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Figure 1: Humanoid robot executing various expressive whole-body motions in the real world. The robot can
(a) walk with a large stride from static standing, (b) dance along a long horizon choreography, (c) dynamic
sidestep with fluid weight shifts, (d) punch with different height configurations, (e) express various upper-body
movements while maintaining balance, (f) powerful rightward body hook with dynamic shifts.

Abstract: This paper tackles the challenge of enabling real-world humanoid2

robots to perform expressive and dynamic whole-body motions while maintaining3

stability. We propose Advanced Expressive Whole-Body Control (ExBody2), a4

whole-body tracking framework trained in simulation with Reinforcement Learn-5

ing and then transferred to the real world. The framework decouples keypoint6

tracking from velocity control and leverages a privileged teacher policy to distill7

precise mimic skills into the student policy, enabling robust, high-fidelity repro-8

duction of complex motions such as walking, crouching, and dancing. A signif-9

icant contribution is the discovery of a fundamental principle for balancing fea-10

sibility and diversity in motion datasets, which guides the development of an au-11

tomatic dataset curation method. This principle facilitates pretraining a versatile12

model generalizing well across diverse motions and can be fine-tuned for specific13

tasks to achieve superior tracking accuracy. Extensive experiments demonstrate14
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that Exbody2 outperforms existing baselines, establishing new benchmarks and15

provides valuable insights for the advancement of whole-body humanoid control.16
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1 Introduction18

The premise of humanoid robots is to enable human-like motions while occupying human living19

spaces. However, a humanoid robot with human-level expressiveness and versatility that is also20

robust in maintaining stability and control remains elusive. Inherent to this problem is the dynamic21

and kinematic gap between robots and biological body structures and the need for the controller to22

make a trade-off between expressiveness and stability. How to let robots imitate human whole-body23

motion across this gap and achieve both is a key challenge.24

This paper introduces Advanced Expressive Whole-Body Control (Exbody2), a framework that en-25

ables humanoid robots to perform expressive, human-like full-body motions with grace. At its core,26

Exbody2 features both a generalist and a specialist policy. The generalist policy, trained on di-27

verse motion datasets, outperforms previous approaches by achieving high adaptability across a28

wide range of motions with a single policy. Building on this, we further fine-tune the policy for29

specific motion groups, producing specialist policies that ensure even higher fidelity in targeted30

behaviors. To enable robust and expressive motion reproduction, the framework decouples global31

tracking into velocity control and local keypoint imitation, and incorporates well-designed rewards32

and network architecture. Together, these components allow Exbody2 to successfully reproduce33

expressive whole-body humanoid motions in the real world—to our knowledge, the first RL-based34

system to do so. The framework is composed of three core components:35

(i) Generalist policy with automated data curation. Human motion datasets often contain move-36

ments beyond a robot’s physical limits, making tracking difficult and reducing performance. Some37

methods refine datasets, like ExBody [1] filtering motions via language labels, though ambiguous38

terms (e.g., “dance”) may still include infeasible actions. Others [2, 3] use SMPL avatars to simulate39

motions, but these can exceed real robot capabilities, impacting training. We identify the trade-off40

between dataset feasibility and diversity and develop an automated curation method that removes41

unsuitable lower-body motions while preserving diversity, enabling the policy to learn broad, expres-42

sive behaviors. Experiments validate that our method optimally balances feasibility and diversity,43

leading to improved stability and accuracy across diverse motion tasks.44

(ii) Specialist policy with finetuning for targeted motions. While the generalist policy enables broad45

motion coverage, finetuning enhances precision for specific motion groups. Motions with similar46

patterns are easier to learn under a shared policy, as they require consistent control strategies and47

constraints. Instead of training from scratch, we refine the generalist policy, leveraging its learned48

priors for efficient adaptation. This allows the policy to better capture fine-grained motion details and49

improve tracking accuracy for specialized tasks. Additionally, motion labels or an action recognition50

model can classify input motions, enabling dynamic selection of the most suitable specialist policy.51

(iii) Tracking design and policy architecture. Unlike H2O [2] and OmniH2O [3], which rely on52

global keypoint tracking and often struggle with long-horizon or dynamic motions, Exbody2 adopts53

a modular design that decouples tracking into velocity control and local keypoint imitation. This54

improves stability while preserving expressive motion details. Training follows a teacher-student55

framework: the teacher is optimized with PPO [4] using privileged information (e.g., root velocity,56

body positions), and the student is distilled via DAgger [5]-style learning to function without such57

inputs, enabling real-world deployment.58

We evaluate Exbody2 on the Unitree G1 against the state-of-the-art baselines, achieving higher59

fidelity in both simulation and real-world tests. The curated generalist policy outperforms prior60

methods across diverse motions, while fine-tuning further improves quality for specific tasks. These61

results demonstrate Exbody2’s potential to bridge the gap between human-level expressiveness and62

robust whole-body control.63
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2 Related Work64

Humanoid Whole-Body Control. Whole-body control for humanoid robots remains a complex65

and challenging problem due to the system’s high non-linearity and degrees of freedom. Tradi-66

tional approaches predominantly rely on dynamics modeling and control [6, 7, 8, 9, 10, 11, 12,67

