
Private Federated Frequency Estimation:
Adapting to the Hardness of the Instance

Jingfeng Wu∗
Johns Hopkins University

uuujf@jhu.edu

Wennan Zhu
Google Research

wennanzhu@google.com

Peter Kairouz
Google Research

kairouz@google.com

Vladimir Braverman
Rice University
vb21@rice.edu

Abstract

In federated frequency estimation (FFE), multiple clients work together to estimate
the frequencies of their collective data by communicating with a server that respects
the privacy constraints of Secure Summation (SecSum), a cryptographic multi-
party computation protocol that ensures that the server can only access the sum
of client-held vectors. For single-round FFE, it is known that count sketching is
nearly information-theoretically optimal for achieving the fundamental accuracy-
communication trade-offs [Chen et al., 2022]. However, we show that under the
more practical multi-round FEE setting, simple adaptations of count sketching are
strictly sub-optimal, and we propose a novel hybrid sketching algorithm that is
provably more accurate. We also address the following fundamental question: how
should a practitioner set the sketch size in a way that adapts to the hardness of
the underlying problem? We propose a two-phase approach that allows for the
use of a smaller sketch size for simpler problems (e.g. near-sparse or light-tailed
distributions). We conclude our work by showing how differential privacy can be
added to our algorithm and verifying its superior performance through extensive
experiments conducted on large-scale datasets.

1 Introduction

In many distributed learning applications, a server seeks to compute population information about
data that is distributed across multiple clients (users). For example, consider a distributed frequency
estimation problem where there are n clients, each holding a local data from a domain of size d,
and a server that aims to estimate the frequency of the items from the n clients with the minimum
communication cost. This task can be done efficiently by letting each client binary encode their data
and send the encoding to the server, at a local communication bandwidth cost of log(d) bits. With the
binary encoding, the server can faithfully decode each local data and compute the global frequency
vector (i.e., the normalized histogram vector).

However, the local data could be sensitive or private, and the clients may wish to keep it hidden
from the server. The above binary encoding communication method, unfortunately, allows the server
to observe each individual local data, and therefore may not satisfy the users’ privacy concerns.
Federated Analytics (FA) [Ramage and Mazzocchi, 2020, Zhu et al., 2020] addresses this issue by
developing new methods that enable the server to learn population information about the clients
while preventing the server from prying on any individual local data. In particular, a cryptographic
∗Work done during an internship at Google Research

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



multi-party computation protocol, Secure Summation (SecSum) [Bonawitz et al., 2016], has become
a widely adopted solution to provide data minimization guarantees for FA [Bonawitz et al., 2021].
Specifically, SecSum sets up a communication protocol between clients and the server, which injects
carefully designed additive noise to each data that cancels out when all of the local data are summed
together, but blurs out (information theoretically) each individual local data. Under SecSum, the
server is able to faithfully obtain the correct summation of the data from all clients but is unable to
read a single local data. The federated frequency estimation (FFE) problem refers to the distributed
frequency estimation problem under the constraint of SecSum. Clearly, the binary encoding method
is not compatible with SecSum, because when the binary encoding is passed to the server through
SecSum, the server only gets the summation of the binary encodings of the users’ data, which does
not provide sufficient information for computing the global frequency vector.

A naive approach to FFE can be accomplished by employing one-hot encoding: each client encodes its
local data into a d-dimensional one-hot vector that represents the local frequency vector and sends it
to the server through SecSum. Then the server observes the summation of the local frequency vectors
using SecSum and scales it by the number of clients to obtain the true frequency vector. However,
this one-hot encoding approach costs Θ(d log(n)) bits of communication per client. This is because
SecSum adds noise from a finite group of size Θ(log n) to each component of the d-dimensional local
frequency vector [Bonawitz et al., 2016] to avoid overflows. With a linear dependence on domain
size d, the one-hot encoding approach is inefficient for large domain problems, which is a common
setting in practice. In what follows, we focus on the regime where d > n.

Recently, linear compression methods were applied to mitigate the high communication cost issue
for FFE with large domains [Chen et al., 2021, 2022]. The idea is to first linearly compress the local
frequency vector into a lower dimensional vector before sending it to the server through SecSum;
as linear compression operators commute with the summation operator, the server equivalently
observes a linearly compressed global frequency vector though SecSum (after rescaling by the
number of clients). The server then applies standard decoding methods to approximately recover
the global frequency vector from the linearly compressed one. In particular, Chen et al. [2022]
show that CountSketch [Charikar et al., 2002] (among other sparse recovery methods) can be
used as a linear compressor for the above purpose, which leads to a communication bandwidth
cost of O(n log(d) log(n)) bits. Therefore when d > n, CountSketch achieves a saving in local
communication bandwidth compared to the one-hot encoding method that requires Θ(d log(n)) bits.
Moreover, Chen et al. [2022] show that for FFE with a single communication round, an Ω(n log(d))
local communication cost is information-theoretically unavoidable for worst-case data distributions,
i.e., we cannot do better without making additional assumptions on the global frequency vector.

Contributions. In this work, we make three notable extensions to CountSketch for FFE problems.

1. We show that the way Chen et al. [2022] set up the sketch size (linear in the number of clients
n) is often pessimistic (see Corollary 2.4). In fact, in the streaming literature, the estimation
error induced by CountSketch is known to adapt to the tail norm of the global frequency vector
[Minton and Price, 2014], which is often sub-linear in n. Motivated by this, we provide an
easy-to-use, two-phase approach that allows practitioners to determine the necessary sketch size
by automatically adapting to the hardness of the FFE problem instance.

2. We consider FFE with multiple communication rounds, which better models practical deploy-
ments of FA where aggregating over (hundreds of) millions of clients in a single round is not
possible due to device availability and limited server bandwidth. We propose a new multi-round
sketch algorithm called HybridSketch that provably performs better than simple adaptations of
CountSketch in the multi-round setting, leading to further improvements in the communication
cost. Surprisingly, we show that HybridSketch adapts to the tail norm of a heterogeneity vector
(see Theorem 3.2). Moreover, the tail of the heterogeneity vector is always no heavier, and could be
much lighter, than that of the global frequency vector, explaining the advantage of HybridSketch.
For instance, on the C4 dataset [Bowman et al., 2020] with a domain size of d = 150, 868 and
150, 000 users, we show that our method can reduce the sketch size by 83% relative to simple
sketching methods when the number of sketch rows is not very large.

3. We extend the Gaussian mechanism for CountSketch proposed by Pagh and Thorup [2022],
Zhao et al. [2022] to the multi-round FFE setting to show how our sketching methods can be made
differentially private [Dwork et al., 2006]. We also characterize the trade-offs between accuracy
and privacy for our proposed method.

