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Abstract
The generalization gap in reinforcement learn-
ing (RL) has been a significant obstacle that pre-
vents the RL agent from learning general skills
and adapting to varying environments. Increas-
ing the generalization capacity of the RL systems
can significantly improve their performance on
real-world working environments. In this work,
we propose a novel policy-aware adversarial data
augmentation method to augment the standard
policy learning method with automatically gen-
erated trajectory data. Different from the obser-
vation transformation based data augmentations,
our proposed method adversarially generates new
trajectory data based on the policy gradient ob-
jective and aims to more effectively increase the
RL agent’s generalization ability with the policy-
aware data augmentation. Moreover, we further
deploy a mixup step to integrate the original and
generated data to enhance the generalization ca-
pacity while mitigating the over-deviation of the
adversarial data. We conduct experiments on a
number of RL tasks to investigate the generaliza-
tion performance of the proposed method by com-
paring it with the standard baselines and the state-
of-the-art mixreg approach. The results show our
method can generalize well with limited training
diversity, and achieve the state-of-the-art general-
ization test performance.

1. Introduction
Benefiting from the power of deep neural networks, deep
reinforcement learning (RL) has recently demonstrated in-
credible performance on many human-level challenging
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tasks. In addition to traditional board games like Go (Sil-
ver et al., 2016; 2017), deep reinforcement learning agents
have defeated professional human players in large scale
video games like StarCraft (Vinyals et al., 2017) and Dota
2 (Berner et al., 2019). Meanwhile, deep RL systems also
suffer from the vulnerabilities of deep neural networks such
as overfitting and data memorization, which often induce
generalization gaps between the training and testing perfor-
mances of the RL agents. The generalization gap prevents
the RL agents from learning general skills in a simulation
environment to handle the real-world working environments
(Cobbe et al., 2020; Tobin et al., 2017). As a result, deep
RL agents are reportedly performing poorly on unseen envi-
ronments, especially when the training environments lack
diversities (Zhang et al., 2018b;a; Cobbe et al., 2020; Song
et al., 2019; Cobbe et al., 2019).

Towards the goal of reducing the generalization gap, previ-
ous works have exploited conventional data augmentation
techniques such as cropping, translation, and rotation to
augment the input observations and increase the diversity of
training data in RL (Shorten & Khoshgoftaar, 2019; Cobbe
et al., 2019; Lee et al., 2019; Laskin et al., 2020). Some have
also explored the selection of data augmentation techniques
(Raileanu et al., 2020; Jiang et al., 2021) and improved
the RL architectures (Raileanu & Fergus, 2021; Ball et al.,
2021). Recently, a mixture regularization method has been
introduced to learn generalizable RL systems (Wang et al.,
2020), which deploys Mixup to increase the data diversity
and yields the state-of-the-art generalization performance.
However, these methods work specifically at the level of the
input observation data without taking the RL system into
consideration, which prevents them from generating data
that are most particularly suitable for the target RL system
and hence could limit their performance’s improvement.

In this paper, we propose a novel policy-aware adversar-
ial data augmentation method with Mixup enhancement
(PAADA+Mixup) to improve the generalization ability of
policy learning based RL systems. This method first gener-
ates adversarial augmenting trajectory data by minimizing
the expected rewards of the given RL policy based on the ini-
tial observed source trajectory data. Next it combines each
adversarial augmenting trajectory and the corresponding ob-
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servation source trajectory together by randomly selecting
each observation step from one of them. The combined
trajectory data can then be used to update the policy of
the RL system. As deep RL systems typically inherit the
vulnerability of deep neural networks to adversarial exam-
ples (Lin et al., 2017), some previous works have inves-
tigated the topic of adversarial attacks in deep RL (Zhao
et al., 2020; Gleave et al., 2019). Our work however is the
first that deploys adversarial data augmentation in online
RL systems to improve their generalization capacity. The
proposed adversarial augmentation is conducted in a policy-
aware manner to induce direct impact on the to-be-learned
policy. Moreover, we further deploy a mixup operation
on the combined trajectory to enhance the robustness and
generalization of the RL system. We conduct extensive ex-
periments on several RL tasks to investigate the proposed
approach under different generalization test settings. The
experimental results show the proposed PAADA greatly out-
performs the strong RL baseline method, proximal policy
optimization (PPO) (Schulman et al., 2017). With the mixup
enhancement, PAADA+Mixup can achieve the state-of-the-
art performance, surpassing mixreg (Wang et al., 2020) with
notable performance gains.