13, 14, 15, 16, 17, 18, 19], which often require accurate system identification and physical model-68

ing, and intensive online computation for real-time control to handle different external perturbations69

for locomotion stability. Recent advances in reinforcement learning (RL) and sim-to-real transfer70

have demonstrated promising results in enabling complex whole-body skills for humanoid robots71

[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. These approaches typically rely on training RL poli-72

cies in simulation using task-specific rewards and environment randomization before transferring73

them to the real world. Notably, recent works such as [1, 2, 32] have advanced real-world humanoid74

whole-body control for expressive motion by incorporating human motion datasets [33] to guide75

RL training, with real-world applications such as motion imitation. However, these approaches76

still exhibit limitations in expressiveness and maneuverability, highlighting the untapped potential77

of humanoid robots. In contrast, our method enables the learning of more expressive and dynamic78

motions, enhancing the robot’s ability to perform complex whole-body movements.79

Robot Motion Imitation. Robot motion imitation can be broadly categorized into manipulation and80

locomotion areas. For manipulation tasks, robots are often wheeled or tabletop, prioritizing precise81

control over balancing and ground contact, making humanoid morphology unnecessary. Such robots82

can imitate the motion through direct teleoperation [34, 35, 36], portable devices [37, 38, 39, 40]83

and learn from human videos with hand tracking or motion retargeting [41, 42, 43, 44]. In contrast,84

motion imitation for locomotion primarily aims to learn lifelike, natural behaviors from human85

or animal motion capture data. It requires precise control over contact dynamics, balance, and86

coordination across multiple degrees of freedom to achieve stable and realistic movement. While87

prior methods have enabled physics-based character motion imitation in simulation [45, 46, 47, 48,88

49, 50, 51, 52, 53], transferring diverse motions to real robots [1, 3, 32, 54, 55, 56, 57] remains a89

significant challenge due to the hardware constraints. Previous methods [1, 3, 32, 54] typically rely90

on manually filtering feasible motion data with human effort or hand-crafted heuristics. However,91

manually filtered datasets may still contain infeasible motions or lack diversity, limiting the robot’s92

ability to fully utilize its hardware potential. Our method overcomes this challenge by automatically93

curating a diverse and feasible motion dataset, enabling more effective real-world deployment.94

3 Exbody2: Learning Expressive Humanoid Whole-Body Control95

We propose Advanced Expressive Whole-Body Control (Exbody2), a motion mimic framework96

for expressive and robust whole-body control. As shown in Figure 2, Exbody2 first retargets hu-97

man motion data to fit the robot’s morphology, then trains a generalist policy using an automated98

dataset curation strategy to balance feasibility and diversity. To improve precision on specific mo-99

tion groups, we further fine-tune specialist policies and deploy it onto real humanoid robots. In100

the following sections, we detail our generalist-specialist training pipeline, and our policy structure101

design, the two main contributions of our work.102

3.1 Data-driven Generalist-specialist Training Pipeline103

We adopt a Generalist–Specialist pipeline to balance adaptability and precision in whole-body mo-104

tion tracking. This approach is guided by our Feasibility–Diversity Principle, which emphasizes105

retaining diverse upper-body motions to support task generalization, while filtering out extreme or106

unstable lower-body motions that hinder training. Based on this principle, we construct a pruned107

dataset that preserves motion diversity without compromising feasibility. A generalist policy is108

trained on this dataset and subsequently fine-tuned on specific tasks to obtain specialist policies with109

higher precision.110
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Figure 2: Exbody2’s framework. (a) Motion retargeting adapts raw human motion datasets to fit the humanoid
robot’s morphology, generating a diverse set of training samples. (b) Automated dataset filtering ranks motions
based on tracking errors and selects an optimal subset to train a generalist policy, balancing feasibility and
diversity. (c) Specialist policy finetuning refines the generalist model for specific motion categories, improving
precision for targeted tasks. (d) The trained policies are deployed on a real humanoid robot, demonstrating
expressive, dynamic, and stable whole-body motions in real-world environments.

3.1.1 Generalist policy with automated data curation111

To obtain a policy π that performs well across diverse motion inputs, we first train an initial policy112

π0 on a comprehensive, unfiltered motion dataset D, which is highly diverse with a lot of infeasible113

motions. After training π0, we evaluate its tracking accuracy for each motion sequence s ∈ D,114

obtaining a tracking error metric e(s) that focuses on the lower body. The lower body plays a115

central role in dynamic feasibility and balance; thus, we focus on its tracking error for filtering.116

Specifically, we define117

e(s) = αEkey(s) + β Edof(s),

where Ekey(s) is the mean keybody position error for the lower body (preventing extreme devia-118

tions such as flipping or rolling), and Edof(s) measures the mean joint-angle tracking error. The119

coefficients α and β weight these two terms according to their relative importance for lower-body120

stability and precision. Once e(s) is computed for each sequence, we rank the motions by their121

tracking errors and derive the empirical distribution P (e).122

The objective is to determine an error threshold τ such that the subset of motion sequences with123

e(s) ≤ τ , denoted as Dτ = {s ∈ D | e(s) ≤ τ}, enables the training of a new policy πτ that124

maximizes performance across the full dataset D. Formally, we seek:125

τ∗ = argmax
τ

Es∈D[Performance(πτ , s)],

where the performance is evaluated on the whole dataset. In practice, we divide P (e) into evenly126

spaced error intervals to evaluate the performance of policies trained on subsets corresponding to127

different thresholds τ . Although we use a greedy search to identify the optimal threshold τ∗, subse-128

quent experiments reveal a strong trend in how the policy’s performance changes with τ . When τ is129

too small, the filtered motions are overly simple, limiting the policy’s ability to generalize across the130

full dataset. Conversely, when τ is too large, the inclusion of many infeasible motions introduces131

noise, degrading the training effectiveness. The best-performing policy is consistently obtained at a132

moderate τ , balancing diversity and feasibility.133

The optimal threshold τ∗, identified through this process, exhibits generalizability and can be effec-134

tively applied to other motion datasets, ensuring robust training and improved performance.135

