 2023).

However, permutation invariant operators cannot inherently capture the structural dependencies
among different tiles at the input. The lack of bio-topological information has partially been reme-
died by the introduction of feature similarity scores instead of positional encodings to model the
mutual tile dependencies within a WSI (Xie et al., 2020; Tellez et al., 2021; Adnan et al., 2020). For
instance, DSMIL (Li et al., 2021a) utilizes a non-local operator to compute an attention score for
each tile by measuring the similarity of its feature representation against that of a critical tile. To
consider the correlations between the different tiles of a WSI, transformer-based architectures have
been introduced, which usually make use of a learnable position-dependent signal to incorporate the
spatial information of the image (Zhao et al.; Tu et al., 2019). For instance, TransMIL (Shao et al.,
2021) is a transformer-like architecture trained end-to-end to optimize for the classification task and
produce attention scores while simultaneously learning the positional embeddings.

In CAMIL, we provide explicit guidance regarding the context of every tile as we argue that it can
provide a valuable, rich source of information. Unlike most existing MIL approaches where the
relationships developed between neighboring tiles are omitted, in our approach, we propose a neural
network architecture that explicitly leverages the dependencies between neighboring tiles of a WSI
by enforcing bio-topological constraints to enhance performance effectively.
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Figure 1: An overview of the CAMIL model architecture. First, WSIs are preprocessed to separate tissue
from the background. Then, the WSIs are split into fixed-size tiles of size 256 × 256 and fed through a pre-
trained feature extractor to obtain feature representations of size 1024 for each tile. A Nystromformer module
then transforms these feature embeddings. These transformed feature embeddings are then used as input to
our neighbor-constrained attention module. This module allows attending over each patch and its neighboring
patches, generating a neighborhood descriptor of each tile’s closest neighbors, and calculating their attention
coefficients. The output layer then aggregates the tile-level attention scores produced in the previous layer to
emit a final slide classification score.

3 MATERIAL AND METHODS

CAMIL operates on the principle that the context and characteristics of a tile’s surroundings hold
substantial potential for enhancing the accuracy of whole slide classification. To illustrate this con-
cept, we can draw a parallel between our framework and the examination process of a pathologist
analyzing a biopsy slide. Similar to how a pathologist inspects sub-regions to comprehensively
understand its broader surroundings, CAMIL expands the tile’s view to examine the broader neigh-
borhood of each tile thoroughly. This extension allows CAMIL to gather additional information and
facilitates a better understanding and assessment of the surrounding microenvironment and tissue
context.

In CAMIL, we recalibrate each tile’s individual attention score by aggregating the attention scores
of its surroundings. For example, tiles with high attention scores surrounded by other high-scoring
tiles should be considered important. Conversely, the presence of a tile classified by the model as
important in a low-scoring neighborhood could be, in some cases, attributed to noise, and this should
be reflected in its final attention score.

The overview of CAMIL can be seen in Figure 1. It can be decomposed into five elements:

1. A WSI-preprocessing phase automatically segments the tissue region of each WSI and
divides it into many smaller tiles (e.g., 256 x 256 pixels).

2. A tile and feature extraction module, consisting of a stack of convolutional, max pooling,
and linear layers transform the original tile input to low dimensional feature representa-
tions: H = {h1, . . . ,hi, . . . ,hN},hi ∈ Rn×d, where d is the embedding dimensions of
a tile, n the number of tiles within a WSI (n differs among different WSIs), and N the
number of WSIs.

3. A Nystromformer module (Xiong et al., 2021) transforms the tile embeddings to a con-
cise, descriptive hidden feature representation. It is crucial in aggregating global contexts,
capturing the overall information and patterns across multiple tiles.

4. A neighbor-constrained attention mechanism in CAMIL, coupled with a contrastive learn-
ing block, encapsulates the neighborhood prior and focuses on aggregating local concepts.

5. The feature aggregator and classification layer combine the local concepts derived from
the previous layer with the features that describe the global contexts obtained from the
transformer module. These features are merged to generate a prediction at the slide level.