2



We conclude by verifying the performance of our methods through experiments conducted on several
large-scale datasets. All proofs and additional experimental results are differed to the appendices.

2 Adapting CountSketch to the Hardness of the Instance

In this part, we focus on single-round FFE and show how CountSketch can achieve better results
when the underlying problem is simpler. Motivated by this, we also provide a two-phase method for
auto-tuning the hyperparameters of CountSketch, allowing it to automatically adapt to the hardness
of the instance.

Single-Round FFE. Consider n clients, each holding an item from a discrete domain of size d. The
items are denoted by xt ∈ [d] for t = 1, . . . , n. Then the frequency of item j is denoted by

fj := 1
n

∑n
t=1 1 [xt = j] .

We use xt to denote the one-hot representation of xt, i.e., xt = ext
where (et)

d
t=1 refers to the

canonical basis. Then the frequency vector can be denoted by

f := (f1, . . . , fd)
> = 1

n

∑n
t=1 xt ∈ [0, 1]d.

In single-round FFE, the n clients communicate with a server once under the constraint of SecSum,
and aim to estimate the frequency vector f . Note that SecSum ensures that the server can only observe
the sum of the local data.

Algorithm 1 COUNT SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: n clients with local data xt ∈ [d] for t = 1, . . . , n. Sketch length L and width W .
1: The server prepares independent hash functions and broadcasts them to each client:

h` : [d]→ [W ], σ` : [d]→ {±1}, for ` ∈ [L].

2: for Client t = 1, . . . , n in parallel do
3: Client t encodes the local data xt ∈ [d] to enc(xt) ∈ RL×W where(

enc(xt)
)
`,k

= 1 [h`(xt) = k] · σ`(xt) for ` ∈ [L], k ∈ [W ].

4: Client t sends enc(xt) ∈ RL×W to SecSum.
5: end for
6: SecSum receives

(
enc(xt)

)n
t=1

and only reveals the summation
∑n
t=1 enc(xt) to the server.

7: for Item j = 1, . . . , d in parallel do
8: Server produces L estimators for fj :

dec(j; `) := σ`(j) ·
(
1
n

∑n
t=1 enc(xt)

)
`,h`(j)

for ` ∈ [L].

9: Server computes the median of the L estimators:

dec(j) := median{dec(j; `) : ` ∈ [L]}.

10: end for
11: return (dec(j))dj=1 as estimate to (fj)

d
j=1.

Count Sketch. CountSketch is a classic streaming algorithm that dates back to [Charikar et al.,
2002]. In the literature of streaming algorithms, CountSketch has been extensively studied and is
known to be able to adapt to the hardness of the problem instance. Specifically, CountSketch of a
fixed size induces an estimation error adapting to the tail norm of the global frequency vector [Minton
and Price, 2014].

A recent work by Chen et al. [2022] apply CountSketch to single-round FFE. See Algorithm 1 for
details. They show that CountSketch approximately solves single-round FFE with a communication
cost of O(n log(d) log(n)) bits per client. Moreover, they show Ω(n log(d)) bits of communication
per client is unavoidable for worst-case data distributions (unless additional assumptions are made),

3



confirming its near optimality. However, the results by Chen et al. [2022] are pessimistic as they
ignore the ability of CountSketch to adapt to the hardness of the problem instance. In what follows,
we show how the performance of CountSketch can be improved when the underlying problem
becomes simpler.

We first present a problem-dependent accuracy guarantee for CountSketch of a fixed size, L×W ,
that gives the sharpest bound to our knowledge. The bound is due to Minton and Price [2014] and is
restated for our purpose.

Proposition 2.1 (Restated Theorem 4.1 in Minton and Price [2014]). Let (f̂j)
d
j=1 be estimates

produced by CountSketch (see Algorithm 1). Then for each p ∈ (0, 1), W ≥ 2 and L ≥ log(1/p),
it holds that: for each j ∈ [d], with probability at least 1− p,

|f̂j − fj | < C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(f∗i )2,

where (f∗i )i≥1 refers to (fi)i≥1 sorted in non-increasing order, and C > 0 is an absolute constant.

For the concreteness of discussion, we will focus on `∞ as a measure of estimation error in the
remainder of the paper. Our discussions can be easily extended to `2 or other types of error measures.
Proposition 2.1 directly implies the following `∞-error bounds for CountSketch (by an application
of union bound).
Corollary 2.2 (`∞-error bounds for CountSketch). Consider Algorithm 1. Then for each p ∈ (0, 1),
L = log(d/p) and W ≥ 2, it holds that: with probability at least 1− p,

‖dec(·)− f‖∞ < C ·
√

1

W
·
∑
i>W

(f∗i )2, (1)

where C > 0 is an absolute constant. In particular, (1) implies that
‖dec(·)− f‖∞ < C/W.

According to Corollary 2.2, the estimation error is smaller when the underlying frequency vector
(f∗i )i≥1 has a lighter tail. In other words, CountSketch requires a smaller communication bandwidth
when the global frequency vector has a lighter tail. Our next Corollary 2.3 precisely characterizes
this adaptive property in terms of the required communication bandwidth. To show this, we will need
the following definition on the probable approximate correctness of an estimate.

Definition 1 ((τ, p)-correctness). An estimate f̂ := (f̂i)
d
i=1 of the global frequency vector f :=

(fi)
d
i=1 is (τ, p)-correct if

P
{
‖f̂ − f‖∞ := maxi |f̂i − fi| > τ

}
< p.

Corollary 2.3 (Oracle sketch size). Fix parameters τ, p ∈ (0, 1). Then for CountSketch (see
Algorithm 1) to produce an (τ, p)-correct estimate, it suffices to set the sketch size to L = log(d/p)
and

W = C ·min

{(
#{fi : fi ≥ τ}+ 1

τ2 ·
∑
fi<τ

f2i

)
, n

}
, (2)

where C > 0 is an absolute constant. In particular, the width W in (2) satisfies
W ≤Wworst := C ·min

{
2/τ, n

}
. (3)

Corollary 2.3 suggests that the sketch size can be set smaller if the underlying frequency vector has a
lighter tail. When translated to the communication bits per client (that is O(L ·W · log(n)), where
log(n) accounts for the cost of SecSum), Corollary 2.3 implies that CountSketch requires

O
(

min
{

#{fi ≥ τ}+ 1
τ2

∑
fi<τ

f2i , n
}

log(d) log(n)
)
≤ O(min{1/τ, n} log(d) log(n)) (4)

bits of communication per client to be (τ, p)-correct. In the worst case where (fi)
d
i=1 is Θ(n)-sparse

and τ = O(1/n), (4) nearly matches the Ω(n log(d)) information-theoretic worst-case communica-
tion cost shown in Chen et al. [2022], ignoring the log(n) factor from SecSum. However, in practice,
(fi)

d
i=1 has a fast-decaying tail, and (4) suggests that CountSketch can use less communication to

solve the problem. We provide the following examples for a better illustration of the sharp contrast
between the worst and typical cases.