3.1.2 Specialist policy with finetuning for targeted motions136

After obtaining the generalist policy πτ∗ , which balances motion diversity and feasibility, we refine it137

into a specialist policy for high-precision tasks through finetuning rather than training from scratch.138

This approach is more efficient and effective, as specialist policies track fewer but more challenging139

motions, which are often difficult to learn without a strong prior.140
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To retain generalization and avoid overfitting to small specialized datasets, we apply a balanced141

sampling strategy during finetuning. Instead of limiting training to the specialist subset alone, we142

continue sampling from a broader motion distribution based on the difficulty gradients used in gen-143

eralist training. This ensures the policy still encounters sufficient motion variety, helping it remain144

robust under complex real-world conditions.145

In addition to improving adaptability and robustness, this finetuning approach significantly reduces146

training time and computational cost, making it a practical strategy for building high-fidelity con-147

trollers tailored to specific tasks.148

3.2 Policy Objective and Architecture149

Exbody2 aims at tracking a target motion more expressively in the whole body. To this end, Exbody2150

adopts a two-stage teacher-student training procedure as in [58, 59]. Specifically, the oracle teacher151

policy is first trained with an off-the-shelf reinforcement learning (RL) algorithm, PPO [4], with152

privileged information that can be obtained only in simulators. For the second stage, we replace153

the privileged information with observations which are aligned with the real world, and distill the154

teacher policy to a deployable student policy.155

3.2.1 Teacher Policy Training156

We can formulate the humanoid motion control problem as a Markov Decision Process (MDP).157

The state space S contains privileged observation X , proprioceptive states O and motion tracking158

target G. A policy π̂ takes {pt, ot, gt} as input, and outputs action ât. The predicted action159

ât ∈ R23 is the target joint positions of joint proportional derivative (PD) controllers. We160

use off-the-shelf PPO [4] algorithm to maximize expectation of the accumulated future re-161

wards Eπ̂[
∑T

t=0 γ
tR(st, ât)], which encourages tracking the demonstrations with robust behavior.162

The predicted ât ∈ R23, which is the target position of joint proportional derivative (PD) controllers.163

164

We train a teacher policy using privileged information pt that is only available in simulation, in-165

cluding ground-truth root velocity, and keybody differences. This improves sample efficiency and166

is commonly used to obtain high-performing policies [60]. The policy learns to track full-body mo-167

tions composed of joint angles, 3D keypoints, and root velocity and pose, while also responding168

to joystick commands for high-level control. The reward function is carefully designed to balance169

motion fidelity and stability, combining terms for root motion, keypoint and joint tracking, and reg-170

ularization terms to improve sim-to-real transfer. Following this, we train a student policy without171

privileged information by using DAgger [5]: the student observes long-horizon histories and is su-172

pervised by the teacher’s actions via an MSE loss. Training proceeds through iterative rollouts and173

updates until convergence. Full details, including reward definitions, observation structures, and174

policy architecture, are provided in the appendix.175

3.2.2 Local Keybody Tracking Strategy176

Motion tracking comprises two objectives: tracking DoF (joint) positions and keypoint (body key-177

point) positions. Keypoint tracking usually plays a crucial role in tracking motions during training178

stage, as joint DoF errors can propagate to the whole body, while keypoint tracking is directly ap-179

plied to the body. Existing work like H2O, OmniH2O [2, 3] learns to follow the trajectory of global180

keypoints. However, this global tracking strategy usually results in suboptimal or failed tracking181

behavior, as global keypoints may drift through time, resulting in cumulative errors that eventually182

hinder learning. To address this, we map global keypoints to the robot’s current coordinate frame,183

and instead utilize velocity-based global tracking. The coordination of velocity and motion allows184

tracking completion with maximal expressiveness, even if slight positional deviations arise. More-185

over, to further enhance the robot’s capabilities in following challenging keypoint motions, we allow186

a small global drift of keypoints during training stage and periodically correct them to the robot’s187

current coordinate frame.188
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Method Evel ↓ Empkpe ↓ Eupper
mpkpe ↓ E lower

mpkpe ↓ Empjpe ↓ Eupper
mpjpe ↓ E lower

mpjpe ↓

Exbody† 0.4195 0.1150 0.1106 0.1198 0.1496 0.1416 0.1607
OmniH2O* 0.3725 0.1253 0.1266 0.1240 0.1681 0.1564 0.1843
Exbody2-w/o-Filter 0.2787 0.1133 0.1087 0.1182 0.1355 0.1192 0.1579
Exbody2(Ours) 0.2930 0.1000 0.0960 0.1040 0.1079 0.0953 0.1253

Table 1: Comparison on DCMU using Unitree G1. Each motion is looped 10 times in simulation, and we
report the per-step average error. Lowest errors per group are bolded.