We elaborate on each step in the following subsections.
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3.1 WSI PREPROCESSING

We followed methods in Lu et al. (2021) to segment tissue regions and split the whole slide image
into individual non-overlapping tiles (1. in Figure 1) (details of the hyperparameters used here are
shown in the appendix).

3.2 FEATURE EXTRACTOR

Effective feature representations significantly impact predictive accuracy, as demonstrated by the
success of self-supervised contrastive learning (Chen et al., 2020). Therefore, to extract rich, mean-
ingful feature representations from individual tiles, we first train a feature extractor following the
SimCLR (Chen et al., 2020) approach. SimCLR is one of the most popular self-supervised learning
frameworks that enable semantically rich feature representations to be learned by minimizing the
distance between different augmented versions of the same image data.

Similar to the training approach followed by Li et al. (2021a), the data sets utilized in SimCLR
are composed of patches derived from WSIs. These patches are densely cropped with no overlap
and treated as separate images for the purpose of SimCLR training. During training, two different
augmentations are done on the same tile. These two augmentations are chosen from four possible
augmentations (color distortion, zoom, rotation, and reflection) using a stochastic data augmentation
module. These two augmentations of the same tile are fed through a ResNet-18 (He et al., 2015) pre-
trained on ImageNet (Deng et al., 2009) with an additional projection head, which is a multi-layer
perceptron (MLP) with two hidden layers that map the feature representations to a space where
a contrastive loss is applied. The final convolutional block of ResNet-18 and the projection head
are then fine-tuned by minimizing the contrastive loss (temperature-scaled cross entropy) between
zi, zj , corresponding to two ‘correlated’ (differentially augmented) views of the same tile. Here, we
minimized the normalized temperature-scaled cross entropy (NT-Xent) defined as

lij = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(1)

The trained network is then used as the base feature extractor (F (x) in Figure 1) to produce the fea-
ture representations H = {h1, . . . ,hi, . . . ,hN},hi ∈ Rn×d of each WSI, where n is the number
of tiles and d is the embedding dimension to represent each tile, and N the number of WSIs. This
trained feature extractor is frozen when training CAMIL and is only used to extract features and
calculate distances between neighboring patches. These distances between neighboring patches are
calculated using the sum of squared differences between the features and are used in the following
neighbor-constrained attention module.

3.3 TRANSFORMER MODULE TO CAPTURE GLOBAL CONTEXTS

To encode the feature embeddings H , our approach focuses on capturing the inter-tile relationships
and dependencies, enhancing the global context understanding, and facilitating comprehensive fea-
ture aggregation. This is achieved using a transformer layer, represented as T (h) in Figure 1, which
is particularly effective for managing the complex structure of WSIs. To address the challenge
of memory overload due to the long-range dependencies in large WSIs, we adopt the Nystrom-
former architecture (Xiong et al., 2021), enabling CAMIL to model intricate feature interactions
through an efficient, approximate self-attention mechanism. This produces a “transformed” feature
set T = {t1, . . . , ti, . . . , tN}, with each ti ∈ Rn×d, where,

ti = softmax

(
Q1(hi)K̃

T
1 (hi)√

dk

)(
A

)+

softmax

(
Q̃1(hi)K

T
1 (hi)√

dk

)
V1(hi), (2)

where Q̃1(hi) and K̃1(hi) are the m selected landmarks (see Xiong et al. (2021) and Appendix)

from the original n-dimensional sequence of Q1 and K1, A+ = softmax

(
Q̃1(hi)K̃

T
1 (hi)√

dk

)+

is

the approximate inverse of A. Softmax is applied along the rows of the matrix. K1(hi), Q1(hi),
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and V1(hi) are the first key, query, and value representations of hi shown as T (h) in Figure 1 and
defined in Vaswani et al. (2017).