The main contributions of the proposed work can be sum-
marized as follows:

• We introduce adversarial data augmentation to deep
RL and develop the very first policy-aware adversarial
data generation method to improve the generalization
capacity of deep RL agents.

• We integrate the generalization strengths of both ad-
versarial data generation and mixup and demonstrate
superior empirical performance than using either one
of them alone.

• We conduct experiments on the Procgen benchmark
with different generalization settings. Our proposed
method demonstrates good generalization performance
with limited training environments and outperforms
the state-of-the-art mixreg approach.

2. Related Works
Generalization gap has been an increasing concern in
deep reinforcement learning. Recent studies (Zhang et al.,
2018b;a) show that the main cause of generalization gap
is the over-fitting and memorization inherited from deep
neural networks (Arpit et al., 2017). Data augmentation
is a conventional technique for solving over-fitting in deep
learning (Shorten & Khoshgoftaar, 2019). In recent stud-
ies, some data augmentation approaches broadly applied in
deep learning have been brought into reinforcement learning.
Cobbe et al. (2019) introduce the cutout technique into deep

RL, where data are generated by partially blocking the in-
put observations with randomly generated black occlusions.
Lee et al. (2019) propose a randomized convolutional net-
work to perturb the input observations. Laskin et al. (2020)
propose to integrate the commonly used data augmentation
skills such as cropping, translation, and rotation to improve
the generalization of RL. Ball et al. (2021) introduce aug-
mented world models to specifically address the generaliza-
tion of model-based offline RL problems. Raileanu et al.
(2020) propose a data-regularized actor-critic approach to
regularize policy and value functions when applying data
augmentation, whereas the upper confidence bound (Auer,
2002) is borrowed to select the proper data augmentation
method. Wang et al. (2020) propose a simple but efficient
mixture regularization approach, mixreg, to improve the gen-
eralization capacity in RL systems. Following the mixup
method (Zhang et al., 2017) in supervised learning, mixreg
generates new observations from two randomly selected ob-
servations through linear combinations. The deep RL agents
trained on mixreg augmented observations demonstrate sig-
nificant improvements in generalization.

Inspired by the success of data augmentation on generaliza-
tion of deep reinforcement learning, we introduce a novel
adversarial data augmentation technique to deep RL. Deep
neural networks are known to be vulnerable to adversarial
examples (Szegedy et al., 2013). Many previous works have
studied the attack and defence strategies of deep neural net-
works regarding adversarial examples (Yuan et al., 2019;
Madry et al., 2017; Akhtar & Mian, 2018). Lin et al. (2017)
show deep reinforcement learning agents inherited the vul-
nerability of deep neural networks to adversarial examples.
They propose two tactics to perform adversarial strategies to
attack RL agents: the strategically-timed attack minimizes
the agent’s reward for small subsets of time steps, while
the enchanting attack lures the agent to a specific target
state. Following this, a few works have further contributed
to this rising topic of adversarial attacks in deep RL. Zhao
et al. (2020) propose an approach to generate adversarial
observations without previous knowledge on the network
architecture and RL algorithm of the deep reinforcement
learning agent. Instead of adding perturbations to the obser-
vations, Gleave et al. (2019) propose to train the agent with
an adversarial policy.

Distinct from adversarial attacks, our study focuses on ad-
versarial data augmentation. Adversarial data augmentation
has been investigated in a number of works on supervised
learning, but has not been explored to enhance generaliza-
tion in deep RL systems. Goodfellow et al. (2014) find
the linear property of deep neural networks is vulnerable to
adversarial perturbations and propose to train the supervised
model with adversarial examples to improve generaliza-
tion. Sinha et al. (2017) propose a Lagrangian formulation
of adversarial perturbations in a Wasserstein ball (Lee &
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Raginsky, 2017) to enhance the robustness of deep learn-
ing models. Volpi et al. (2018) further propose to exploit
adversarial data augmentation for domain adaptation with
unknown target domains.