Method Empjpe ↓ Eupper
mpjpe ↓ E lower

mpjpe ↓

Exbody† 0.1465 0.1314 0.1672
OmniH2O* 0.1396 0.1273 0.1533
Exbody2-w/o-Filter 0.1361 0.1254 0.1481
Exbody2(Ours) 0.1074 0.1092 0.1054

Table 2: Comparisons with baselines on selected motions for Unitree G1 in real world.

4 Experiments189

In this section, we present several experiments to evaluate Exbody2. We first introduce the experi-190

mental setup and the baselines, followed by a detailed analysis addressing the following questions:191

Q1. (Section 4.2) Does Exbody2 generalist policy achieve higher tracking accuracy in both simula-192

tion and real-world deployment compared to prior methods?193

Q2. (Section 4.3) What selection criteria lead to the optimal subset of a human motion dataset for194

learning a better generalist policy?195

Q3. (Section 4.4) Does finetuning a specialist policy for specific motion groups further improve196

tracking performance?197

4.1 Experimental Setup198

Baselines. We compare three baselines on the CMU dataset [61], which features diverse action199

types. Exbody† is a whole-body version of Exbody [60] that tracks full-body poses from human200

motion data. OmniH2O* is our reproduction of OmniH2O [3], using global keypoint tracking and201

the original observation space, adapted to our local tracking setup for fair comparison. Exbody2,202

our method, adopts local keypoint tracking and curated training data, with additional techniques to203

boost motion fidelity and sim-to-real performance. All methods use the same regularization rewards204

to ensure that improvements stem from our training system rather than auxiliary factors.205

Metrics. We evaluate policy performance using several metrics over all motion sequences. The206

mean linear velocity error Evel (m/s) reflects the difference between the robot’s and demonstration’s207

root velocity. The Mean Per Keybody Position Error (MPKPE) Empkpe (m) measures keypoint track-208

ing accuracy, with Eupper
mpkpe and Elower

mpkpe (m) evaluating upper and lower body regions, respectively.209

The Mean Per Joint Position Error (MPJPE) Empjpe (rad) quantifies joint tracking, with Eupper
mpjpe and210

Elower
mpjpe (rad) reported for finer analysis.211

4.2 Generalist Policy Performance212

As shown in Table 1, Exbody2 outperforms prior baselines (Exbody†, and OmniH2O*) across all213

simulation metrics when trained on the full dataset without motion filtering. With motion filtering,214

tracking performance improves further—especially in the lower body, enhancing global stability and215

indirectly benefiting upper-body precision. The only trade-off is a slight increase in velocity error216

due to reduced exposure to diverse velocity patterns, which is outweighed by gains in stability.217

In real-world experiments (Table 2), we evaluate a diverse CMU motion subset covering postures,218

walking, squatting, and dancing. Results align with simulation trends: Exbody2 achieves higher219
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Figure 3: Impact of dataset filtering thresholds on tracking errors. Policies trained with balanced thresholds
(e.g., πτ=0.150) achieve the lowest errors, while unfiltered data and overly strict (πτ=0.075) or loose (πτ=0.175)
thresholds degrade performance. We compute the error as e(s) = αEkey(s) + β Edof(s), with α = 0.1,
β = 0.9, giving higher weight to joint-angle accuracy.

tracking accuracy across all body regions, with automated data curation playing a key role in ensur-220

ing robustness under real-world disturbances.221

Overall, our generalist policy demonstrates strong tracking performance and stability across both222

simulation and real-world settings, outperforming baseline methods in accuracy and robustness.223

4.3 Impact of Automatic Data Curation224

To study how dataset composition affects generalist policy learning, we reconstruct the full pipeline225

of our automated data curation method and evaluate its impact on tracking performance. We first226

train a base policy π0 on the unfiltered CMU dataset DCMU, which contains a wide range of motions,227

including physically infeasible or unstable sequences.228

Based on the tracking errors produced by π0, each motion sequence is assigned a score. We sort229

the sequences and apply thresholds τ ∈ {0.075, 0.1, 0.125, 0.15, 0.175} to construct progressively230

filtered datasets Dτ , each representing a different trade-off between feasibility and diversity. Lower231

thresholds preserve only the most stable motions, while higher thresholds allow more diverse but232

potentially unstable examples. These thresholds are derived from the error distribution of π0, and233

the method generalizes to other datasets with similar policy architectures.234

For each dataset Dτ , we resume training from the base policy to obtain a refined policy πτ , leverag-235

ing the learned prior to improve training efficiency and adaptability. All resulting policies are then236

evaluated on the full dataset DCMU using standard tracking metrics, as shown in Figure 3.237

The results show that dataset quality significantly impacts tracking performance and generalization.238

Policies trained on low-threshold datasets (e.g., τ = 0.075) are overly stable but lack diversity,239

leading to limited generalization. High-threshold datasets (e.g., τ = 0.175 or unfiltered) introduce240

instability and noise, degrading accuracy. In contrast, the dataset Dτ=0.15 achieves the best balance241

between feasibility and diversity, resulting in the most robust and accurate policy πτ=0.15.242

