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Abstract

Serial dependence reflects how recent sensory history shapes current perception,
producing two opposing biases: repulsion, where perception is repelled from recent
stimuli, and attraction, where perception is drawn toward them. Repulsion typically
occurs at the sensory perception stage, while attraction arises at the post-perception
stage. To uncover the neural basis of these effects, we developed a two-layer
continuous attractor neural network model incorporating synaptic short-term plas-
ticity (STP). The lower layer, dominated by synaptic depression, models sensory
processing and drives repulsion due to sustained neurotransmitter depletion. The
higher layer, dominated by synaptic facilitation, models post-perception processing
and drives attraction by sustained high neurotransmitter release probability. Our
model successfully explains the serial dependence phenomena observed in the
visual orientation judgment experiments, highlighting STP as the critical mech-
anism, with its time constants defining the temporal windows of repulsion and
attraction. Furthermore, the model provides a neural foundation for the Bayesian
interpretation of serial dependence. This study advances our understanding of how
the neural system leverages STP to balance sensitivity in sensory perception with
stability in post-perceptual cognition.

1 Introduction

The visual world casts dynamic images on the retina. From moment to moment, internal and external
noise fluctuates across changes in lighting, occlusion, and viewpoint in the environment. Yet we
perceive coherence and stability in the world. Serial dependence is an intrinsic mechanism through
which our visual system exploits temporal correlations and contextual redundancies by merging
similar stimuli that slightly change over time. The visual system harnesses this autocorrelation by
inducing positive serial dependencies, drawing the current perception towards the recent history.
Through continuous serial dependencies, cognition compensates for variability in sensory input,
stabilizing what would otherwise be a noisy and discontinuous experience of the world [1, 2, 3, 4].

In contrast to the positive serial dependence, negative dependence is widely documented. Examples
of negative serial dependence are well-known phenomena of visual adaptation and aftereffects [5, 6],
e.g., a vertical grating appears to tilt clockwise after exposure to counterclockwise orientations. Such

∗Corresponding authors. 1Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing
100084, China. 2Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; School of
Psychology, Center for Studies of Psychological Application; Guangdong Key Laboratory of Mental Health and
Cognitive Science, Philosophy and Social Science Laboratory of Reading and Development in Children and
Adolescents; South China Normal University, Guangzhou 510631, China.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



repulsive biases have been observed in sensory cortex, as a classical behavioral probe for neural
encoding of visual features [7, 8], such as orientation [9, 10], motion [11], and face viewpoint [12].

Given the coexistence of attractive and repulsive biases, the issue has been raised about the stage at
which the two types of serial dependence originate. There has been growing evidence suggesting
that repulsion typically occurs in the sensory stage, while attraction appears in the post-perception
stage [13, 14, 15, 16, 17].

This study investigates how the cascade of neural processes is calibrated to the history of sensory
and decisional events in neural networks, leveraging the unique characteristics of short-term synaptic
plasticity (STP) [24, 25, 26, 27, 28, 29], wherein synaptic efficacy varies dynamically with presynaptic
activity. Two competing effects exist: short-term facilitation (STF) and short-term depression
(STD). Previous studies have demonstrated that STP can regulate neural information processing
effectively [30, 31, 32]. For instance, STD can reduce output correlation by inhibiting high-frequency
inputs, thereby reducing the autocorrelation of temporal sequences [33]; STF can facilitate the
maintenance of input information by strengthening neuronal connections, thereby promoting the
integration of temporal sequences [29]. Postsynaptic neurons receiving STD-dominated or STF-
dominated synaptic inputs exhibit low-pass or high-pass filtering responses, respectively, achieving
diversified processing of temporal sequences [34]. We hypothesize that STP underpins the neural
basis of serial dependence, orchestrating its dynamic perceptual effects.

In this work, we develop a two-layer network model incorporating STP to elucidate the underlying
mechanisms for both the attractive and repulsive effects in serial dependence. Specifically, to
model the visual orientation judgment experiment, we adopt continuous attractor neural networks
(CANNs) for each layer [35, 36]. The lower layer, characterized by STD-dominance, models sensory
processing, which produces repulsion via sustained neurotransmitter depletion. The higher layer,
characterized by STF-dominance, models post-perception processing, which produces attraction
via sustained high neurotransmitter release probability. Our model successfully explains the serial
dependence phenomena observed in experiments, revealing that the STP time constants determine the
temporal windows of repulsion and attraction. Additionally, our model provides a neural mechanistic
explanation of the Bayesian interpretation of serial dependence.