4



Corollary 2.4 (Examples). Fix parameters τ, p ∈ (0, 1). Consider Algorithm 1 with sketch length
L = log(d/p). Then in each case for Algorithm 1 to produce an (τ, p)-correct estimate for τ > 1/n:

1. When fi ∝ 2−i, it suffices to set W = Θ(log(1/τ)).
2. When fi ∝ i−a for a > 1, it suffices to set W = Θ(τ−1/a).
3. When fi ∝ i−1 log−b(i) for b > 1, it suffices to set W = Θ(τ−1 log−b(1/τ)).
4. When fi = 10/n for i = 1, . . . , n/10, it suffices to set W = Θ(1/τ).

A Two-Phase Method for Hyperparameter Setup. Corollary 2.3 allows to use CountSketch with
a smaller width for an easier single-round FFE problem, saving communication bandwidth. However,
the sketch size formula given by (2) in Corollary 2.3 relies on crucial information of the frequency
(fi)i≥1, i.e., #{fi : fi ≥ τ} and

∑
fi<τ

f2i , which are unknown to who sets the sketch size. Thus, it
is unclear if and how these gains can be realized in practical deployments.

We resolve this quandary by observing that in practice, the frequency vector often follows Zipf’s law
[Cevher, 2009, Powers, 1998]. This motives us to conservatively model the global frequency vector
by a polynomial with parameters. By doing so, we can first run a small CountSketch to collect data
from a (randomly sampled) fraction of the clients for estimating the parameters. Then based on the
estimated parameter, we can set up an appropriate sketch size for a CountSketch to solve the FFE
problem. This two-phase method is formally stated as follows.

We approximate the (sorted) global frequency vector (f∗i )di=1 by a polynomial [Cevher, 2009] with
two parameters α > 0 and β > 0, such that

f∗i ≈ poly (i;α, β) , poly (i;α, β) :=

{
β · i−α, i ≤ i∗;
0, i > i∗,

where i∗ := max{i :
∑i
j=1 β · j−α ≤ 1} is set such that poly (i;α, β) is a valid frequency vector.

Here’s an executive summary of the proposed approach for setting the sketch size.

1. Randomly select a subset of clients (e.g., 5, 000 out of 106.)
2. Fix a small sketch (e.g., 16 × 100) and run Algorithm 1 with the subset of clients to obtain an

estimate (f̃i).
3. Use the top-k values (e.g., top 20) from f̃i to fit a polynomial with parameter α and β (under

squared error).
4. Solve Equation (4) under the approximation that f∗i ≈ β · iα and output W according to the result.

Experiments. We conduct three sets of experiments to verify our methods. In the first set of
experiments, we simulate a single-round FFE problem with the Gowalla dataset [Cho et al., 2011].
The dataset contains 6, 442, 892 lists of location information. We first construct a domain of size
d = 175, 000, which corresponds to a grid over the US map. Then we sample n = d/10 = 17, 500
lists of the location information (that all belong to the domain created) to represent the data of n
clients, uniformly at random. This way, we set up a single-round FFE problem with n = 17, 500
clients in a domain of size d = 175, 000. In the experiments, we fix the confidence parameter to be
p = 0.1 and the sketch length to be L = ln(2d/p) ≈ 16. The targeted `∞-error τ is chosen evenly
from (10−3, 10−1). We only test τ > 20/n because it is less important to estimate frequencies over
items with small counts (say, 20). For CountSketch, we compute sketch width with three strategies,
using (2) (called “instance optimal”), using (3) (called “minimax optimal”), and using the two-phase
method. We emphasize that the “instance optimal” method is not a practical algorithm as it requires
access to unknown information about the frequency; we use it only for demonstrating the correctness
of our theory. We set all constant factors to be 2. The results are presented in Figures 1(a) and (b). We
observe that the “minimax optimal” way of hyperparameter choice is in fact suboptimal in practice,
and is improved by the “instance optimal” and the two-phase strategies.

In the second set of experiments, we run simulations on the “Colossal Clean Crawled Corpus” (C4)
dataset [Bowman et al., 2020], which consists of clean English text scraped from the web. We
treat each domain in the dataset as a user and calculate the number of examples each user has. The
domain size d = 150, 868, which is the maximum example count per user. We randomly sample
n = 150, 000 users from the dataset. We fix the sketch length to be L = 5. Other parameters are the
same as the Gowalla dataset. The results are presented in Figures 1(d) and (e), and are consistent
with what we have observed in the Gowalla simulations.

5



10 3 10 2 10 1

target  error

10 3

10 2

10 1

ac
hi

ev
ed

 
 e

rro
r

y=x
minimax optimal
instance optimal
two-phase-method

10 3 10 2 10 1

target  error

100

101

102

103

sk
et

ch
 w

id
th

minimax optimal
instance optimal
two-phase-method

0 200 400 600 800 1000 1200

sketch width

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

ac
hi

ev
ed

 
 e

rro
r

shared design
fresh design
hybrid design

(a) Gowalla, single round (b) Gowalla, single round (c) Gowalla, multi-round

10 3 10 2 10 1

target  error

10 4

10 3

10 2

10 1

ac
hi

ev
ed

 
 e

rro
r

y=x
minimax optimal
instance optimal
two-phase-method

10 3 10 2 10 1

target  error

102

103

sk
et

ch
 w

id
th

minimax optimal
instance optimal
two-phase-method

0 200 400 600 800 1000 1200

sketch width

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ac
hi

ev
ed

 
 e

rro
r

shared design
fresh design
hybrid design

(d) C4, single round (e) C4, single round (f) C4, multi-round

10 3 10 2 10 1

target  error

10 3

10 2

10 1

ac
hi

ev
ed

 
 e

rro
r

y=x
minimax optimal
instance optimal
two-phase-method

10 3 10 2 10 1

target  error

100

101

102

103

sk
et

ch
 w

id
th

minimax optimal
instance optimal
two-phase-method

0 100 200 300 400 500 600
sketch width

0.000

0.005

0.010

0.015

0.020

ac
hi

ev
ed

 
 e

rro
r

shared design
fresh design
hybrid design

(g) Setiment-140, single round (h) Setiment-140, single round (i) Setiment-140, multi-round

Figure 1: Single-round and multi-round FFE simulations. Subfigures (a) and (b) compare different hyperpa-
rameter strategies for CountSketch in a single-round FFE problem on the Gowalla dataset [Cho et al., 2011].
Subfigure (c) compares three sketch methods in a multi-round FFE problem on the Gowalla dataset. Subfigures
(d), (e), and (f) are counterparts of subfigures (a), (b), and (c), respectively, but on the C4 [Bowman et al., 2020]
dataset. Similarly, subfigures (g), (h), and (i) are counterparts of subfigures (a), (b), and (c), respectively, but on
the Sentiment-140 [Go et al., 2009] dataset.