3. Method
This study focuses on increasing the generalization ability
of a deep RL agent. Following the previous generalization
study in RL (Wang et al., 2020), we consider the following
RL setting. The agent is trained on a set of n environments
{K1, ...,Kn} sampled from a distribution p(K) to learn an
optimal policy π∗, and then tested on another set of environ-
ments {K̂1, ..., K̂m} sampled from p(K). Its generalization
performance is measured as the zero-shot expected cumula-
tive reward in the test environments:

Eτ∼Dtest
π∗

T∑
t=0

γt∗rt (1)

where τ denotes a trajectory (s0, a0, r0, s1, a1, r1, · · · , rT ),
Dtestπ∗ denotes the distribution of τ in the test environments
under policy π∗, and γ∗ ∈ (0, 1] is the discount factor.
Moreover, we assume the training environments can be
much fewer than the test environments such as n = dξme
with ξ ∈ (0, 1]. The goal is to train an optimal policy π∗ that
can generalize well in terms of the expected cumulative test
reward above in Eq.(1). Towards this goal, in this section
we present a policy-aware adversarial data augmentation
with mixup enhancement (PAADA+Mixup) method for the
RL training process.

3.1. Policy-Aware Adversarial Data Augmentation

When the training and test environments are different, a
standard RL learning algorithm, e.g, Proximal Policy Op-
timization (PPO) (Schulman et al., 2017), will inevitably
suffer from the domain gap between the training and test
environments, and demonstrate generalization gaps between
the training and test performances. Inspired by the effective-
ness of adversarial data augmentation in supervised learn-
ing (Volpi et al., 2018), we propose to augment the deep
RL process by generating adversarial trajectories from the
current policy, aiming to adaptively broaden the experience
of the RL agent and increase its generalization capacity to
unseen test environments.

Specifically, given the current parametric policy πθ with
parameter θ, in each epoch of the policy optimization based
RL training, the standard procedure is to collect a set of tra-
jectories {τ1, · · · , τn} from the training environments, and
then update the policy parameter θ by performing gradient
ascent with respect to the policy optimization objective over
the observed trajectories. For policy gradient, the following

surrogate objective is often used:

LPG(θ) = Êt[log πθ(at|st)Ât] (2)

where Êt[·] denotes the empirical average over the set of
transitions in the collected trajectories; Ât is the estimated
advantage function at timestep t, and can be approximated
as Ât = rt − V (st), where V (st) is the value function
at state st (Degris et al., 2012). For the more advanced
high-performance policy gradient algorithm PPO (Schulman
et al., 2017), a clipping modulated objective is typically
used:

LPPO-C(θ)= Êt
[
min

(
ρθÂt, clip (ρθ, 1−ε, 1+ε)Ât

)]
(3)

where ρθ = πθ(at|st)
πθ′ (at|st)

and ε is a small constant. This PPO
objective regularizes the new policy πθ from being severely
deviated from the previous policy πθ′ and aims to avoid
large destructive policy updates associated with the vanilla
policy gradient. Although PPO has demonstrated great per-
formance in standard RL, it may be overly bounded to the
available training observations and hence yields poor test
performance in the generalization settings. We therefore
propose to expand the observation space by generating ad-
versarial examples based on the collected trajectories.

3.1.1. ADVERSARIAL TRAJECTORY GENERATION

For each observed trajectory τ , we generate an adversarial
example for each of its observation points (i.e., transitions),
Pt = (xt, yt) with xt = st and yt = (at, rt). That is,
we find the worst example P = (x, y) in the close neigh-
borhood of the current point Pt = (xt, yt) by minimizing
the cumulative award objective L the RL agent needs to
maximize, such as

min
P

L(θ;P ) s.t. D(P, Pt) ≤ ρ (4)

where D(·, ·) denotes a distance metric such as the Wasser-
stein distance and the constraint bounds the point P to be
within the neighborhood of Pt. For two points P = (x, y)
and Pt = (xt, yt), the Wasserstein distance D(P, Pt) can
be specified as follows through a transportation cost c (Volpi
et al., 2018):

D(P, Pt) = c((x, y), (xt, yt))

=||x− xt||2 +∞ · 1{y 6= yt} (5)

Moreover, the constrained problem in Eq.(4) can be equiva-
lently reformulated as the following regularized optimiza-
tion problem with a proper Lagrangian parameter γ:

min
P

L(θ;P ) + γD(P, Pt)