3.4 NEIGHBOR-CONSTRAINED ATTENTION MODULE TO CAPTURE LOCAL CONTEXTS

The neighbor-constrained attention module in CAMIL is designed to capture specific features and
patterns within localized areas of the slide. It focuses on the immediate neighborhood of each tile
and aims to capture the local relationships and dependencies within that specific region. By doing
so, the module can emphasize the relevance and importance of nearby tiles, effectively incorporating
fine-grained details and local nuances into the model.

To model the tile and its surroundings, we construct a weighted adjacency matrix. Consider an
undirected graph G = (V,E), where V represents the set of nodes representing image tiles, and E
represents the set of edges between nodes indicating adjacency. The graph can be represented by an
adjacency matrix A with elements Ai,j , where Ai,j = sij if there exists an edge (vi, vj) ∈ E and
Ai,j = 0 otherwise. Each image tile must be connected to other tiles and can be surrounded by eight
adjacent patches. Each element of the matrix sij represents the degree of similarity or resemblance
between two connected tiles and is calculated as follows:

sij =

{
exp−(

√
(hi − hj)2) , (vi, vj) ∈ E

0 , otherwise .
(3)

This design ensures injecting a bio-topological prior such that the weight of a tile is dependent on
adjacent tiles with a similar pattern.

The transformed tile representations T = {t1, . . . , ti, . . . , tN} are again transformed by the weight
matrices Wq ∈ Rn×dq , Wk ∈ Rn×dk and Wv ∈ Rn×dv into three distinct representations: the
query representation Q(ti) = W ⊺

q ti, the key representation K(ti) = W ⊺
k ti and the value repre-

sentation V (ti) = W ⊺
v ti, where dq = dk = dv = d. The dot product of every query with all

the key vectors produces an attention matrix whose elements determine the correlation between the
different tiles of a WSI (4. in Figure 1).

The similarity mask is element-wise multiplied with the dot product of the query and key embed-
dings, generating a masked attention matrix whose non-zero elements reflect the contribution of a
tile’s neighbors to the tile score.

After obtaining the attention coefficients that correspond to the neighbors of every tile, the last step
is to aggregate this contextual information to generate a single attention weight. For each tile, we
sum the coefficients of their neighbors. The resultant tile score vector is passed through a softmax
function to ensure all weights sum to one.

Therefore, the attention coefficient of the ith tile of a WSI is given by the following equation, where
⟨.⟩ denotes the inner product between two vectors:

wi =

exp

(∑N
j=1⟨Q(ti),K(tj)⟩sij

)
∑N

k=1 exp

(∑n
j=1⟨Q(tk),K(tj)⟩skj

) . (4)

The feature embeddings t ∈ Rn×dv are then computed and weighted by their respective attention
score to give a neighbor-constrained feature vector, li, for each tile:

li = wiV (ti) (5)

3.5 FEATURE AGGREGATION AND SLIDE-LEVEL PREDICTION

The mechanism utilized to fuse the local and global value vectors allows for the adaptive blending
of local and global information described in Equation 6. The sigmoid function applied to the local
values serves as a weighting factor, enabling the model to emphasize local characteristics when they
are deemed more relevant while still retaining the contribution from the global contexts.
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m = σ(l)⊙ l+ (1− σ(l))⊙ t, (6)
where σ() denotes the sigmoid non-linearity.

The collective, WSI-level representation m ∈ Rn×d is adaptively computed as the weighted average
of the z fused vector:

z =

N∑
i=1

ai(mi) , (7)

such that:

ai =
expwT (tanh(V tTi )⊙ σ(UtTi ))∑K
j=1 expw

T (tanh(V tTj )⊙ σ(UtTj ))
, (8)

where U , V , and w are learnable parameters, ⊙ is an element-wise multiplication, and tanh() is
the hyperbolic tangent function.

CAMIL achieves a synergistic effect by combining the value vector of the neighbor-constrained at-
tention module with that of the transformer layer. The transformer layer captures global interactions
and dependencies across the entire slide, while the neighbor-constrained attention module comple-
ments it by capturing local details and context. Together, they enable CAMIL to integrate both local
and global perspectives effectively.