Related Works Contemporary models of serial dependence employ efficient encoding and
Bayesian decoding to explain perceptual biases [13, 15, 18, 19, 20, 21]. In the encoding phase,
prior stimuli recalibrate neural sensitivity, reshaping the probability distribution of the current stimu-
lus to induce repulsive bias. In the decoding phase, Bayesian inference integrates sensory likelihood
with a prior, yielding the posterior perception and producing attractive or repulsive biases toward prior
stimuli. However, the neural basis of this dual process lacks biological validation, and the underlying
circuitry dynamics remain largely unexplored. Moreover, existing models fail to capture the temporal
dynamics of serial dependence, such as bias reduction with longer inter-stimulus intervals (ISI).
Bridging the Bayesian framework with a mechanistic neural model remains a challenge. Recent
neuroimaging advances have spurred exploration of the neural computations underlying serial depen-
dence. Some studies attribute attraction to short-term facilitation (STF) or slow excitatory NMDA
currents in higher cortical regions, with enhanced synaptic efficacy or neuronal activity [22, 23].
However, these neural dynamic models cannot explain the repulsion effect and the dynamic balance
between attraction and repulsion observed in experiments.

2 The Network Model

To unveil the neural mechanism underlying serial dependence, we developed a two-layer neural
network with hetero-synaptic STP. Specifically, to model visual orientation processing, we adopted
a continuous attractor neural network (CANN) for each layer (Fig. 1A). CANNs are a canonical
model for neural information representation [37, 38, 39], which effectively mimics the encoding of
continuous features in local circuits, such as visual orientation [40, 41] and spatial location [42, 43,
44]. In the brain, stimulus information propagates from lower to higher cortical areas, establishing
hierarchical processing from sensory perception to post-perceptual cognition. STP (Fig. 1B-C) is
a fundamental neurophysiological property that dynamically modulates synaptic efficacy based on
presynaptic firing history [45, 46], manifesting as either STF or STD. Electrophysiological studies
suggest potential distinct regional specialization: sensory cortex exhibit STD-dominance [47, 48,
49, 50], while high-level cortex such as prefrontal cortex (PFC) exhibit STF-dominance [24, 53].
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Therefore, the lower layer models STD-dominated processing in the visual cortex (e.g., V1), while
the higher layer models STF-dominated processing in high-level cortex (e.g., PFC).
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Figure 1: A two-layer CANN with heterosynaptic STP. (A) Schematic of the network model. The
hierarchical two-layer architecture mimics STD-dominated processing in the visual cortex and STF-
dominated processing in the higher post-perceptual cortex. Excitatory neurons within each layer
are aligned in a one-dimensional ring according to their preferred orientation θ, subject to global
inhibition (gray solid circle). Intra-layer and inter-layer neurons are connected with color-scaled
lines that denote synaptic connectivity strength. (B) A STD-dominated network displays adaptive
synaptic efficacy that sustains at low levels. During stimulation (shaded period), neural activity (r)
increases the neurotransmitter release probability (u) while depleting the available neurotransmitter
concentration (x). Following stimulus offset, u and x recover to baselines. (C) A STF-dominated
network retains elevated synaptic efficacy (large value of u) for prolonged time.

In each layer of the CANN, neurons are aligned on a one-dimensional ring according to their preferred
visual orientations θ ∈ (−π/2,+π/2] (Fig. 1A). Denote hM (θM , t) the synaptic current to neurons
at θM at time t, where M = {L,H} indexes the lower (L) or higher (H) layer, and rM (θM , t) the
corresponding firing rate. The neuronal dynamics are described as:

τL
∂hL(θL, t)

∂t
= −hL(θL, t) + ρ

∫
JLL(θL, θ

′
L)uL(θ

′
L, t)xL(θ

′
L, t)rL(θ

′
L, t)dθ

′
L (1)

+ Iext(θL, t) + µLξb(θL, t),

τH
∂hH(θH , t)

∂t
= −hH (θH , t) + ρ

∫
JHH (θH , θ′H)uH (θ′H , t)xH (θ′H , t) rH (θ′H , t) dθ′H

+

∫
JHL (θH , θ′L) rL (θ′L, t) dθ

′
L + µHξb(θH , t), (2)

where τM , with M = {L,H}, denotes the time constant of neurons in the lower or higher layer,
respectively. ρ is the neuronal density. ξb(θM , t) denotes background Gaussian white noises of
zero mean and unit variance, and µM the noise strength. The firing rate of neurons is calculated by,
rM (θM , t) = h2

M (θM , t)/
[
1 + kMρ

∫
h2
M (θ′M , t)dθ′M

]
, with the parameter kM controlling the divi-

sive normalization strength [39]. We set the neuronal connections in the same layer or between layers
to be JKM (θK , θ′M ) = J0

KM/(
√
2πaKM ) exp

[
−(θK − θ′M )2/(2a2KM )

]
, with K,M ∈ {L,H}),

where J0
KM denotes the maximum strengths for intra-layer connections (J0

LL, J
0
HH ) and inter-layer

connections (J0
HL), and aKM controls the neuronal interaction range. Importantly, JKM depends

only on the difference (θK−θ′M ), which is translation-invariant in the feature space, a crucial property
enabling a CANN to maintain a continuum of attractors to represent a continuous feature [39, 51, 52].