⇐⇒ min
x
L(θ;x, yt) + γ‖x− xt‖2 (6)
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Algorithm 1 Adversarial Observation Generation
Input: πθ, V , (st, at, rt); stepsize η,

maximum step number Kmax, tolerance εa
Output: adversarial observation s

1: s = st
2: for k = 1, ...,Kmax do
3: if ‖∇s[log πθ(at|s)(rt−V (s))+γ(s−st)2]‖2 < εa

then break
4: s = s−η∇s[log πθ(at|s)(rt−V (s))+γ(s−st)2]

As this point generation is conducted under the current pol-
icy πθ and does not involve policy update, we use the policy
gradient objective LPG as the objective L for adversarial
example generation due to its simplicity and easy computa-
tion. Therefore for each observation point (st, at, rt) in the
collected trajectory data, its corresponding adversarial point
(ŝt, at, rt) will be generated as follows:

ŝt = argmin
s

LPG(θ; s, t) + γD(s, st)

= argmin
s

log πθ(at|s)Ât + γ‖s− st‖2

= argmin
s

log πθ(at|s)(rt − V (s)) + γ‖s− st‖2 (7)

We can solve this generation problem by performing gradi-
ent descent with a stepsize η and a maximum step number
Kmax. The algorithm is shown in Algorithm 1. With this
simple procedure, for each observation trajectory τ , we can
produce a corresponding adversarial trajectory τ̂ by gener-
ating an adversarial point (ŝt, ât = at, r̂t = rt) for each
observation point (st, at, rt) in τ .

3.1.2. TRAJECTORY AUGMENTATION

Given the observed source trajectory τ and the generated ad-
versarial trajectory τ̂ , simply appending one after the other
to fed to the deep RL agent for training turns out not to
be a suitable solution, as it may cause the policy param-
eter update to dramatically switch between very different
directions. Moreover, the suitable degree of augmentation
could also vary for different RL tasks. Here we propose to
augment the source trajectory τ with the adversarial trajec-
tory τ̂ by combining them into a new trajectory τ with an
augmentation degree ν ∈ [0, 1]. Specifically, we construct
the new trajectory τ by randomly selecting bν · |τ |c points
(transitions) from the adversarial trajectory τ̂ and taking the
other d(1− ν) · |τ |e points from the original trajectory τ . In
this way, we not only can better blend the adversarial points
with the original observations, but also have control over
the contribution degree of the augmentation data through
the hyperparameter ν.

We deploy this policy-aware adversarial data augmentation
scheme on the PPO method. The overall training algorithm

Algorithm 2 Adversarial Data Augmentation on PPO
Input: initial policy parameter θ, initial value function

parameter φ, the pre-training epoch number
Kpre, the augmentation degree ν

Output: trained policy πθ
1: for k = 1, 2, ... do
2: Collect a set of trajectories {τ1, τ2, ..., τn} by

running policy πθ on the training environments
3: for τi in {τ1, τ2, ..., τn} do
4: Compute the advantage estimates {At} for all

the t transition points in τi
5: if k < Kpre then
6: τ̄i = τi; continue
7: for t = 0, 1, 2, ..., |τi| − 1 do
8: Generate the adversarial state ŝt with Eq.(7)
9: Ât = rt − Vφ(ŝt)

10: Add (ŝt, at, rt, Ât) into the augmentation
trajectory τ̂i

11: Combine τi and τ̂i into an augmented trajectory
τ i with the augmentation degree ν

12: %[place holder for additional step]
13: Update the policy function parameter θ by maximiz-

ing the PPO-Clip objective in Eq.(3) on the augmented
trajectories {τ̄1, τ̄2, ..., τ̄n}

14: Update the value function parameter φ on the aug-
mented trajectories

is depicted in Algorithm 2, which first pre-trains the RL
agent for Kpre epochs and then performs adversarial data
augmentation in the ensuing epochs.