Finally, the slide-level prediction is given via the classification layer Wc ∈ Rc×d:

yslide = Wc ·

(∑
i

zi

)T

(9)

where c corresponds to the number of classes and
∑

the sum pooling operation applied on z. The
representation obtained from the high-attended patches is used to minimize a cross-entropy loss, and
a final classification score is produced.

4 EXPERIMENTS AND RESULTS

To demonstrate the performance of CAMIL in capturing informative contextual relationships and
improving classification and localization, various experiments were performed on three histopathol-
ogy datasets: CAMELYON16 (Ehteshami Bejnordi et al., 2017), CAMELYON17 (Bándi et al.,
2019), and TCGA-NSCLC. Additional information about the datasets, including details about the
training and test sets and our baseline models, can be found in the appendix.

4.1 CLASSIFICATION PERFORMANCE

We evaluated the performance of our context-aware pooling operator by comparing its performance
other attention-based MIL models, including CLAM-SB, CLAM-MB (Lu et al., 2021), TransMIL
(Shao et al., 2021), DTFD-MIL (Zhang et al., 2022), DSMIL Li et al. (2021a) and GTP (Zheng et al.,
2022). CLAM-SB and CLAM-MB utilize an attention-based pooling operator within the Attention-
Based MIL (AB-MIL) framework (Ilse et al., 2018). They focus on the features of individual tiles
and incorporate a clustering layer to enhance performance further. TransMIL is a transformer-based
aggregator operator, DTFD-MIL leverages class activation maps to estimate the probability of an
instance being positive under the AB-MIL framework, and DSMIL uses dual instance and bag clas-
sifiers to refine predictions. Lastly, GTP combines a graph-based representation of a WSI and a
vision transformer.

The results of using CAMIL to classify WSI in the CAMELYON16, TCGA-NSCLC, and CAME-
LYON17 datasets are presented in Table 1. The evaluation of the model’s performance in all exper-
iments includes the area under the receiver operating characteristic curve (AUC) and the slide-level
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Table 1: Classification results on CAMELYON16, TCGA-NSCLC, and CAMELYON17

CAMELYON16 TCGA-NSCLC CAMELYON17
Method ACC(↑) AUC(↑) ACC(↑) AUC(↑) ACC(↑) AUC(↑)
CLAM-SB 0.8770.029 0.9330.002 0.9030.011 0.9720.004 0.8020.039 0.8490.041

CLAM-MB 0.8940.010 0.9380.005 0.9040.010 0.9730.004 0.8030.036 0.8580.046

TransMIL 0.9050.005 0.9500.005 0.9050.011 0.9740.003 0.8040.021 0.8730.031

DTFD-MIL 0.8890.007 0.9410.005 0.8990.010 0.9640.003 0.7970.029 0.8840.032

GTP 0.8830.026 0.9210.026 0.9160.015 0.9730.006 0.8000.037 0.7620.108

DSMIL 0.8740.066 0.9490.006 0.8530.031 0.9540.015 0.8150.031 0.8630.043

CAMIL-L 0.9100.010 0.9530.002 0.9140.011 0.9750.004 0.8280.027 0.8810.031

CAMIL-G 0.8910.001 0.9500.009 0.9070.012 0.9730.004 0.8180.039 0.8750.036

CAMIL 0.9170.006 0.9590.001 0.9160.007 0.9750.003 0.8430.024 0.8810.039

accuracy (ACC), which is determined by the threshold of 0.5. When implementing our baselines,
we fine-tuned the hyperparameters used in the previously published original work to achieve the best
performance. The GTP model has the same configurations as the one described in the original paper
(Zheng et al., 2022). However, for the CAMELYON16 dataset, the batch size (k) was set to 2 due
to memory limitations.