In the third set of experiments, we run simulations on a Twitter dataset Sentiment-140 [Go et al.,
2009]. The dataset contains d = 739, 972 unique words from N = 659, 497 users. We randomly
sample one word from each user to construct our experiment dataset. The number of rounds M = 10,
and in each round, n = N/10 = 65, 949 clients participate. The algorithm setup is the same as in the
Gowalla experiments. Results are provided in Figures 1(g) and (h), and are consistent with our prior
understandings.

3 Sketch Methods for Multi-Round Federated Frequency Estimation

In practice, having all clients participate in a single communication round is usually infeasible due to
the large number of devices, their unpredictable availability, and limited server bandwidth [Bonawitz
et al., 2019]. This motivates us to consider a multi-round FFE setting.

Multi-Round FFE. Consider a FFE problem with M rounds of communication. In each round,
n clients participate, each holding an item from a universe of size d. The items are denoted by
x
(m)
t ∈ [d], where t ∈ [n] denotes the client index and m ∈ [M ] denotes the round index. For

simplicity, we assume in each round a new set of clients participate. So in total there are N = Mn
clients. Then the frequency of item j is now denoted by

fj :=
1

Mn

M∑
m=1

n∑
t=1

1
[
x
(m)
t = j

]
.

For the m-th round, the local frequency is denoted by f (m)
j := 1

n

∑n
t=1 1

[
x
(m)
t = j

]
. Clearly, we

have fj = 1
M

∑M
m=1 f

(m)
j . Similarly, we use x

(m)
t to denote the one-hot representation of x(m)

t , i.e.,

6



0 100 200 300 400 500 600 700 800
sketch width

10 3

10 2

10 1

 e
rro

r i
n 

ex
pe

ct
at

io
n

shared design
fresh design
hybrid design

(a) fi ∝ i−1.1

0 50 100 150 200 250 300 350 400
sketch width

10 3

10 2

10 1

100

 e
rro

r i
n 

ex
pe

ct
at

io
n

shared design
fresh design
hybrid design

(b) fi ∝ i−3

25 50 75 100 125 150 175 200
sketch width

10 3

10 2

10 1

100

 e
rro

r i
n 

ex
pe

ct
at

io
n

shared design
fresh design
hybrid design

(c) fi ∝ i−5

Figure 2: Shared vs. Hybrid vs. Fresh Sketches. We refer the reader to Section 3 for the definitions of the three
methods. We compute the expected `∞-error for shared/hybrid/fresh sketches for a homogeneous, multi-round
FFE problem. The domain size is d = 105. The number of rounds is M = 10. In all setups, the sketch length
is fixed to L = 5. In every setting, the `∞ error is averaged with 1, 000 random repeats for simulating the
expectation. In the case when the global frequency vector is a low-degree polynomial, hybrid sketch performs
similarly to fresh sketch, and both are better than shared sketch. As long as the global frequency vector is a
slightly higher degree polynomial (e.g., with a degree higher than 3), then hybrid sketch is significantly better
than both shared and fresh sketches.

x
(m)
t = e

x
(m)
t

where (et)
d
t=1 refers to the canonical basis. Then the frequency vector can be denoted

by f := (f1, . . . , fd)
>. The aim is to estimate the frequency vector f in a manner that is compatible

with SecSum.

Baseline Method 1: Shared Sketch. A multi-round FFE problem can be reduced to a single-round
FFE problem with a large communication. Specifically, one can apply the CountSketch with the
same randomness for every round; after collecting all the sketches from the M round, one simply
averages them. Due to the linearity of the sketching compress method, this is equivalent to a single
round setting with N = Mn clients. We refer to this method as count sketch with shared hash design
(SharedSketch).

Thanks to the reduction idea, we can obtain the error and sketch size bounds for SharedSketch via
applying Corollaries 2.2 and 2.3 to SharedSketch by replacing n by N = Mn,

Baseline Method 2: Fresh Sketch. A multi-round FFE problem can also be broken down to M
independent single-round FFE problems. Specifically, one can apply independent CountSketch in
each round, and decode M local estimators for the M local frequency vectors. As the CountSketch
produces an unbiased estimator, one can show that the average of the M local estimators is an
unbiased estimator for the global frequency vector. We call this method count sketch with fresh hash
design (FreshSketch). We provide the following bound for FreshSketch. The proof of which is
motivated by Huang et al. [2021].

Theorem 3.1 (Instance-specific bound for FreshSketch). Let (f̂j)
d
j=1 be estimates produced by

FreshSketch. Then for each p ∈ (0, 1), W ≥ 1 and L ≥ log(1/p), it holds that: for each j ∈ [d],
with probability at least 1− p,

|f̂j − fj | < C ·
√

log(1/p) log(M/p)

L
· 1

W
·
∑
i>W

(F ∗i )2,

where C is an absolute constant, and (F ∗i )di=1 are defined as in Theorem 3.2.

Hybrid Sketch. Both SharedSketch and FreshSketch reduce a multi-round FFE problem into
single-round FFE problem(s). In contrast, we show a more comprehensive sketching method, called
count sketch with hybrid hash design (HybridSketch), that solves a multi-round FFE problem as
a whole. HybridSketch is presented as Algorithm 2. Specifically, HybridSketch generates M
sketches that share a set of bucket hashes but use independent sets of sign hashes. Then in the
m-th communication round, participating clients and the server communicate by the CountSketch
algorithm based on the m-th sketch, so the server observes the summation of the sketched data
through SecSum. After collecting M summations of the sketched local data, the server first computes
averages over different rounds for variance reduction, then computes the median over different repeats

7



Algorithm 2 HYBRID SKETCH FOR FEDERATED FREQUENCY ESTIMATION

Require: The number of rounds M . N = Mn clients with local data x(m)
t ∈ [d] for m ∈ [M ] and

t ∈ [n]. Sketch length L and width W .
1: The server prepares independent hash functions and broadcasts them to each client:

h` : [d]→ [W ], σ
(m)
` : [d]→ {±1} for ` ∈ [L], m ∈ [M ].