3.2. Enhancement with Mixup

In addition to the adversarial data augmentation technique
above, we consider further enhancing the diversity of the
training data with a Mixup procedure. Mixup generates
data points through linear interpolation and has demon-
strated effective performance in both supervised learn-
ing (Zhang et al., 2017) and reinforcement learning (Wang
et al., 2020). Here we propose to deploy the Mixup pro-
cedure on each augmented trajectory τ i generated above.
Specifically, for a trajectory τ i with |τ i| transition points,
we first make a copy of τ i as τ ′i, and randomly shuffle the
indices {0, 1, · · · , |τ i|−1} into {I0, I1, · · · , I|τ i|−1}. Then
we linearly combine τ i and τ ′i with the following mixup
steps:

s̄t = λs̄t + (1− λ)s̄′It (8)
r̄t = λr̄t + (1− λ)r̄′It (9)

Āt = λĀt + (1− λ)Ā′It (10)

while āt is set as āt with probability λ and set as ā′It with
probability 1− λ. The hyperparameter λ is sampled from a
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beta distribution λ ∼ B(α, β). Normally, the parameters of
the beta distribution are set to α = β as suggested in (Zhang
et al., 2017). However, when the training environments are
limited, it is beneficial to have different α and β values to
shift the mean value of the λ samples. This Mixup step can
be deployed on the augmented trajectory and performed in
line 12 within the trajectory loop in Algorithm 2.

4. Experiments
We conducted experiments to validate the empirical perfor-
mance of the proposed method under different generaliza-
tion settings. In this section, we report our experimental
settings and results.

4.1. Experiment Setting

We conduct experiments on the Procgen benchmark (Cobbe
et al., 2020), which contains procedurally generated envi-
ronments designed to test the generalization ability of deep
RL agents. Each environment takes visual input and has
significant change among different levels of the environ-
ments. A Procgen environment can generate a maximum
of 500 different levels for the RL generalization task. We
choose 4 game environments (starpilot, dodgeball, climber,
fruitbot) from this benchmark as different RL tasks and treat
different levels of each RL task as different training and test
environments from the generalization perspective. Follow
the settings in (Cobbe et al., 2020; Wang et al., 2020), we do
not limit the levels in the testing environments and use the
total m = 500 levels for testing, while a relatively smaller
number, n = dξme, of level environments, are sampled for
training. In particular, we consider different ξ values such
as ξ ∈ {0.25, 0.5, 1}. A smaller ξ value indicates a more
difficult generalization setting as the diversity of training
environments is reduced.

We adopt PPO (Schulman et al., 2017) as our RL baseline,
although the proposed methodology in principle can be
generalized into other RL methods as well. In addition,
we compare our approach, PAADA+Mixup, to the state-
of-the-art generalization method, mixreg, which has been
shown to outperform the conventional data augmentation
techniques in (Wang et al., 2020). Following the Procgen
benchmark, we adopt the same convolutional neural network
architecture as IMPALA (Espeholt et al., 2018). We use the
mean episode return in each epoch of the zero-shot testing
as the generalization evaluation metric on each of the four
Procgen benchmark games (starpilot, dodgeball, climber,
fruitbot). Moreover, following (Cobbe et al., 2020) we
compute the mean normalized return over the four games to
summarize the overall generalization performance.

Hyperparameters For the adversarial observation gen-
eration, the stepsize η is set to 10, the maximum number

of steps Kmax is set to 50, and the tolerance εa is set to
5e−6. For the training algorithm of the proposed approach,
PAADA, we set the pre-training epoch number, Kpre, as 50.
That is, in the first 50 training epochs, the deep RL agent is
trained with standard PPO (Schulman et al., 2017). After
50 epochs, our augmentation method is applied to enhance
the generalizability. In the evaluation plots, the epoch num-
ber does take these pre-training epochs into account. The
Lagrangian hyperparameter γ in Eq.(6) and Eq.(7) is set to
0.01. In each training epoch, we collect n trajectories and
each trajectory has 256 transitions. For testing, m trajec-
tories, one from each testing environment, are used. The
discount factor γ∗ is set to 0.999. Each experiment is tested
on 3054 training epochs in total. For the Mixup procedure,
we use α = 0.2 and β = 0.2 for ξ = 1, and increase β to
β = 0.5 for ξ = 0.5 and to β = 1 for ξ = 0.25.

4.2. Experiments with Full Set of Training
Environments

In the first set of less challenging experiments, for each
game, we have ξ = 1 and use the full set of 500 train-
ing environments, while testing on unlimited environments.
For the proposed approach PAADA, we tested two differ-
ent variants of it: (1) PAADA (ν = 0.5), which uses an
augmentation degree ν = 0.5 and indicates that 50% of
the observation transitions of the adversarial trajectory are
randomly merged into the original observation trajectory.
(2) PAADA+Mixup (ν = 0.5), which indicates the Mixup
enhancement is added to PAADA (ν = 0.5). We compared
these variants with the PPO baseline and one state-of-the-art
method, mixreg.