CAMIL outperforms other MIL models in ACC and AUC across CAMELYON16, TCGA-NSCLC,
and CAMELYON17 datasets, narrowly trailing DTFD-MIL on CAMELYON17 by 0.003 in AUC.
Its effectiveness notably identifies sparse cancerous regions in WSI, where tumor cells are often
minimal, such as in the CAMELYON datasets, where tumor cells may account for as little as 5% of
any WSI, which is particularly common in metastatic sites (Cheng et al., 2021). Specifically, CAMIL
outperforms the other models on the CAMELYON16 dataset by significant margins, achieving at
least 0.9% better in the AUC and 1.2% in ACC than the existing models on CAMELYON16 and
3.8% in ACC on CAMELYON17.

GTP, with its MinCUT pooling layer, which aims to reduce the complexity of self-attention, per-
forms well on TCGA-NSCLC but less so on CAMELYON datasets. Reducing the complexity may
make computation more manageable. However, on large and complex datasets such as CAME-
LYON16 and CAMELYON17, this pooling operation may result in loss of information, particularly
in that of fine-grained details. TCGA-NSCLC is a smaller dataset, allowing the MinCUT pooling in
GTP to retain sufficient information and remain competitive.

4.2 LOCALIZATION

Table 2: Localization on CAMELYON16
Method Dice(↑) Specificity(↑)

CLAM-SB 0.4590.037 0.9870.008

CLAM-MB 0.4060.007 0.5730.045

TransMIL 0.1030.004 0.9990.001

DTFD-MIL 0.5250.033 0.9990.001

GTP 0.4180.068 0.8510.116

DSMIL 0.2590.083 0.8630.043

CAMIL 0.5150.058 0.9800.040

To evaluate the localization capability of CAMIL
compared to our baselines, we examine both qual-
itative and quantitative evidence. Similar to the ex-
perimental design of Tourniaire et al. (2023b), we
compute the Dice score to quantify the ability of the
different models to identify cancerous evidence in
cancerous slides. For normal slides, we compute
the tile-level specificity. The reference ground-truth
masks are computed at the 5th magnification level
using expert tumor delineations. Additionally, a tile
is considered cancerous if it contains at least 20%
annotated tumor. To produce the predicted masks,
we use the scaled attention scores for CAMIL, both
CLAM models, TransMIL and DSMIL, the tile level
logits for DTFD-MIL, and the GraphCAM for GTP.
We apply a threshold of 0.5 to the model’s output probabilities to generate the masks from the
tile-level predictions. The results for the Dice score and Specificity are shown in Table 2

CAMIL performs well, albeit slightly behind the DTFD-MIL model. We believe the decreased lo-
calization performance might be attributed to integrating the Nystromformer module in our model
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Figure 2: A visual example of the tumor regions and attention maps produced by different models on the
CAMELYON16 cancer dataset. The left column shows the original whole slide image, including the pathologist
ground truth annotations with tumor regions delineated by red lines. The other columns show attention maps
from left to right for CAMIL, GTP, and TransMIL, pinpointing diagnostically significant locations on the
CAMELYON16 cancer dataset.

design, akin to its role in TransMIL. TransMIL, as indicated by the attention maps in our qualitative
assessment and its slide-level performance, demonstrates the ability to grasp the general patterns
within a WSI and distinguish between normal and cancerous slides. However, despite this, con-
firmed by its low Dice score, it falls short in effectively pinpointing specific cancerous evidence
within slides. Integrating the Nystromformer into our model design might introduce a trade-off be-
tween slide-level accuracy and localization performance, resulting in improved slide-level accuracy
with an expense of slightly decreased localization performance.

Figure 2 provides a qualitative comparison of the attention maps generated by CAMIL, GTP, and
TransMIL on the CAMELYON16 cancer dataset. We visually compare these methods as they lever-
age spatial information to enhance prediction. These attention maps underscore CAMIL’s high
localization performance, as it can discern the boundaries separating normal tissue from tumor tis-
sue. Although effectively pinpointing the regions of interest, GTP attention maps appear fragmented
and less dense in cancer-associated regions. This fragmentation could be attributed to the MinCUT-
pooling operation, which may reduce the representation’s granularity and affect the heatmap’s co-
herence.