2: for Round m = 1, . . . ,M in parallel do
3: for Client t = 1, . . . , n in parallel do
4: Client (m, t) encodes the local data x(m)

t to enc(m)
(
x
(m)
t

)
∈ RL×W where(

enc(m)
(
x
(m)
t

))
`,k

= 1
[
h`(x

(m)
t ) = k

]
· σ(m)

` (x
(m)
t ) for ` ∈ [L], k ∈ [W ].

5: Client (m, t) sends enc(m)
(
x
(m)
t

)
to SecSum.

6: end for
7: SecSum receives

(
enc(m)(x

(m)
t )

)n
t=1

and reveals the sum
∑n
t=1 enc

(m)
(
x
(m)
t

)
to the server.

8: end for
9: for Item j = 1, . . . , d in parallel do

10: Server produces M × L estimators for fj :

dec(j;m, l) := σ
(m)
` (j) ·

(
1
n

∑n
t=1 enc

(m)
(
x
(m)
t

))
`,h`(j)

for m ∈ [M ], ` ∈ [L].

11: Server computes the median over ` ∈ [L] of the averages over m ∈ [M ] of the estimators:

dec(j) := median
{

1
M

∑M
m=1 dec(j;m, l), ` ∈ [L]

}
.

12: end for
13: return

(
dec(j)

)d
j=1

as estimate to (fj)
d
j=1.

(or sketch rows) for success probability amplification. We provide the following problem-dependent
bound for HybridSketch.

Theorem 3.2 (Instance-specific bound for HybridSketch). Let (f̂j)
d
j=1 be estimates produced by

HybridSketch (see Algorithm 2). Define a heterogeneity vector (Fi)
d
i=1 by

Fi :=
1

M

√√√√ M∑
m=1

(
f
(m)
i

)2
, i = 1, . . . , d.

Clearly, it holds that Fi ≤ fi for every i ∈ [d]. Let (F ∗i )i≥1 be (Fi)i≥1 sorted in non-increasing
order. Then for each p ∈ (0, 1), W ≥ 1 and L ≥ log(1/p), it holds that: for each j ∈ [d], with
probability at least 1− p,

|f̂j − fj | < C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(F ∗i )2,

where C is an absolute constant.

We would like to point out that, although our HybridSketch algorithm is developed for multi-round
frequency estimation problems, it can be adapted to multi-round vector recovery problems as well.
Hence it could have broader applications in other federated learning scenarios.

Hybrid Sketch vs. Fresh Sketch. By comparing Theorem 3.2 with Theorem 3.1, we see that, with
the same sketch size, the estimation error of HybridSketch is smaller than that of FreshSketch
by a factor of

√
log(M/p). This provides theoretical insights that HybridSketch is superior to

FreshSketch in terms of adapting to the instance hardness in multi-round FFE settings. This is also
verified empirically by Figure 2.

8



0 200 400 600 800 1000 1200

sketch width
102

103

104

105

# 
ite

m
s w

/ e
rro

r 
>

0.
1

/w
id

th shared design
fresh design
hybrid design

Figure 3: The number of items with error greater than
0.1/width for Shared, Hybrid, and Fresh Sketches with
C4 dataset. HybridSketch with a width of 200 achieves
roughly the same error as SharedSketch with a width of
1200 and Fresh sketch with a width of 600.

Hybrid Sketch vs. Shared Sketch. We now
compare the performance of HybridSketch
and SharedSketch by comparing Theorem 3.2
and Proposition 2.1 (under a revision of replac-
ing n with N = Mn). Note that

Fi =
1

M

√√√√ M∑
m=1

(
f
(m)
i

)2 ≤ 1

M

M∑
m=1

f
(m)
i = fi.

So with the same sketch size, HybridSketch
achieves an error that is no worse than csc in
every case. Moreover, in the homogeneous case
where all local frequency vectors are equivalent
to the global frequency vector, i.e., f (m) ≡ f for
all m, then it holds that Fi = fi/

√
M. So in the

homogeneous case, HybridSketch achieves an
error that is smaller than that of csc by a factor
of 1/

√
M . In the general cases, the local fre-

quency vectors are not perfectly homogeneous,
then the improvement of HybridSketch over
SharedSketch will depend on the heterogeneity of these local frequency vectors.

Experiments. We conduct three sets of experiments to verify our understandings about these sketches
methods for multi-round FFE.

In the first sets of experiments, we simulate a multi-round FFE problem in homogeneous settings,
where in every round the local frequency vectors are exactly the same. More specially, we set a
domain size d = 105, a number of rounds M = 10 and test three different cases, where all the
local frequency vectors are the same and (hence also the global frequency vector) are proportional
to (i−1.1)di=1, (i−2)di=1 and (i−5)di=1, respectively. In all the settings, we fix the sketch length to
L = 5. In each experiment, we measure the expected `∞-error of each method with the averaging
over 1, 000 independent repeats. The results are plotted in Figure 2. We can observe that: for
low-degree polynomials, HybridSketch is nearly as good as FreshSketch and both are better
than SharedSketch. But for slightly high degree polynomials (with a degree of 3), HybridSketch
already outperforms both FreshSketch and SharedSketch. The numerical results are consistent
with our theoretical analysis.

In the second sets of experiments, we simulate a multi-round FFE problem with the Gowalla dataset
[Cho et al., 2011]. Similar to previously, we construct a domain of size d = 175, 000, which
corresponds to a grid over the US map. Then we sample N = d = 175, 000 lists of the location
information (that all belong to the domain created) to represent the data of N clients, uniformly at
random. We set the number of rounds to be M = 10. In each round, n = N/M = 17, 500 clients
participate. The results are presented in Figure 1(c). Here, the frequency and heterogeneity vectors
have heavy tails, so HybridSketch and FreshSketch perform similarly and both are better than
SharedSketch. This is consistent with our theoretical understanding.

In the third sets of experiments, we run simulations on the C4 [Bowman et al., 2020] dataset. Similar to
the single round simulation, the domain size d = 150, 868. We randomly sample N = 150, 000 users
from the dataset. The number of rounds M = 10, and in each round, n = N/10 = 15, 000 clients
participate. The results are provided in Figures 1(f) and 3. Here, the frequency and heterogeneity
vectors have moderately light tails, and Figure 3 already suggests that HybridSketch produces an
estimate that has a better shape than that produced by FreshSketch and SharedSketch, verifying
the advantages of HybridSketch.

4 Differentially Private Sketches

While SecSum provides security guarantees, it does not provide differential privacy guarantees. In
this part, we discuss a simple modifications to the sketching algorithms to make them provably
differentially private (DP).