4.4 Specialist Policy finetuning243

We evaluate the effectiveness of the pretrain-finetune paradigm by comparing three training strate-244

gies: (1) a generalist policy πτ=0.15 trained on a curated dataset for broad motion coverage; (2) a245

specialist policy obtained by fine-tuning the generalist on task-specific data; and (3) a scratch-trained246

policy with the same total training steps as (2).247
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Method Evel ↓ Empkpe ↓ Eupper
mpkpe ↓ E lower

mpkpe ↓ Empjpe ↓ Eupper
mpjpe ↓ E lower

mpjpe ↓

(a) DModerate

Specialist 0.0991 0.0571 0.0582 0.0559 0.0760 0.0636 0.0930
Scratch 0.1188 0.0676 0.0688 0.0663 0.0924 0.0794 0.1103
Generalist 0.1217 0.0741 0.0727 0.0755 0.1092 0.0914 0.1337

(b) DHard

Specialist 0.1712 0.0827 0.0829 0.0826 0.1047 0.0911 0.1234
Scratch 0.1631 0.0886 0.0898 0.0873 0.1188 0.1067 0.1354
Generalist 0.1452 0.0890 0.0867 0.0912 0.1181 0.1011 0.1414

(c) DACCAD

Specialist 0.4021 0.1149 0.1079 0.1215 0.1402 0.1290 0.1557
Scratch 0.4153 0.1246 0.1154 0.1332 0.1609 0.1490 0.1771
Generalist 0.3361 0.1268 0.1156 0.1391 0.1716 0.1532 0.1967

Table 3: Comparison of three training strategies across three dataset groups of different difficulties.
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Figure 4: A sequence of a robot performing the Cha-Cha dance. Left three rows: reference avatar, simula-
tion result, real robot. Right three rows: per-frame errors for whole-body, upper-body, and lower-body DoF.
Blue: Exbody2-Specialist (finetuned on Ddancing), orange: Exbody2-Scratch (trained from scratch), green:
Exbody2-Generalist (trained on filtered DCMU ).

Experiments are conducted on three datasets: Dmoderate, and Dhard, and DACCAD (out-of-distribution).248

As summarized in Table 3, the specialist policy consistently outperforms others across all datasets.249

The advantage of finetuning becomes more pronounced as motion complexity increases, and on the250

OOD dataset, it achieves the highest generalization performance. While the generalist policy shows251

better velocity tracking in dynamic cases, the specialist achieves higher overall precision.252

To illustrate this, we present a case study on Cha-Cha dance motions (Figure 4). The specialist pol-253

icy, fine-tuned on the dance set, achieves significantly lower tracking errors than both the generalist254

and scratch policies, capturing nuanced motion details while maintaining stability.255

In summary, pretraining on diverse motions followed by task-specific finetuning yields robust, high-256

precision policies. This strategy is especially effective in challenging and unseen scenarios, com-257

bining generalization with specialization.258

5 Conclusion259

This paper introduces Advanced Expressive Whole-Body Control (Exbody2), a new framework for260

humanoid whole-body control that achieves high tracking accuracy, stability, and adaptability. It261

integrates automated dataset filtering, a generalist-specialist training pipeline, and local keybody262

tracking using a teacher-student architecture. Experiments show that Exbody2 outperforms prior263

methods by balancing motion diversity and feasibility, enabling robust tracking and better gen-264

eralization. Specialist finetuning further enhances precision for challenging tasks, validating the265

effectiveness of the structured pretrain-finetune paradigm.266
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A Environments437

A.1 Real-world Deployment438

Our real robot employs a Unitree G1 platform, with an onboard Jetson Orin NX acting as the primary439

computing and communication device. The control policy receives motion-tracking target informa-440

tion as input, computes the desired joint positions for each motor, and sends commands to the robot’s441

low-level interface. The policy’s inference frequency is set at 50 Hz. The commands are sent with442

a delay kept between 18 and 30 milliseconds. The low-level interface operates at a frequency of443

500 Hz, ensuring smooth real-time control. The communication between the control policy and the444

low-level interface is realized through LCM (Lightweight Communications and Marshalling) [62].445

A.2 State Space Definition446

In this section, we provide detailed information on the state space used for policy training, including447

proprioceptive states, privileged information, and motion tracking targets.448

Robot Proprioceptive States. The robot proprioceptive states for the teacher and the student policy449

can be found in Table 4. Note that the student policy is trained on longer history length compared to450

the teacher, as it cannot observe privileged information but have to learn from a longer sequence of451

past observations.452

Privileged Information. The teacher policy leverages privileged information to obtain accurate453

motion-tracking performance. The complete information about the privileged states is listed in454

Table 5.455

Tracking Target Information. Both the teacher policy and student policy also take the motion456

tracking goal as part of their observations, which consists of the keypoint positions, DoF (joint)457

positions, as well as root movement information. The detailed components of the motion tracking458

target can be found in Table 6.459

Action Space. The action is the target position of joint proportional derivative (PD) controllers,460

which is 23 dimensions for Unitree G1.461

State Dimensions
DoF position 23
DoF velocity 23
Last Action 23
Root Angular Velocity 3
Roll 1
Pitch 1
Yaw 1

Total Dim 75*10
Table 4: Proprioceptive states used in Exbody2. The rotation information is from IMU. 10 is the length of the
history proprioception

State Dimensions
Keybody Difference 36
Keybody Pos 36
Root velocity 3

Total dim 75
Table 5: Privileged information used in Exbody2.
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State Dimensions
DoF position 23
Keypoint position 36
Root Velocity 3
Root Angular Velocity 3
Roll 1
Pitch 1
Yaw 1
Height 1

Total dim 69
Table 6: Reference information used in Exbody2.