TransMIL appears to sufficiently capture long-term dependencies within the WSIs, as evidenced
by the attention maps of Figure 2. Specifically, TransMIL can identify the presence of cancer and
precisely pinpoint the cancer-associated regions. However, these maps also reveal TransMIL’s in-
ability to capture intricate details and local nuances. The attention scores are not only confined to
the cancer regions but expand beyond those to the surrounding normal tissue, impeding the precise
localization of tumor boundaries, indicating the model’s limitations in representing close proximity
relationships within the WSIs.

5 ABLATION STUDIES

Additionally, we performed ablation studies to evaluate the effectiveness of the Nystromformer mod-
ule and that of the neighboring-constrained attention module in our model. Specifically, we exam-
ined the effect of the Nystromformer block by retaining it while excluding the neighbor-constrained
attention module denoted as CAMIL-G. Table 1 demonstrates that using only the Nystromformer
block leads to satisfactory performance comparable to that of the TransMIL model, which also in-
corporates the Nystromformer. In a distinct ablation study, we omitted the Nystromformer block and
retained the neighbor-constrained attention module, referred to as CAMIL-L. CAMIL-L exhibits a
marginal improvement over the CAMIL-G model, thereby underlining its crucial role in augmenting
the model’s performance. Optimal results were achieved through the amalgamation of both models,
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Figure 3: A visual example of the tumor regions and at-
tention maps produced by different models on the CAME-
LYON16 cancer dataset. From left to right are the ground
truth annotations with tumor regions delineated by red lines,
the heatmaps for CAMIL-G, and the heatmaps for CAMIL-
L.

Figure 4: A visual example CAMIL-L fine-
grained localization abilities. From left to
right are the ground truth annotations with tu-
mor regions delineated by red lines, generated
heatmaps for CAMIL-LCAMIL-L, and the at-
tention distribution of the neighbor-constrained
attention module’s weights (before applying the
softmax function).

harnessing both the potential of the Nystromformer block to model long-term dependencies and the
prowess of the neighbor-attention module to comprehend local visual concepts.

5.1 VISUALISING GLOBAL AND LOCAL CONCEPTS

We also visualized the attention maps generated by the two versions of our model. Notably, in
Figure 3, CAMIL-G demonstrates commendable performance in understanding global concepts and
overall patterns, as it effectively detects tumor regions. However, it struggles with highly localized
tumors, encountering difficulties capturing intricate, short-term dependencies within the image.

On the other hand, the attention maps produced by CAMIL-L excel in capturing the fine details
within a WSI. This proficiency can be attributed to the context-aware module, which utilizes a sim-
ilarity mask. This mask aggregates attention weights of similar neighboring feature representations,
resulting in robust activations. In contrast, less favorable weights, particularly those associated with
negative regions, do not contribute as strongly. This observation is substantiated by the histograms of
the unnormalized attention coefficients, which are not constrained within the range of 0 to 1 (before
applying the softmax function) provided in Figure 4. These histograms underscore a notable pattern:
while a significant portion of the attention coefficients falls below the 0.5 threshold, cancerous cases
display outliers within the range of 0.5 to 2. These outliers represent stronger activations, which dis-
tinctly characterize regions affected by cancer. Conversely, all other activations consistently remain
below the 0.5 threshold, signifying a reduced emphasis on non-cancerous areas.

6 CONCLUSION

We have introduced CAMIL, a novel MIL vision transformer-based method that considers the tumor
microenvironment context while determining tile-level labels in WSIs, mirroring the approach of a
skilled pathologist. This is achieved by employing a unique neighbor-constrained attention mech-
anism, which assesses the dependencies between tiles within a WSI and incorporates contextual
constraints as prior knowledge into the MIL model. We have demonstrated that using the trans-
former and the neighborhood-attention mechanism together is imperative in successful performance
across datasets through our ablation studies. Importantly, CAMIL achieves state-of-the-art across
multiple datasets regarding tile-level ACC, AUC, and F1 scores and patch-level localization and
interpretability.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

All weakly-supervised deep learning models are trained using NVIDIA Tesla P100 GPUs. One GPU
is used for training in each experiment. We intend to make the source code of our algorithm publicly
available soon.