9



Definition 2 ((ε, δ)-DP [Dwork et al., 2006]). Let alg(·) be a randomized algorithm that takes a
dataset D as its input. Let P be its probability measure. alg(·) is (ε, δ)-DP if: for every pair of
neighboring datasets D and D′, it holds that

P{alg(D) ∈ E} < eε · P{alg(D′) ∈ E}+ δ.

In our case, a dataset corresponds to all participated clients (or their data), and two neighboring
datasets should be regarded as two sets of clients (local data) that only differ in a single client (local
data). The algorithm refers to all procedures before releasing the final frequency estimate, and all the
intermediate computation is considered private and is not released.

We work with central DP, that is, server releases data in a differentially private way while clients
do not release data. We focus on HybridSketch as a representative algorithm. The DP mechanism
can also be extended to the other sketching algorithms. Specifically, we use a DP mechanism that
adds independent Gaussian noise to each entry of the sketching matrix, which is initially proposed
for making CountSketch differentially private by Pagh and Thorup [2022], Zhao et al. [2022].

We provide the following theorem characterizing the trade-off between privacy and accuracy.
Theorem 4.1 (DP-hybrid sketch). Consider a modified Algorithm 2, where we add to each entry of
the sketching matrix an independent Gaussian noise, N (0, c0 ·

√
L log(1/δ)/ε), where c0 > 0 is

a known constant. Suppose that L = log(d/p) and W ≥ 2. Then the final output of the modified
Algorithm 2, denoted by (f̂j)

d
j=1, is (ε, δ)-DP for ε < 1 and δ < 0.1. Moreover, with probability at

most 1− p, it holds that

max
j
|f̂j − fj | < C ·

(√∑
i>W (F ∗i )2

W
+

√
log(d/p) log(1/δ)

n
√
Mε

)
,

where C > 0 is an absolute constant and (F ∗i )di=1 are as defined in Theorem 3.2.

It is worth noting that if the number of clients per round (n) is fixed, then a larger number of rounds
M improves both the estimation error and the DP error in non-worst cases, e.g., when the local
frequency vectors are nearly homogenous. However, if the total number of clients (N = Mn) is
fixed, then a larger number of rounds M improves the estimation error but makes the DP error worse.

When M = 1, Theorem 4.1 recovers the bounds for differentially private CountSketch in Pagh
and Thorup [2022], Zhao et al. [2022] and Theorem 5.1 in Chen et al. [2022]. Moreover, Chen
et al. [2022] shows that in single-round FFE, for any algorithm that achieves an `∞-error smaller
than τ := O(

√
log(d) log(1/δ)/(nε)), in the worse case, each client must communicate Ω(n ·

min{
√

log(d)/ log(1/δ), log(d)}) bits (see Their Corollary 5.1). In comparison, According to
Theorem 4.1 and Corollary 2.3, the differentially private CountSketch can achieve an `∞-error
smaller than τ with length L h log(d) and width

W = C ·min

{(
#{fi : fi ≥ τ}+

1

τ2
·
∑
fi<τ

f2i

)
, n

}
≤ C ·min{2/τ, n},

resulting in a per-client communication of O(WL log(n)) bits, which matches the minimax lower
bound in Chen et al. [2022] ignoring a log(n) factor, but could be much smaller in non-worst cases
where (fi)

d
i=1 decays fast.

5 Concluding Remarks
We make several novel extensions to the count sketch method for federated frequency estimation
with one or more communication rounds. In the single round setting, we show that count sketch
can achieve better communication efficiency when the underlying problem is simpler. We provide a
two-phase approach to automatically select a sketch size that adapts to the hardness of the problem. In
the multiple rounds setting, we show a new sketching method that provably achieves better accuracy
than simple adaptions of count sketch. Finally, we adapt the Gaussian mechanism to make the hybrid
sketching method differentially private.

We remark that the improvement of the instance-dependent method relies on the assumptions that the
underlying frequency has a lighter tail, which might be unverifiable a priori due to constraints, e.g.,
limited communication and privacy budget. Finally, this work focuses on an offline setting where the
frequency is considered to be fixed. Extending our results to an online setting where the frequency is
varying is an interesting future direction.

10



Acknolwdgement

We thank the anonymous reviewers for their helpful comments. We thank Brendan McMahan for
insightful discussions during the project. VB has been partially supported by National Science
Foundation Awards 2244899 and 2333887 and the ONR award N000142312737.

References
Kallista Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar

Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for federated
learning on user-held data. arXiv preprint arXiv:1611.04482, 2016.

Kallista Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir
Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon Van
Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards federated learning at
scale: System design. In MLSys. mlsys.org, 2019.

Kallista Bonawitz, Peter Kairouz, Brendan McMahan, and Daniel Ramage. Federated learning
and privacy: Building privacy-preserving systems for machine learning and data science on
decentralized data. Queue, 19(5):87–114, 2021.

Samuel R. Bowman, Gabriel Angeli, Siddharth Jain, Jared Kaplan, Prafulla Dhariwal, Saurabh
Neelakantan, Jonathon Shlens, and Dario Amodei. C4: Colossal clean crawled corpus. arXiv
preprint arXiv:2005.14165, 2020.

Volkan Cevher. Learning with compressible priors. Advances in Neural Information Processing
Systems, 22, 2009.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
International Colloquium on Automata, Languages, and Programming, pages 693–703. Springer,
2002.

Wei-Ning Chen, Christopher A Choquette-Choo, and Peter Kairouz. Communication efficient
federated learning with secure aggregation and differential privacy. In NeurIPS 2021 Workshop
Privacy in Machine Learning, 2021.

Wei-Ning Chen, Ayfer Özgür, Graham Cormode, and Akash Bharadwaj. The communication cost of
security and privacy in federated frequency estimation. arXiv preprint arXiv:2211.10041, 2022.

Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-
based social networks. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1082–1090, 2011.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pages 265–284. Springer, 2006.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision.
CS224N Project Report, Stanford, 1(12), 2009.

Ziyue Huang, Yuan Qiu, Ke Yi, and Graham Cormode. Frequency estimation under multiparty
differential privacy: One-shot and streaming. arXiv preprint arXiv:2104.01808, 2021.

Gregory T Minton and Eric Price. Improved concentration bounds for count-sketch. In Proceedings
of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 669–686. SIAM,
2014.

Rasmus Pagh and Mikkel Thorup. Improved utility analysis of private countsketch. arXiv preprint
arXiv:2205.08397, 2022.