The training and test evaluation results on the four games are
reported in Figure 1, where dotted lines are used to present
the training evaluation results and solid lines are used to
present the test evaluation results. The test results demon-
strate the working performance of the system. The left four
plots in Figure 1 report the comparison results on the four
games separately. We can see that the policy-aware adversar-
ial data augmentation alone outperforms the baseline PPO:
PAADA(ν = 0.5) greatly improves the generalization per-
formance of PPO on the four games and the performance
gain in terms of the mean normalized return is very notable.
With the Mixup enhancement, PAADA+Mixup(ν = 0.5)
further improves its generalization performance, and yields
similar performance to the state-of-the-art method, mixreg,
on three games, dodgeball, fruitbot and starpilot, and out-
performs mixreg on climber with large margins. The right
plot in Figure 1 summarizes the overall performance over
the four games in terms of a mean normalized return met-
ric. The mean normalized return is a useful metric that
allows us to compare the overall performance of different
reinforcement learning systems across multiple environ-
ments (Cobbe et al., 2020). We can see from the plot
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Figure 1. Training and testing performance on full training environments (ξ = 1). Left: Mean episode return per epoch on different game
environments. Right: Mean normalized return over all the four game environments.

that PAADA+Mixup(ν = 0.5) outperforms all the other
methods, including mixreg, with distinct performance gains.
These results clearly demonstrate the efficacy of the pro-
posed adversarial based data augmentation and mixup.

4.3. Experiments on Partial Set of Training
Environments

In this set of experiments, we consider more challenging
generalization settings with ξ < 1. That is, the number of
training environments are much smaller and hence the train-
ing diversity is greatly reduced. In particular, we consider
ξ = 0.5 and ξ = 0.25. In such settings, with limited training
diversity, it is more difficult to achieve better generalization.

Again we compared the two variants of the proposed method,
PAADA(ν = 0.5) and PAADA+Mixup(ν = 0.5), with
PPO and mixreg on the four game tasks. Figure 2 reports the
testing results of the comparison methods with 50% training
environments, i.e., ξ = 0.5. We can see that in this setting,
both PAADA(ν = 0.5) and PAADA+Mixup(ν = 0.5) out-
perform PPO on all the four games with clear performance
gains. Between the two variants, mixup still produces cer-
tain improvements on three games, starpilot, dodgeball and
fruitbot, whereon PAADA+Mixup(ν = 0.5) outperforms
PAADA(ν = 0.5). Moreover, PAADA+Mixup(ν = 0.5)
outperforms mixreg on three games, climber, fruitbot and
starpilot, while mixreg produces the best performance on

dodgeball. Nevertheless, as shown in the right plot of Fig-
ure 2, PAADA+Mixup(ν = 0.5) demonstrates a consistent
and clear advantage over mixreg in terms of the overall
mean normalized return.

Figure 3 reports the results of the comparison methods with
25% training environments, i.e., ξ = 0.25. This setting
is more challenging than the one above with ξ = 0.5. In
this setting, we can see that PAADA+Mixup(ν = 0.5) still
outperforms mixreg on dodgeball, fruitbot and starpilot, but
produces inferior result on climber, whereon PAADA(ν =
0.5) produces the best results. In terms of mean normal-
ized return, as shown in the right plot of Figure 3, all three
data augmentation methods demonstrate similar superior
generalization capacity over the baseline PPO, All these
experiments show our propose adversarial data augmenta-
tion with mixup enhancement can effectively increase the
generalization capacity of RL systems.

4.4. Overall Generalization Capacity Comparison

To demonstrate a more concrete comparison between all
the methods and across different settings and games, we
collected the test results for the last 100 of the 3054 training
epochs and reported the mean and standard deviation of
these test returns in Table 1. From these concrete result
numbers we can see that all the three methods with general-
ization strategies, PAADA(ν = 0.5), PAADA+Mixup(ν =
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Figure 2. Training and testing performance on partial training environments (ξ = 0.5). Left: Mean episode return per epoch on different
game environments. Right: Mean normalized return over all the four game environments

Table 1. Mean and standard deviation of the average test returns among 100 test epochs. MNR: mean normalized return over all the four
games, which is a criterion that shows the overall performance of a generalization method across different games. The best result in each
setting is shown in bold font.