A.2 PERFORMANCE METRICS

Here, we provide ACC, F1, and AUC for both datasets. F1 scores were omitted from the main text
to save space.
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Table 3: Classification results on CAMELYON16
METHOD ACC(↑) F1(↑) AUC(↑)

CLAM-SB 0.8770.029 0.8400.023 0.9330.002

CLAM-MB 0.8940.010 0.845 0.019 0.9380.005

TransMIL 0.9050.005 0.8880.018 0.9500.005

DTFD-MIL 0.8890.007 0.8500.004 0.9410.005

GTP 0.8830.026 0.8630.026 0.9210.026

DSMIL 0.8740.066 0.8480.056 0.9490.006

CAMIL-L 0.9100.010 0.8720.016 0.9530.002

CAMIL-G 0.8910.001 0.8660.012 0.9500.009

CAMIL 0.9170.006 0.8810.010 0.9590.001

Table 4: Classification results on TCGA-NSCLC
METHOD ACC(↑) F1(↑) AUC(↑)

CLAM-SB 0.9030.011 0.867 0.012 0.9720.004

CLAM-MB 0.9040.010 0.8720.057 0.9730.004

TransMIL 0.9050.011 0.9110.005 0.9740.003

DTFD-MIL 0.8990.010 0.8990.014 0.9640.003

GTP 0.9160.015 0.9170.016 0.9730.006

DSMIL 0.8530.031 0.8640.024 0.9540.015

CAMIL-L 0.9140.011 0.921 0.009 0.9750.004

CAMIL-G 0.9070.012 0.9180.007 0.9730.004

CAMIL 0.9160.007 0.9180.005 0.9750.003

A.3 WSI PRE-PROCESSING

Using the publicly available WSI-prepossessing toolbox developed by (Lu et al., 2021), for both
datasets, we first automatically segmented the tissue region from each slide and exhaustively divided
it into 256×256 non-overlapping patches using ×20 magnification (Figure 1). Otsu’s method was
used to perform automatic WSI thresholding.

To avoid the computational overhead and capitalize on the rich feature representations already
learned during its previous training on CAMELYON16, CAMELYON17, and TCGA-NSCLC
datasets, we opted to use the pre-trained ResNet-18 feature extractor provided by (Li et al., 2021a).
This model was extensively trained on a large set of tiles from the CAMELYON16 dataset, densely
cropped without overlap, making it a powerful feature extractor. To make a fair comparison, we
used the same contrastive learning-based model as the feature extractor for all our baselines.

A.4 DATASETS

CAMELYON16 is a significant publicly available Whole Slide Image (WSI) dataset for lymph node
classification and metastasis detection. It includes 270 training and 129 test slides from two medical
centers, all meticulously annotated by pathologists. Some slides have partial annotations, making it
a challenging benchmark due to varying metastasis sizes.

The CAMELYON17 dataset consists of 1000 WSIs of a similar type to the CAMELYON16 dataset.
However, only half (500 WSI) of these images are labeled and accessible publicly. These images
are expertly annotated by pathologic lymph node classification into pN-stage:

• pN0: No micro-metastases or macro-metastases, or isolated tumor cells (ITCs) found.
• pN0(i+): Only ITCs found.
• pN1mi: Micro-metastases found, but no macro-metastases found.
• pN1: Metastases found in 1–3 lymph nodes, of which at least one is a macro-metastasis.
• pN2: Metastases found in 4–9 lymph nodes, of which at least one is a macro-metastasis.
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Adopting the approach discussed in Tourniaire et al. (2023b), we created a binary classification
problem by treating pN0 as normal and unifying all classes that were not pN0 into a single class,
cancerous.