ât
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Figure 5: Teacher-student framework for humanoid motion learning, where the teacher uses privileged infor-
mation, and the student learns from past observations to generate control actions.

B Model and Training Details462

B.1 Policy Training Hyper-parameters463

Exbody2 adopts a teacher-student training framework, as illustrated in Figure 5. The teacher policy464

is trained with standard PPO [4] algorithm on privileged information, tracking target and propriocep-465

tive states. The student policy is trained with Dagger [5] without privileged information, but using466

longer history. For both teacher and student policies, we concatenate the corresponding inputs and467

feed them into MLP layers for policy learning. We provide the detailed training hyper-parameters468

for our teacher and student policy in Table 7.469

B.2 Reward Design470

Table 8 lists the tracking-based reward components, while Table 9 summarizes the additional471

regularization terms and their corresponding weights. The final reward is computed as a weighted472

sum of these components and is used to train a robust RL policy.473

474

C Empirical Analysis of Dataset Selection475

In the main paper, we propose a Feasibility–Diversity Principle, which posits that a good motion476

dataset for humanoid tracking must be:477
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Hyperparameter Value

Optimizer Adam
β1, β2 0.9, 0.999

Learning Rate 1e−4

Batch Size 4096

Teacher Policy
Discount factor (γ) 0.99

Clip Param 0.2
Entropy Coef 0.005

Max Gradient Norm 1
Learning Epoches 5

Mini Batches 4
Value Loss Coef 1

Entropy Coef 0.005
Value MLP Size [512, 256, 128]
Actor MLP Size [512, 256, 128]

Student Policy
Student Policy MLP Size [1024, 1024, 512]

Table 7: Hyperparameters related to the teacher and student policy’s training.

Term Expression Weight

Expression Goal Ge

DoF Position exp(−0.7|qref − q|) 3.0
Keypoint Position exp(−|pref − p|) 2.0

Root Movement Goal Gm

Linear Velocity exp(−4.0|vref − v|) 6.0
Velocity Direction exp(−4.0 cos(vref,v)) 6.0
Roll & Pitch exp(−|Ωϕθ

ref −Ωϕθ|) 1.0
Yaw exp(−|∆y|) 1.0

Table 8: Tracking rewards specification for Exbody2.

Term Expression Weight
DoF position limits 1(dt /∈ [qmin, qmax]) −10

DoF acceleration ∥d̈t∥22 −3e−7

DoF error ∥dt − d0∥22 −0.1
Action rate ∥at − at−1∥22 −0.1
Feet air time Tair − 0.5 10
Feet contact force ∥Ffeet∥22 −0.003
Stumble 1(F x

feet > 5× F z
feet) −2

Waist roll pitch error ∥pwrp
t − pwrp

0 ∥22 −0.5
Ankle Action ∥aankle

t ∥22 −0.1

Table 9: Regularization rewards for preventing undesired behaviors for sim-to-real transfer and refined motion.
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Metrics

Training Dataset In dist. Evel ↓ Empkpe ↓ Eupper
mpkpe ↓ E lower

mpkpe ↓ Empjpe ↓ Eupper
mpjpe ↓ E lower

mpjpe ↓

(a) Eval. on D50

D50 ✓ 0.1375 0.0627 0.0571 0.0682 0.0753 0.0626 0.0928

D250 ✓ 0.1454 0.0669 0.0600 0.0738 0.0870 0.0689 0.1119

DCMU ✓ 0.1543 0.0767 0.0649 0.0885 0.1099 0.0854 0.1437

(b) Eval. on DCMU

D50 ✗ 0.3509 0.1076 0.1074 0.1076 0.1338 0.1285 0.1410

D250 ✗ 0.2834 0.1048 0.1021 0.1073 0.1148 0.1012 0.1335

DCMU ✓ 0.2622 0.1071 0.1036 0.1110 0.1291 0.1129 0.1512

(c) Eval. on DACCAD

D50 ✗ 0.4226 0.1277 0.1210 0.1330 0.1720 0.1618 0.1861

D250 ✗ 0.3533 0.1234 0.1141 0.1315 0.1421 0.1223 0.1692

DCMU ✗ 0.3452 0.1267 0.1146 0.1381 0.1780 0.1635 0.1979

Table 10: Dataset Ablation Study: Evaluation on D50, DCMU, and DACCAD datasets with models trained on
various datasets. Statistically significant results are highlighted in bold across 5 random seeds.