STP modulates the synaptic efficiency between neurons, which is characterized by two variables,
the neurotransmitter release probability u and the available neurotransmitter resource x. When
a presynaptic neuron fires, the calcium accumulation at its axon terminal triggers two competing
processes: 1) STF, due to the increase of neurotransmitter release probability u and 2) STD, due to
depletion of x. The instantaneous synaptic efficacy is ux. The dynamics of STP are given by:

∂uM (θM , t)

∂t
= −uM (θM , t)

τMf
+ UM

0 (1− uM (θM , t))rM (θL, t), M = L,H (3)

∂xM (θM , t)

∂t
=

1− xM (θM , t)

τMd
+ uM (θM , t)xM (θM , t)rM (θM , t), M = L,H (4)

where the time constants τf and τd determine how quickly u and x recover to baselines, respectively.
recover to baselines. Since a larger τf implies that u remains at high-level after neuronal response for
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a longer time, it corresponds to the STF effect; while a larger τd implies that x remains at low-level for
a longer time, it corresponds to the STD effect. Experimental data show that sensory cortices like V1
are STD-dominated, i.e., τd ≫ τf [47], while higher cortical regions such as PFC are STF-dominated,
i.e., τf ≫ τd [24, 53]. We set STP parameters in the lower and higher layers of our model accordingly
(Fig. 1B-C), and the time constants also match the timescales of working memory [29, 31].

3 STP Induces Repulsion and Attraction in a Single-Layer CANN

Before studying the performance of the two-layer network, we first explore how STP induces
serial-dependent biases in a single-layer CANN.

To compare the network performance with experimental data, we adopted the post-cueing adjustment
paradigm (Fig. 2) [54, 55, 56, 57], where participants viewed two sequentially presented visual
stimuli S1 and S2, whose orientations θs1 and θs2 are randomly sampled in the range of (−π/2, π/2]
in each trial. After a delay period, participants reported the memorized orientation, denoted as
θdcue, giving the cuing signal (Fig. 2A, D top). External visual stimuli and the cueing signal are
presented to the lower layer, denoted as Iext(θL, t), with ext ∈ {sti, cue}, which are expressed
as Iext(θL, t) = αext exp

[
−(θL − θext)

2/(2a2ext)
]
+ µextξext(θL, t), with αext controlling the signal

strength, aext the signal width (inversely related to the precision), and µext the noise strength. In the
retrieval phase, we modeled the cueing signal as a weak and ambiguous copy of the corresponding
stimulus signal by setting the parameters αcue ≪ αsti, acue > asti, and µcue > µsti [32], with detailed
noise settings in Appendix A. We manipulated the variables, including the inter-stimulus interval (ISI,
∆tISI) and the inter-trial interval (ITI, ∆tITI), and measured the adjustment error of the model, which
is given by Error = θd2 − θs2, and compared it to the stimulus orientation difference ∆S = θs1 − θs2.
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Figure 2: Serial dependence in a single-layer CANN with STP. (A-C) Repulsion effect induced by
STD-dominance. (D-F) Attraction effect induced by STF-dominance. (A, D) Schematic illustration
of the temporal dynamics of neural responses r, the available neurotransmitter resource x, and the
neurotransmitter release probability u in a single-layer CANN with STD-dominance (A) or STF-
dominance (D). Two stimuli S1 and S2 with respective orientations θs1 = −30° and θs2 = 0° are
presented sequentially. A cueing signal is presented after the delay period to trigger the retrieval
of S2. (Top) The red line marks the decoded stimulus orientation. (Bottom) The red lines during
stimulus/delay periods denote stimulus orientations in current trial. The recall-period red line
indicates the recalled orientation of the second stimulus. (B, E) Illustration of the repulsive and
attractive biases. In the STD-dominated case (B), the retrieved neural response (θd2 , blue curve) is
repelled away from the earlier presented stimulus (θs1). In the STF-dominated case (E), the retrieved
neural response is attracted toward θs1. These biased effects exist in both the neural response (top)
and in the neurotransmitter concentration (bottom). Gray and dotted curves represent simulation
and fitting results, respectively. (C, F) Adjustment error (Error = θd2 − θs2) as a function of the
difference between two stimuli (∆S = θs1 − θs2) under different ISI conditions. It displays negative
correlations (repulsion) in the STD-dominated case (C) and positive correlations (attraction) in the
STF-dominated case. The shaded area represents standard error across simulation runs. For more
details, see Appendix A.
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3.1 STD-dominance induces repulsion in a single-layer CANN