The TCGA-NSCLC dataset comprises two non-small cell lung cancer subtypes, LUAD and LUSC,
with 541 slides. Unlike CAMELYON16, it lacks annotations.

A.5 DATA SPLITS

In the case of CAMELYON16, the WSIs are partitioned into a training and test set. The 270 WSIs
of the training set are split five times into a training (80%) and a validation (20%) set in a 5-fold
cross-validation fashion, and the average performance of the model on the competition test set is
reported. The official test set comprising 129 WSIs is used for evaluation. For CAMELYON17,
we used a 4-fold validation 65%, 15%, and 25% train, validation, and test splits. Regarding the
TCGA-NSCLC dataset, a 5-fold cross-validation across the available images is performed. For each
fold, the training set is split into 80% for training purposes and 20% for validation.

A.6 TRANSFORMER MODULE TO CAPTURE GLOBAL CONTEXTS

Working with large WSIs can lead to memory overload, as the self-attention mechanism used in
the transformer layer requires computing pairwise interactions between all of the tiles in each WSI.
To circumvent the memory overload associated with the long-range dependencies of large WSIs,
we adopt the Nystromformer architecture (Xiong et al., 2021) to model feature interactions that
otherwise would be intractable.

The Nystromformer approach is based on the Nystrom method, which is a technique for approxi-
mating a kernel matrix by selecting a small subset of its rows and columns. In the context of the
transformer layer, this means selecting a subset of ”landmark” tiles from each WSI to represent the
full set of tiles. The landmark tiles are chosen randomly, and their embeddings are used to compute
a low-rank approximation of the self-attention matrix. This approximation is then used instead of
the full self-attention matrix to compute the final output of the transformer layer.

The Nystromformer architecture is highly scalable regarding sequence length, making it well-suited
for processing large WSIs (Xiong et al., 2021). Additionally, by reducing the time complexity of
the self-attention mechanism from O(n2) to O(n), the Nystromformer approach can significantly
reduce the computational cost of processing each WSI.

A.7 LOCALISATION

Figure 5: Displayed are attention maps produced on Whole Slide Images (WSIs) throughout the 5-fold cross-
validation runs. The leftmost column shows the original WSIs, including ground truth annotations of tumor
regions delineated by red lines, while the succeeding columns depict the predicted probabilities from the cross-
validated model runs. The colormap signifies the likelihood with which a specific region within a WSI corre-
lates to the target output label.

In addition to the quantitative outcomes, we assessed our approach qualitatively by visually present-
ing attention maps generated by different validation runs of our model overlaid on expert-annotated
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Table 5: CAMIL using ResNet18 feature extractor pre-trained on ImageNet without SimCLR fine-
tuning.

Dataset ACC AUC
CAMELYON16 0.7230.095 0.7430.077

TCGA-NSCLC 0.6920.082 0.7980.059

tumor regions (Figure 5). These attention maps pinpoint diagnostically significant locations in the
image that are crucial for accurate tumor identification.

We notice a substantial agreement between the regions of interest identified by experts and those
generated by our attention maps. These steps are harmonized with an attention map, forming a
transformer relevancy map. Notably, our method consistently highlights the same regions within
Whole Slide Images (WSIs) across different cross-validation folds, underscoring the reliability and
robustness of our model.

A.8 SIMCLR ABLATION STUDY

SimCLR feature extraction backbone is an integral part of our model, and it plays a pivotal role
in generating concise and descriptive feature representations. Leveraging the pre-trained SimCLR
weights lays the foundation for generating meaningful similarity scores and, therefore, is crucial
for the optimal performance of the neighbor-constrained attention mask similar to many similarity-
based histopathology approaches. Incorporating ImageNet weights directly into our model notably
decreases its performance (as it does with most models Tourniaire et al. (2023a); Li et al. (2021a)),
emphasizing the necessity of SimCLR within our model architecture. Table 5 shows these results
when using a ResNet-18 pre-trained on ImageNet on CAMELYON16 and TCGA-NSCLC.
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