David M. W. Powers. Applications and explanations of Zipf’s law. In New Methods in Language Pro-
cessing and Computational Natural Language Learning, 1998. URL https://aclanthology.
org/W98-1218.

11

https://aclanthology.org/W98-1218
https://aclanthology.org/W98-1218


Daniek Ramage and Stefano Mazzocchi. Federated analytics: Collaborative
data science without data collection. https://ai.googleblog.com/2020/05/
federated-analytics-collaborative-data.html, 2020.

Fuheng Zhao, Dan Qiao, Rachel Redberg, Divyakant Agrawal, Amr El Abbadi, and Yu-Xiang Wang.
Differentially private linear sketches: Efficient implementations and applications. arXiv preprint
arXiv:2205.09873, 2022.

Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li. Federated heavy hitters
discovery with differential privacy. In International Conference on Artificial Intelligence and
Statistics, pages 3837–3847. PMLR, 2020.

12

https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html


A Missing Proofs for Section 2

A.1 Proof of Proposition 2.1

Proof of Proposition 2.1. We refer the reader to Theorem 4.1 in Minton and Price [2014].

A.2 Proof of Corollary 2.2

Proof of Corollary 2.2. From Proposition 1 we know that

for every j ∈ [d], P
{
|dec(j)− fj | > C ·

√
log(1/δ)

L
· 1

W
·
∑
i>W

(f∗i )2
}
< δ.

By union bound we have

P
{

there exists j ∈ [d], |dec(j)− fj | > C ·
√

log(1/δ)

L
· 1

W
·
∑
i>W

(f∗i )2
}
< dδ.

Replacing δ with δ/d, setting L = log(d/δ), and using the definition of `∞-norm, we obtain

P
{
‖dec(·)− f‖∞ > C ·

√
1

W
·
∑
i>W

(f∗i )2
}
< δ.

We next show that: √
1

W
·
∑
i>W

(f∗i )2 ≤ 1

W
.

To this end, we first show that f∗W ≤ 1
W . If not, we must have for i = 1, . . . ,W , f∗i ≥ f∗W > 1

W ,

as (f∗i )di=1 is sorted in non-increasing order. Then
∑d
i f
∗
i ≥

∑W
i=1 f

∗
i > 1, which contradicts to the

fact that (f∗i )di=1 is a frequency vector. We have shown that f∗W ≤ 1
W , and this further implies that

for any i ≥W , f∗i ≤ f∗W ≤ 1
W . Then we can obtain√

1

W
·
∑
i>W

(f∗i )2 ≤
√

1

W 2
·
∑
i>W

f∗i ≤
1

W
,

since (f∗i )di=1 is a frequency vector. We have completed all the proof.

A.3 Proof of Corollary 2.3

Proof of Corollary 2.3. Define

E(W ) :=

√
1

W

∑
i>W

(f∗i )2.

We will show the following:

1. If W ≥ #{fi ≥ τ}+ 1
τ2

∑
fi<τ

f2i , then E(W ) ≤ τ .

2. Moreover, if E(W ) ≤ τ , then W ≥ 1
2

(
#{fi ≥ τ}+ 1

τ2

∑
fi<τ

f2i
)
.

Then Corollary 2.3 follows by combining Corollary 2.2 with the above claims.

We first show the first part. First note that W ≥ #{fi ≥ τ} and that (f∗i )di=1 is sorted in non-
increasing order, so for all i ≥W it holds that f∗i < τ . Therefore,

E(W ) :=

√
1

W

∑
i>W

(f∗i )2 ≤
√

1

W

∑
fi<τ

f2i .

Moreover, note that W ≥ 1
τ2

∑
fi<τ

f2i , so we further have E(W ) ≤ τ .

13



To show that second part, we first note that, by definition, E(W ) ≤ τ is equivalent to

2W ≥W +
1

τ2

∑
i>W

(f∗i )2.

Consider the following function

F (k) := k +
1

τ2

∑
i>k

(f∗i )2, k ≥ 1,

one can directly verify that F (k) is minimized at k∗ := #{i : fi ≥ τ}; moreover,

F (k∗) = k∗ +
1

τ2

∑
i>k∗

(f∗i )2 = #{fi ≥ τ}+
1

τ2

∑
fi<τ

f2i .

Therefore, we have

2W ≥ F (W ) ≥ F (k∗) = #{fi ≥ τ}+
1

τ2

∑
fi<τ

f2i .

This completes our proof.

B Missing Proofs for Section 3

B.1 Proof of Theorem 3.1

Proof of Theorem 3.1. The proof is motivated by Huang et al. [2021].

Define the following events

E
(m)
j :=

{
|f̂ (m)
j − f (m)

j | ≤ C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2}
, m ∈ [M ], j ∈ [d].

Then by Proposition 2.1 we have

P
{
E

(m)
j

}
≥ 1− p.

Then by union bound, we have

P
{ M⋂
m=1

E
(m)
j

}
≥ 1−Mp.

Conditional on the event of
⋂M
m=1E

(m)
j , we know that every random variable f̂ (m)

j −f (m)
j is bounded

within (
− F (m), F (m)

)
,

where

F (m) := C ·
√

log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2
.

So by Hoeffding inequality, we have

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√√√√ log(2/p1)

2M2

M∑
m=1

(
F (m)

)2 ∣∣∣∣∣
M⋂
m=1

E
(m)
j

}
≥ 1− p1

Then we have

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√√√√ log(2/p1)

2M2

M∑
m=1

(
F (m)

)2} ≥ 1− p1 −Mp.

14



Note that

log(2/p1)

2M2

M∑
m=1

(
F (m)

)2
=

log(2/p1)

2M2

M∑
m=1

C2 · log(1/p)

L
· 1

W
·
∑
i>W

(
f
(m)
i

)2
= C2 · log(2/p1) log(1/p)

2L
· 1

W
·
∑
i>W

(
Fi
)2

So we have

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√
C2 · log(2/p1) log(1/p)

2L
· 1

W
·
∑
i>W

(
Fi
)2}

≥ 1− p1 −Mp.

Note replace p1 = p′/2 and p = p′/(2M), we have that

P

{∣∣∣∣ 1

M

M∑
m=1

f̂
(m)
j − 1

M

M∑
m=1

f
(m)
j

∣∣∣∣ ≤
√
C ′ · log(1/p′) log(M/p′)

L
· 1

W
·
∑
i>W

(
Fi
)2} ≥ 1− p′.

B.2 Proof of Theorem 3.2

Proof of Theorem 3.2. Let us consider the hybrid sketch approach in Algorithm 2. Recall that within
a round, clients use the same set of hash functions to construct their sketching matrices. Across
different rounds, clients use the same set of location hashes but a fresh set of sign hashes. Denote the
hash functions by:

h` : [d]→ [w], ` = 1, . . . , L;

σ
(m)
` : [d]→ {+1,−1}, ` = 1, . . . , L; m = 1 . . . ,M.