We first demonstrated that a single-layer CANN with STD-dominance induces serial-dependent
repulsion. In each trial, stimuli S1 and S2 activate neurons sequentially in the form of bump-shaped
activities centered at θs1 and θs2, respectively (Fig. 2A top), which deplete synaptic resources of active
neurons (Fig. 2A bottom) and reduce their synaptic efficacy. The neurotransmitter concentration
x(θ, t) depleted by S1 and S2 forms a double-trough distribution with minima at θs1 and θs2 (red
curves in Fig. 2A bottom). The late presentation of S2 implies the late recovery of corresponding
neurotransmitters, resulting in x(θs2, t) < x(θs1, t) (gray curve in Fig. 2B, bottom). Due to the time
constants τd ≫ τf , neurotransmitter concentration remains at low levels during the maintenance
period, and they can be mathematically expressed as, x(θ, t) = 1 − A1

x(t) exp
[
(θ − θs1)

2/2a2
]
−

A2
x(t) exp

[
(θ − θs2)

2/2a2
]
, validated by our numerical simulation (dotted gray curve in Fig. 2B,

Appendix C; the variation of u(θ, t) and u(θ, t)x(θ, t) over time, see Appendix D). When the retrieval
cue for S2 is presented, the network generates a response bump (blue curve in Fig. 2B, top) centered
at θd2 (decoded via population vector from neural activity, Appendix A). Notably, before presenting
the retrieval cue, the double-trough distribution of x(θ, t) is lower on the side of θs2 closer to θs1,
resulting in weaker synaptic connections in this region. This creates asymmetric neuron interactions,
pushing the network response θd2 away from θs1, manifesting the repulsion effect (Fig. 2B).

We conducted 20 simulation runs (100 trials each, cue = 2 as examples), modeling behaviors
of different participants (Appendix A). Analysis using Derivative of Gaussian function (DoG,
G(x) =

√
e(x/σ)ADoG exp(−x2/2σ2), with ADoG denoting the curve’s amplitude, Fig. 2C) re-

vealed a negative correlation between the stimulus similarity ∆S and the adjustment error Error
(one-sample t-test against zero on the sum of error: t(19) = 197.36, p < .001). Stimuli with higher
similarity (smaller ∆S) generate stronger repulsion (larger |θd2 − θs2|). We found that the amplitude
ADoG = −2.29°and the repulsion effect peaks at ∆S = 31.71°, in agreement with the V1 repulsion
observed in psychophysical experiments[15, 16, 17]. To test generality, we re-ran the one-layer model
by randomly cueing S1 or S2 in interleaved trials. The results showed that the adjustment error curve
aligns with that in Fig. 2C, with a magnitude of -3.51° (t(19) = 168.57, p < .001, Appendix E).

By manipulating ISI, we further investigated the regulation of STD on the repulsion effect, and found
that: when ∆tISI < τd, decreasing ∆tISI increases the repulsion effect (all t(19) > 43.18, p < .001).
Conversely, if neurotransmitters are sufficiently recovered, the repulsion is reduced significantly.

3.2 STF-dominance induces attraction in a single-layer CANN

We continued to explore how STF affects serial dependent biases in a single-layer CANN. As shown
in Fig. 2D, two sequentially presented stimuli S1 and S2 trigger neural activity bumps centered at θs1
and θs2, respectively, causing the increase of neurotransmitter release probability of active neurons,
and so do the interactions between them. Since the neural activity bumps caused by two stimuli are
superimposed, creating a bimodal distribution of u(θ, t) peaked at θs1 and θs2. The latter-presented
S2 induces a slower decay of the corresponding neurotransmitter release probabilities, resulting in
u(θs2, t) > u(θs1, t). Since the time constant of STP τf ≫ τd, the neurotransmitter release probabili-
ties remain at high levels during the maintenance period, which can be mathematically expressed as
u(θ, t) = A1

u(t) exp
[
(θ − θs1)

2/2a2
]
+A2

u(t) exp
[
(θ − θs2)

2/2a2
]
, validated by numerical simula-

tion (dotted gray curve in Fig. 2E bottom, Appendix C; the variations of x(θ, t) and u(θ, t)x(θ, t) over
time see Appendix D). During the retrieval phase (cue = 2 as examples), the neurotransmitter release
probabilities near θs2 on the side closer to θs1 have larger values than those on the side away from θs1,
causing stronger neuronal interactions in this region. Consequently, this shifts the network response
center θd2 triggered by the cueing signal towards θs1, manifesting the attraction effect (Fig. 2E top).
We found that the adjustment error (Error) correlates positively with the stimulus similarity (t(19) =
122.92, p < .001), with a DoG amplitude ADoG = 1.48◦, peaking at a ∆S = 24.52°(Fig. 2F), which
is in agreement with the attraction effect observed in PFC and other higher cortical areas[17, 60, 61].
When randomly cueing S1 or S2, the adjustment error curve aligns with that in Fig. 2F, with a
magnitude of 1.68° (t(19) = 96.97, p < .001, Appendix E).