Environment (ξ = 1) PPO mixreg PAADA (ν = 0.5) PAADA+Mixup (ν = 0.5)
climber 3.74± 0.56 5.31± 0.57 4.79± 0.55 6.79± 0.59
dodgeball 3.70± 0.45 5.64± 0.62 4.24± 0.42 5.48± 0.56
fruitbot 11.58± 1.34 14.12± 1.40 13.19± 1.12 14.89± 1.18
starpilot 3.94± 0.46 7.67± 0.84 5.74± 0.92 8.09± 0.87
MNR 0.22± 0.02 0.33± 0.02 0.28± 0.02 0.37± 0.02

Environment (ξ = 0.5) PPO mixreg PAADA (ν = 0.5) PAADA+Mixup (ν = 0.5)
climber 4.14± 0.52 4.72± 0.51 4.87± 0.54 5.09± 0.56
dodgeball 1.64± 0.23 4.93± 0.54 2.53± 0.44 4.23± 0.67
fruitbot −0.55± 0.58 9.66± 1.19 5.26± 1.27 11.13± 1.32
starpilot 2.85± 0.34 3.98± 0.39 4.27± 0.88 5.10± 0.94
MNR 0.08± 0.01 0.24± 0.02 0.17± 0.02 0.26± 0.02

Environment (ξ = 0.25) PPO mixreg PAADA (ν = 0.5) PAADA+Mixup (ν = 0.5)
climber 3.05± 0.47 3.07± 0.55 3.64± 0.62 2.08± 0.46
dodgeball 1.12± 0.18 2.10± 0.30 1.82± 0.47 2.38± 0.46
fruitbot −1.90± 0.39 2.48± 0.81 1.19± 0.98 4.02± 1.06
starpilot 2.30± 0.28 3.03± 0.34 2.79± 0.91 3.13± 1.02
MNR 0.03± 0.01 0.09± 0.01 0.09± 0.02 0.09± 0.02
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Figure 3. Testing performance on partial training environments (ξ = 0.25). Left: Mean episode return per epoch on different game
environments. Right: Mean normalized return over all the four game environments

0.5), and mixreg, consistently outperform PPO across dif-
ferent game tasks and different generalization settings. This
suggests both adversarial data augmentation and mixup are
individually effective in improving the generalization per-
formance of the baseline RL. By effectively integrating both
adversarial data augmentation and mixup enhancement, our
proposed PAADA+Mixup(ν = 0.5) outperforms the state-
of-the-art mixreg across almost all cases (12 out of 15 cases)
except on dodgeball with ξ = 1, 0.5 and on climber with
ξ = 0.25. These results again validated the efficacy of the
proposed method.

5. Conclusion and Future Work
In this paper, we proposed a novel policy-aware adversar-
ial data augmentation method with Mixup enhancement
(PAADA+Mixup) to improve the generalization capacity
of RL systems. It generates augmenting trajectories by ad-
versarially minimizing the expected reward that a RL agent
would desire to maximize, and then uses them to augment
the original trajectories under controlled augmentation de-
grees. Moreover, a mixup operation is further deployed
to enhance the diversity of the augmented trajectory. This
is the first work that deploys adversarial data augmenta-
tion to learn generalizable RL systems in an online manner.
It also presents the first experience of integrating adver-
sarial augmentation and mixup generalization. We con-
ducted experiments on the Procgen benchmark by compar-

ing the proposed method with both the baseline PPO and
the state-of-the-art method under different generalization
settings. The results show PAADA surpasses PPO in gen-
eral, while PAADA+Mixup outperforms the state-of-the-art
mixreg with notable performance gains, especially in the
challenging generalization settings.

Our empirical study indicates that when the generalization
setting is very challenging—that is, there are very limited
training environments, the performance gains of the existing
generalization methods can decrease substantially. This is
a fundamental challenge for methods that focus on gener-
alizing the training data. Our future work aims to tackle
this challenge by extending the generalization effort into the
test time. In addition to the training time generalization, we
will consider enhancing the performance of RL systems by
performing test time adaptation.
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