Recall the local frequency in each round is defined by

f (m) :=
1

n

n∑
t=1

x(m,t), m = 1, . . . ,M.

And the global frequency vector is defined by

f :=
1

M

M∑
m=1

f (m).

Then according to the communication protocol, the server receives M sketching matrices (each
corresponds to a summation of clients’ sketches within the same round). From the m-th sketch, we
can extract L estimators for each index j ∈ [d], i.e.,

f̃
(m,`)
j :=

d∑
i=1

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i , j ∈ [d], m ∈ [M ], ` ∈ [L]

= f
(m)
j +

∑
i 6=j

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i .

For each index, we will first average the estimators from different rounds to reduce the variance,
then take the median over different rows to amplify the success probability. In particular, denote the
round-wise averaging by

f̃
(`)
j :=

1

M

M∑
m=1

f̃
(m,`)
j , j ∈ [d], ` ∈ [L]

=
1

M

M∑
m=1

f
(m)
j +

1

M

M∑
m=1

∑
i 6=j

1 [h`(i) = h`(j)] · σ(m)
` (j) · σ(m)

` (i) · f (m)
i

15



= fj︸︷︷︸
signal

+
1

M

∑
i 6=j

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

noise

= fj︸︷︷︸
signal

+
1

M

∑
i 6=j,i∈W

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

headNoise

+
1

M

∑
i 6=j,i/∈W

1 [h`(i) = h`(j)] ·
M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i︸ ︷︷ ︸

tailNoise

. (5)

Then we take the median over these estimators to obtain

f̃j := median{f̃ (`)j , ` ∈ [L]}, j ∈ [d].

Head Noise. The only randomness comes from the algorithm. Note that the head noise contains at
most |W| ≤ 0.1W independent terms, and each is zero with probability 1 − 1/W . Thus the head
noise is zero with probability at least (1− 1/W )|W| ≥ (1− 1/W )0.1W ≥ 0.9 provided that W > 10.

Tail Noise. Now consider the second noise term in (5). Fixing ` and j. Define

ξ
(m)
i := σ

(m)
` (j) · σ(m)

` (i) · f (m)
i

ξi :=

M∑
m=1

ξ
(m)
i =

M∑
m=1

σ
(m)
` (j) · σ(m)

` (i) · f (m)
i

ηi := 1 [h(i) = h(j)]

tailNoise :=
1

M

∑
i 6=j,i/∈W

ηi · ξi.

First notice that
(
ξ
(m)
i

)M
m=1

are independent random variables and

E[ξ
(m)
i ] = 0, Var[ξ

(m)
i ] =

(
f
(m)
i

)2
.

These imply that

E[ξi] = 0, Var[ξi] =

M∑
m=1

(
f
(m)
i

)2
.

Moreover, notice that (ηi, ξi)i6=j are independent random variables, and

E[η2i ] =
1

W
,

we then have

E[ηiξi] = 0;

Var[ηiξi] = E[η2i ] ·Var[ξi] + Var[ηi] ·
(
E[ξi]

)2
=

1

W
·
M∑
m=1

(
f
(m)
i

)2
.

Therefore we conclude that

E[tailNoise] =
1

M

∑
i 6=j,i/∈W

E[ηiξi] = 0;

Var[tailNoise] =
1

M2

∑
i6=j,i/∈W

Var[ηiξi]

16



=
1

M2W
·
∑

i 6=j,i/∈W

M∑
m=1

(
f
(m)
i

)2
≤ 1

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
.

Then by Chebyshev we see that: for fixed j ∈ [d] and ` ∈ [L] it holds that

P
{
|tailNoise| ≥

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
< 0.1.

By a union bound we see that: for fixed j ∈ [d] and ` ∈ [L] it holds that

P
{
|f̃ (`)j − fj | <

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
> 0.8 > 0.5.

Probability Amplification. Fixing j. Recall that (f̃
(`)
j )L`=1 are i.i.d. random variables and that

f̃j := median{f̃ (`)j : ` ∈ [L]}. By Chernoff over ` and union bound over j we see that:

P
{

for each j ∈ [d], |f̃j − fj | ≥

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2}
< 2d · exp(Ω(L)).

By choosing L = Θ(log(2d/δ)) we obtain that, with probability at least 1− δ,

for each j ∈ [d], |f̃j − fj | .

√√√√ 10

M2W
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
.

C Missing Proofs for Section 4

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. We follow the method of Pagh and Thorup [2022], Zhao et al. [2022] to add
DP noise to all M sketches. Suppose F =

(
f (m)

)M
m=1

and F̊ =
(̊
f (m)

)M
m=1

are the sets of local
frequencies for two neighboring datasets respectively, then

‖F − F̊‖2 ≤
1

n
.

Denote the sketches to be released by S ◦ F :=
(
S(m) ◦ f (m)

)M
m=1

. One can then calculate the
`2-sensitivity:

‖S ◦ F − S ◦ F̊‖2 ≤
√
L

n
,

where L h log(d/δ) is the sketch length. Therefore the sketching will be (ε, δ)-DP by adding
Gaussian noise N (0, σ2) to each bucket of each sketch, where

σ h
√
L log(1/δ)

nε
.

The final released frequency estimator is obtained by post-processing the sketch, so it is also (ε, δ)-DP.

We then calculate the error for the noisy sketch matrix. For each row estimator, we have that with
probability at least 2/3:

f̃j
(`)
− f `j = tailNoise +

1

M

M∑
m=1

radm · N (0, σ2)

17



= tailNoise +N (0, σ2/M)

.

√√√√ 1

M2w
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
+

√
L log(1/δ)√
Mnε

.

By taking median over L h log(d/δ) repeats, we see that with probability at least 1− δ, it holds that

for each j ∈ [d], |f̂j − fj | .

√√√√ 1

M2w
·
∑
i/∈W

M∑
m=1

(
f
(m)
i

)2
+ +

√
log(d/δ) · log(1/δ)√

Mnε
.

18


	Introduction
	Adapting Count Sketch to the Hardness of the Instance
	Sketch Methods for Multi-Round Federated Frequency Estimation
	Differentially Private Sketches
	Concluding Remarks
	Missing Proofs for Section 2
	Proof of Proposition 2.1
	Proof of Corollary 2.2
	Proof of Corollary 2.3

	Missing Proofs for Section 3
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Missing Proofs for Section 4
	Proof of Theorem 4.1