By varying ISI (Fig. 2F), we found that the attraction effect (ADoG) increases as ∆tISI decreases,
under the condition ∆tISI < τf (all t(19) > 85.63, p < .001). Conversely, when neurotransmitter
release probabilities decay to the baseline, the attraction effect reduced significantly.
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4 STP Orchestrates Repulsion and Attraction in a Two-layer Network

4.1 Reproducing perceptual biases in a visual orientation judgment task

Using the post-cueing paradigm, we further demonstrated that heterosynaptic STP in two layers of the
model induces repulsive and attractive effects, respectively. We carried out 20 runs, each containing
100 consecutive trials. Let us consider the (n+ 1)th trial (Fig. 3A), two visual stimuli Sn+1

i , with
orientation θs,n+1

i , for i = 1, 2, are presented to the lower layer of the network sequentially, which
trigger neuronal responses in the bump-shape centered at θs,n+1

i,M (M = L,H), respectively, in each
layer. We implemented a recall paradigm, in which a randomly selected stimulus serves as the
recall cue (Ss,n+1

cue , cue = {1, 2}) and triggers a retrieved bump activity centered at θd,n+1
cue,M . We then

calculated the adjustment errors (Error = θd,n+1
cue,H − θs,n+1

cue ) for cued stimuli and their relationship
to both the orientation difference in the current (∆Swithin = θs,n+1

uncue − θs,n+1
cue , within-trial) and the

orientation difference cued in the preceding trial (∆Sbetween = θs,ncue − θs,n+1
cue , between-trial).

Within-trial repulsion. According to the study in Sec. 3.1, in the lower-layer CANN with STD-
dominance (modeling information processing in V1), θd,ncue,L in any nth trial exhibits the repulsion
effect from other within-trial stimuli, as shown by the orange curve in Fig. 3B (bottom). This
effect arises due to the spatially asymmetric distribution of available neurotransmitters (xL(θL, t))
caused by STD (gray curve). Notably, while disturbances in xL(θL, t) from previous trial stimuli
(Sn−1

i ) persist, their influence is negligible because τLd < 2Ttrial (Ttrial is the trial duration), and that
θs,n−1
i and θd,n−1

cue,L are uniformly distributed around θs,ni , making the cumulative effect statistically
insignificant during the nth trial delay. The repulsively shifted neuronal responses in the lower layer
are transmitted to the higher layer via feedforward connections (black curve in Fig. 3B top). Different
from the lower layer, because of STF-dominance, the high layer has enhanced neurotransmitter
release probabilities uH(θH , t) in the region around the current trial stimuli (gray curve in Fig. 3B
top). This enhanced synaptic efficacy selectively amplifies feedforward inputs centered at θd,ncue,L.
These repulsively shifted inputs from the low layer make the triggered neural response in the high
layer exhibit repulsion (orange curve in Fig. 3B top).

Between-trial attraction. After two visual stimuli in the (n+1)th trial are presented, neurotransmitter
release probabilities uH(θH , t) in the higher layer exhibit a three-peak distribution, peaking at θs,n+1

1 ,
θs,n+1
2 , and θd,ncue,H (Appendix C). Since uH(θH , t) decays slowly in the high-layer, it maintains at a

relatively high level during the delay period of the nth trial, and the neuronal activity induced by
the retrieval cue in the high-layer further facilitates the neurotransmitter release probabilities around
θd,ncue,H (Fig. 3A bottom), resulting in an amplitude hierarchy during the delay period in the (n+ 1)th

trial: Acue,n
u (t) ≫ A

1/2,n+1
u (t) (gray curve in Fig. 3C top). This dynamic characteristic causes the

neural activity induced by the recall cue in the (n+ 1)th trial to shift toward θd,ncue,H , manifesting the
attraction effect (orange curve in Fig. 3C top).

Statistical analysis shows that the model’s adjustment error (Error = θd,n+1
cue,H − θs,n+1

cue ) negatively
correlates with the within-trial stimulus similarity (∆Swithin), peaking at 38.13°( ADoG = −0.91◦,
t(19) = 12.62, p < .001; Fig. 3D, blue curve); whereas, the network’s adjustment error positively
correlates with the between-trial stimulus similarity (∆Sbetween), peaking at 17.83°( ADoG = 1.18◦,
t(19) = 7.94, p < .001; Fig. 3D, red curve). Notably, these two opposite effects are consistent
with the repulsive and attractive biases observed in post-cue behavioral and neurophysiological
experiments[58, 59, 61], and their magnitudes are comparable to the strength of classical serial
dependence effects reported in the literature (e.g., ADoG = 1.17◦[14], ADoG = 1.32◦[20], ADoG =
1.59◦[59]). To account for potential readout bias due to asymmetric neural responses, we decoded
high-layer activity using multiple methods (population vector method, center-of-mass, maximum
likelihood, and peak decoding, Appendix F). All approaches yielded consistent results, confirming
robust within-trial repulsion and between-trial attraction.