1. Diverse enough (especially in upper-body movements) to ensure the learned policy can478

generalize beyond very simple or repetitive actions.479

2. Feasible enough that lower-body motions do not exceed the robot’s mechanical limits,480

avoiding extreme samples (e.g., tumbling, handstands) that hamper training.481

To illustrate how we arrived at this principle, We manually design three datasets of varying sizes,482

where the largest being the complete CMU dataset. The remaining datasets, with sizes 50, and 250,483

are subsets of the CMU dataset, each constructed with different levels of action diversity:484

• 50-action dataset (D50): A minimal set containing only fundamental and mostly static485

actions (e.g., standing, simple walking). While highly feasible, it lacks diversity in both486

upper and lower limb motions.487

• 250-action dataset (D250): A moderate-sized set extending D50 with additional upper-488

limb variations (e.g., arm gestures, some dance moves) and moderately dynamic lower-489

body actions (e.g., running, mild jumps). Crucially, it avoids highly extreme motions that490

are difficult for the robot to replicate.491

• Full CMU dataset (DCMU ): The complete CMU motion-capture repository of 1,919 se-492

quences, including extreme movements like push-ups, rolling on the ground, and som-493

ersaults. Although highly diverse, it contains many infeasible actions that can introduce494

significant training noise.495

We train separate policies with our Exbody2 framework on each dataset above and test them on three496

different evaluation sets:497

1. D50 (in-distribution for the simplest data).498

2. DCMU (the full, more complex dataset).499

3. DACCAD, an out-of-distribution set containing actions not found in any of the training500

subsets.501

Table 10 summarizes our findings:502

• Evaluation on D50: Policies trained on D50 unsurprisingly achieve the highest tracking503

accuracy for in-distribution actions, as reflected in metrics across all categories. This sug-504
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Method Evel ↓ Empkpe ↓ Eupper
mpkpe ↓ E lower

mpkpe ↓ Empjpe ↓ Eupper
mpjpe ↓ E lower

mpjpe ↓

(a) History Length Ablation

Exbody2-History10 (Ours) 0.2930 0.1000 0.0960 0.1040 0.1079 0.0953 0.1253
Exbody2-History0 0.4151 0.1047 0.1010 0.1081 0.1119 0.0986 0.1303
Exbody2-History25 0.2950 0.1032 0.0984 0.1078 0.1128 0.0965 0.1351
Exbody2-History50 0.2648 0.1004 0.0956 0.1051 0.1114 0.0967 0.1317
Exbody2-History100 0.3242 0.1063 0.1001 0.1122 0.1225 0.1050 0.1466

(b) DAgger Ablation

Exbody2(Ours) 0.2930 0.1000 0.0960 0.1040 0.1079 0.0953 0.1253
Exbody2-w/o-DAgger 0.4195 0.1150 0.1106 0.1198 0.1496 0.1416 0.1607

Table 11: Self Ablation Study: Evaluation of different configurations of our method on dataset DCMU . The
table is divided into two parts: (a) History Length Ablation and (b) DAgger Ablation.

gests that additional data does not necessarily benefit in-distribution tasks. While the policy505

trained on D250 performs similarly to D50, the policy trained on DCMU exhibits a substan-506

tial drop in tracking accuracy.507

• Evaluation on DCMU : Policies trained on D250 achieve the best performance on DCMU ,508

surpassing those trained on the full DCMU dataset. Due to the limited diversity of the D50509

dataset, especially in upper limb movements, the D50-trained policy struggles to maintain510

high accuracy for out-of-distribution actions. Unexpectedly, the D250-trained policy gen-511

eralizes better than the one trained on DCMU . This result underscores that noisy datasets512

degrade policy performance, as the policy may expend unnecessary effort on tracking in-513

feasible actions, lowering the accuracy of feasible actions.514

• Evaluation on DACCAD: This experiment further emphasizes the importance of clean515

datasets. Here, the ACCAD dataset (DACCAD) consists of actions that are entirely not in516

the training data. The policy trained on D250 outperforms the others, achieving the best517

tracking accuracy. Additionally, the D250 and DCMU -trained policies perform relatively518

well in velocity tracking. However, the D50-trained policy suffers from substantial tracking519

errors, suggesting the limitations of a small, simple dataset in handling unseen data.520

In conclusion, these results validate the core insight behind our Feasibility–Diversity Principle. A521

small dataset (D50) is indeed easy for the policy to master but lacks sufficient variety to generalize522

well. On the other hand, a fully unfiltered large dataset (DCMU )—while highly diverse—contains523

many motions well beyond the robot’s capabilities, introducing detrimental noise. The D250 subset524

thus provides the best balance between feasible lower-body motions and diverse upper-body actions,525

enabling our policy to learn robust and expressive whole-body control.526

D Policy Ablation and Additional Results527

D.1 Ablation on Policy Training528

We conduct ablation studies on our policy design to highlight the effectiveness of both (i) the history529

length for the student policy and (ii) the teacher–student (DAgger) distillation.530

History length. We test student policies trained with different history lengths in Table 11 (a).531