Psychophysical experiments also indicate that reporting the cued stimulus in the previous trial
significantly affects the current between-trial attraction. By applying a partial no-report paradigm
(see Appendix B), we found that when no report is required in the previous trial, the current target is
less attracted to the previous one, and the within-trial repulsion effect increases slightly (between:
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ADoG = 0.14◦, t(19) = 0.26, p = .802; within: ADoG = −1.29◦, t(19) = 9.21, p < .001; Fig. 3E),
consistent with the psychophysical experimental data [1, 62]. Based on this, our model further predicts
that compared to actual visual stimulus values (i.e., ∆Sbetween = θs,ncue −θs,n+1

cue ), the retrieved stimulus
contributes more to the between-trial attractive effect (ADoG = 1.28◦, t(19) = 8.9, p < .001; Fig. 3F),
which is consistent with the psychophysical experimental data [20]. Thus, the between-trial attraction
effect stems more from the memory representation difference (i.e., ∆Rbetween = θd,ncue,H − θs,n+1

cue ).
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Figure 3: Serial dependence in the two-layer CANN model. (A) Temporal dynamics of the model
variables. Two stimuli presented sequentially evoke neural responses. Post-delay, the network
retrieves S1 or S2 based on the task cue. Plots (top to bottom): lower-layer firing rate, lower-layer
available neurotransmitter resource, higher-layer firing rate, and higher-layer neurotransmitter release
probability. After stimulus offset, rL(θL) and rH(θH) return to baseline; xL(θL) and uH(θH)
persist, affecting decoding within and across trials. (B) Within-trial repulsion in the two-layer model.
Low-layer decoded signal (θd,n2,L, orange curve) is biased away from the non-target (θs,n1 ) due to the
asymmetric neurotransmitter concentration profile (gray). This propagates to the higher layer, where
spatial asymmetry in uH(θH , t) (gray) shifts the response bump, causing repulsion. (C) Between-trial
attraction in the two-layer model. Lower-layer signal propagates to the higher layer, where uH(θH , t)

asymmetry (gray, top) in (n+1)th trial shifts the response bump (orange curve, top) toward θd,ncue,H,
causing attraction. All variables normalized. (D) Within-trial repulsion and between-trial attraction.
Retrieval error (angular difference between higher-layer readout and cued stimulus) plotted against
the difference between the prior and current stimuli. (E) Within-trial and between-trial biases without
cueing in the prior trial. (F) Within-trial and between-trial biases plotted against the difference
between the prior stimulus (or its report) and the current stimulus. For more details, see Appendix B.

4.2 The neural basis of Bayesian interpretation of serial dependence

Contemporary models in the field explaining repulsion and attraction in serial dependence often
adopt the Bayesian inference framework, such as the gain model [1] and two-process model [13, 20].
These models consider the whole process involving two stages (Fig. 4A): 1) sensory encoding,
in which orientation-selective neurons in the sensory cortex encode stimuli in the form of tuning
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curves, i.e., r(θk) = α exp [β cos(θ − θk)− 1], with θk denoting the orientation preference and α, β
controlling the amplitude and width of the tuning curve, respectively. 2) decision integration, in which
higher cortical areas estimate stimuli through weighted integration, i.e., θd =

∑
θk

r⃗(θk)wk, with
wk representing the decision weight. Although differing in regulatory strategies, both the gain and
two-process models posit that the brain modulates these two processes during sequential information
processing. In particular, the two-process model assumes that: 1) at the sensory encoding stage,
neurons undergo adaptive sensitivity regulation, reducing tuning curve amplitudes near previous
stimuli θs (black curves in Fig. 4A, modifying α based on (θk − θs)), which effectively alters the
likelihood function in Bayesian inference; 2) at the decision stage, higher cortical areas develop
weight biases toward previous stimuli (green curves in Fig. 4A, modifying wj based on (θk − θs)),
equivalent to changing the prior distribution in Bayesian inference. These dual operations shift the
posterior distribution, producing repulsion in sensory perception and attraction in post-perception,
but the neural basis of these operations is unknown. Also, the existing models have not explained the
dynamic characteristics of serial dependence, such as the temporal decay of serial-dependent effects,
the within-trial repulsion and between-trial attraction.

Our two-layer CANN model with hetero-STP provides a neural basis for the Bayesian interpretation
of serial dependence, specifically, 1) negative regulation at sensory encoding: neurons responding to
the presented orientation θsi will experience resource depletion after activation (Fig. 4B bottom, black
curve, equation see Appendix C). This reduces neuronal synaptic efficacy and affects the feedforward
transmission to the higher layer, analogous to the modulation of the likelihood function in the
Bayesian framework. It drives the repulsion effect as we have analyzed (Fig. 4B bottom, blue curves).
2) positive regulation at the decision stage: neurons in the higher layer responding to the previous
stimulus have enhanced neurotransmitter release probabilities to the cueing orientation (Fig. 4B,
green curve, Appendix C). This creates biased strong neuronal connections in the network toward
the stimulus history, analogous to the modulation of the prior in the Bayesian framework. When
a new stimulus arrives (the likelihood information), the high-layer CANN whose connections are
implicitly modulated by the stimulus history (the prior) effectively carries out the history-dependent
computation (the posterior).
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Figure 4: A STP-based Bayesian interpretation of serial dependence. (A) Schematic of Bayesian
interpretation. Orientation stimuli (black curves) generate neural population responses (blue curves,
likelihood), integrated by readout weights (green distributions) to produce the posterior decision.
Adaptation induces repulsive effects; recent stimulus history amplifies decisional weights, eliciting
attractive effects. (B) STP correlations of Bayesian inference. Bottom: neurons in the lower layer
respond to the prior cued signal and current stimuli, inducing neurotransmitter depletion (gray curve).
Recent stimuli evoke stronger repulsion, resulting in a net repulsive bias in the population response
(blue curve). Middle: Lower-layer response (blue curve, likelihood) propagates to the higher-layer
network; neurotransmitter release probability (green curve, prior) biases toward the cued target. Top:
Higher-layer population response (blue curve) displays repulsive bias from the stimulus from the
same trial and attractive bias toward the prior cued target.
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5 Model Prediction

Within-trial repulsion effects reflect neural network sensitivity to rapid changes, while between-trial
attraction effects demonstrate stability in long-term processing. In our model, these are due to the
fact that STD reduces neurotransmitters, while STF increases neurotransmitter release probabilities.
STP, with its time constants positioned between rapid neural encoding (hundreds of milliseconds)
and experiential learning (seconds), serves as the suitable neural correlate of adaptive cognitive
functions, including motor control, speech recognition, and working memory. In our two-layer
network, heterogeneous STP regulates the different information processing in two layers, specifically,
the lower layer employs STD for information separation, while the higher layer employs STF for
information integration. This area-specific STP regulation provides a way for the neural system to
balance information separation and integration, where the STP time constants determine the time
boundaries for information separation and integration in temporal sequence processing.

To verify our hypothesis on the role of STP, we used the post-cueing paradigm to study the serial
dependence effects by manipulating ISI and ITI time windows accordingly. We conducted 20 runs
(100 trials each) for various parameter conditions. The relationship between the judgment error
and the stimulus difference was fitted using a DoG curve, with amplitude (ADoG) derived from this
fitting (hollow circles in Fig. 5). We have two key observations: (i) When ISI within a trial is shorter
than the lower layer’s STD time constant (τd), the network shows a significant repulsion effect in
judgment error (0s: t(19) = 8.66, p < .001), with its strength inversely proportional to ISI. When ISI
exceeds τd, repulsion transitions to attraction (5s: t(19) = 4.32, p < .01; 10s: t(19) = 5.42, p < .001).
Thus, the STD time constant determines the time window of repulsion, as illustrated in Fig. 5A. (ii)
When ITI is shorter than the higher layer’s STF time constant τf , the network exhibits a significant
attraction effect in judgment error (all t(19) > 4.84, p < .001), with its strength inversely proportional
to ITI. As ITI exceeds τf , the attraction effect weakens substantially and becomes negligible when
ITI is sufficiently long (both p > .05). Thus, the STF time constant determines the time window of
attraction, as shown in Fig. 5B.

The cross-talk between two layers in our model is at the neural activity level, which generates
different serial dependence biases. The bottom-up repulsion competes with the STF-maintained prior
information (attractive bias), yielding the observed behavioral pattern—attraction within trials and
repulsion between trials. This cross-layer competition exhibits time-dependency: psychophysical
evidence indicates that the attractive effect is strengthened with longer delays[14], reflecting faster
decay of STD-driven repulsion versus STF-sustained attraction. Our model (Fig. 5) captures this
time-dependent interaction, where the short timescale of STD leads to a faster decay of repulsion,
while STF in the higher layer maintains the attractive bias over longer duration.
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Figure 5: Model predictions on temporal windows of information segregation and integration. (A) The
adjustment error (amplitude of the DoG) reveals within-trial repulsion, which gradually decreases and
reverses to attraction as the ISI increases. (B) The adjustment error reveals between-trial attraction,
which decreases as the ITI increases. *: p < .05; **: p < .01; ***: p < .001.