When no extra history is used, the policy struggles to learn effectively. Among the non-zero history532

lengths, most policies perform similarly while the history length of 10 yields the best results, which533

is used by us in the main experiments. Longer history lengths increase the difficulty of fitting the534

privileged information, ultimately reducing tracking performance.535

Teacher–student distillation. Table 11 (b) shows that removing DAgger-style distillation severely536

degrades performance. Without privileged velocity guidance, the student policy must learn velocity537
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tracking directly from raw observations, making it harder to track fast or dynamic motions accu-538

rately.539

D.2 Distribution-Guided Threshold Selection540

To choose filtering thresholds in a principled manner, we first analyze the error distribution of the541

base policy across the entire dataset. Figure 6 presents the empirical cumulative distribution of e(s),542

with the x-axis indicating the percentile of motion sequences (from lowest to highest error) and the543

y-axis displaying the corresponding error value.544

We derive thresholds directly from the empirical distribution, ensuring a data-driven rather than545

arbitrary cutoff. Smaller thresholds yield mostly lower-body motions with limited dynamics,546

while gradually increasing the threshold admits more dynamic behaviors. Higher thresholds in-547

clude samples with excessive errors that could degrade policy learning. Consequently, we select548

τ = 0.075, 0.10, 0.125, 0.15, 0.175 to filter the dataset into subsets of varying feasibility and di-549

versity. This data-driven approach aligns with our feasibility-diversity principle, yielding balanced550

subsets that support robust policy learning.551
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Figure 6: Empirical CDF of the base policy’s error metric e(s) on the entire DCMU dataset. The horizontal axis
indicates the percentile of motion sequences from 0% (lowest error) to 100% (highest error), while the vertical
axis shows e(s). We overlay dashed horizontal lines at key thresholds (τ = 0.075, 0.10, 0.125, 0.15, 0.175) to
illustrate how we systematically determine feasible versus unfeasible motions based on the empirical distribu-
tion.

D.3 Real-world Results Visualization552

Figure 7 illustrates how ExBody2 successfully replicates various motions in both simulation and553

real-world settings. We align each frame’s pose from (i) the reference SMPL animation, (ii) our554

simulated humanoid robot, and (iii) the real robot deployment. These snapshots confirm that our555

learned policy retains high fidelity to the target motion, including lower-body poses critical for556

balance. Additional results can be viewed in the supplementary video.557

E ExBody2’s Multi-source Demonstration558

One key advantage of ExBody2 is its flexibility in handling multiple motion sources. In the main559

text, we focus primarily on motion capture data (i.e., offline datasets). Below, we highlight two560
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a) Clasping fists b) Clapping Twist c) Greeting Gesture

d) Punching e) Crouching f) Defensive Pose

Figure 7: Sim-to-real experiment results showcasing diverse motions across SMPL, simulation, and real-world
environments. Examples include: (a) Clasping Fists, (b) Clapping Twist, (c) Greeting Gesture, (d) Punching,
(e) Crouching, and (f) Defensive Pose.

other sources—Real-time Whole-body Mimic (RGB-based) and Motion Synthesis (latent generative561

model)—that can drive ExBody2 for more interactive and long-horizon tasks. Figure 8 visually562

summarizes these capabilities alongside possible VR or IMU-based streams.563
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Figure 8: Illustration of ExBody2’s multi-source application, demonstrating how VR, RGB, motion capture,
and generative models can be combined to produce diverse humanoid behaviors. (a) Motion Datasets: spe-
cialized policies (e.g., kung fu, dancing) finetuned on specialist motion datasets. (b) Real-time Whole-body
Mimic: real-time replication of human motions from monocular RGB via HybrIK. (c) Motion Synthesis: a
CVAE-based approach for extended and varied motion generation. Experiments demonstrate ExBody2’s capa-
bility to seamlessly integrate multiple motion sources in both simulation and real-world scenarios.
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E.1 Real-time Whole-body Mimic (RGB Input)564

We implement a real-time tracking pipeline that uses only monocular RGB input to mimic human565

movements. Our system first applies the HybrIK algorithm [63] to extract 3D human poses from566

each image frame. We then retarget this sequence of poses to the robot’s kinematic structure and567

feed it into the ExBody2 whole-body policy. Because our policy is trained to be robust to partial568

or noisy signals, it can accommodate real-time streaming of 3D keypoints and still maintain stable569

lower-body tracking. Figure 8 (b) demonstrates a user controlling the robot to lift and carry an570

object, showcasing responsive teleoperation.571

Relying on monocular pose estimates is more lightweight than requiring a full-body Mocap or multi-572

camera setup. Although the 3D pose can be less accurate than multi-view solutions, our control573

policy’s robust design helps it remain stable even under potential keypoint noise.574

E.2 Motion Synthesis for Extended Behaviors575

We further incorporate a Conditional Variational Autoencoder (CVAE) to generate new motion seg-576

ments based on a short sequence of past motions, as Figure 8 (c) illustrated. During inference, each577

latent code z is sampled (or set to the prior mean) to produce new motion trajectories that seam-578

lessly continue from the current pose. Unlike naive random sampling, the CVAE ensures continuity579

by conditioning on past pose context and penalizing abrupt transitions with a smoothness loss.580

Training details. The CVAE is trained on a broad set of humanoid motion clips, optimizing a581

reconstruction loss plus KL-divergence for the latent space. We also add a small penalty for high-582

frequency velocity changes, improving the realism of the generated motions.583

Integration with ExBody2. The generated motion frames are retargeted in exactly the same way584

as a regular Mocap clip, so the policy sees no difference. This allows the robot to perform ex-585

tended, varied sequences—e.g., spontaneously transitioning from walking to an upper-body ges-586

ture—without needing to rely on a fixed database of motion capture clips.587
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