6 Discussion

This study proposes a hierarchical computational strategy for the neural system in dynamic sequential
processing, where the STP time constants critically determine the temporal windows and boundaries
for information segregation and integration. By incorporating region-specific STP heterogeneity, our
continuous attractor neural networks advance the synaptic theory of working memory [29], which
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posits that presynaptic neurotransmitters serve as a dynamic buffer—loaded, refreshed, and read out
by spiking activity to enable both activity-based and activity-silent memory representations. In V1,
STD-dominated plasticity induces a transient repulsive effect via neurotransmitter depletion, driving
stimulus-specific suppression, in reminiscence of the classical visual adaptation effect [18, 47, 63,
64, 65]. In contrast, STF-dominance in PFC sustains synaptic efficacy via calcium accumulation,
thereby generating attractor dynamics that support temporal integration for working memory and
decision-making [29, 66, 67]. Specifically, the time constants of STD and STF dictate the temporal
windows for segregation and integration, respectively, providing testable metrics for future research.

The current model resolves the apparently conflicting effects of serial dependence within a unified
framework. Serial dependence, initially described as the attraction of current perception to recent
stimuli, has been extended to reveal a dissociation between repulsive effects at the perceptual stage
and attractive effects at post-perceptual stages [14, 15, 16, 17, 60, 61]. The neural mechanisms
underlying these bidirectional biases have been widely debated, with dual-process models proposing
an efficient-coding account in the sensory cortex and a decisional-inertia account in higher-order
regions [13, 15, 20, 21]. The repulsive effect reflects an optimization strategy in sensory systems [19],
where STD-mediated local inhibition maximizes sensitivity to stimulus changes [69]. Conversely,
the attractive effect relies on STF-driven synaptic enhancement preserving historical information
to enhance decoding efficiency in statistically regular environments. The order of STD and STF is
crucial for the model performance. A reversed configuration—lower STF-dominated layer and higher
STD-dominated layer—yielded exclusively attractive biases. Both within-trial (amplitude: 1.79°;
t(19)=6.79, p<.001) and between-trial effects (amplitude: 3.81°; t(19)=19.62, p<.001; Appendix
G) showed significant attraction. Reversing this order (STF-dominance first) causes initial signal
smoothing due to facilitation. Consequently, even though the downstream STD layer attempts to
extract differential features, the loss of sensitivity to input variation cannot be recovered, resulting
in failure to achieve the intended synergy between sensitivity and stability. Sensitivity analyses
confirmed that the key repulsion and attraction effects were robust to parameter variations: changing
the absolute values of τd and τf (while maintaining τd ≫ τf , Appendix H) or introducing ±10%
random perturbations to STP parameters (Appendix I) produced only minor amplitude changes. This
indicates that the results depend on the relative rather than absolute timescales, demonstrating strong
model robustness.

Limitations and Future Works Our model elucidates how STP underlies Bayesian computation
in biological networks. Bayesian models, such as dual-process frameworks [13, 15, 20, 21], have
long been used to explain serial dependence but often lack biological substrates and fail to account
for temporal dynamics. In contrast, the two-layer CANN model with hetero-STP offers a biologically
grounded implementation: the likelihood function maps to STD-modulated sensory representations,
the prior corresponds to STF-sustained memory traces, and their interaction yields the posterior.
Unlike the conventional Bayesian models, which posit priors are shaped by long-term environmental
statistics [19], the Bayesian theory of serial dependence considers experience-dependent modulations
of likelihood function and prior in short timescale, and our model provides a potential neural
mechanism to support this view. Since the Bayesian view of serial dependence has been recognized
in the field, we hope that linking our model to this view will strengthen our understanding of the
neural mechanism of serial dependence. The theoretical and mathematical foundations of this
mapping require further analysis. Our model accounts for most documented serial dependence
phenomena and their associated neural mechanisms, yet a few experimentally observed patterns
require further investigation. For example, long-timescale repulsive effects (>50 s)[21] suggest
sensory cortex mechanisms beyond current STP timescales. Implementing long-term negative
feedback mechanisms in sensory cortices may explain this. In addition, future work could incorporate
feedback projections to simulate top-down modulation, accounting for attractive effects observed in
the sensory cortex [70]. Integrating PFC cognitive control theories could elucidate the role of higher-
level attention in information processing [71, 72]. These advances will deepen our understanding
of the balance between information integration and segregation, opening up new avenues in brain-
inspired computing.
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
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//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed methods including training and test details can be found in Appendix
A and B.
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• The answer NA means that the paper does not include experiments.
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7. Experiment statistical significance
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Answer: [Yes]
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a consumer-grade desktop computer (AMD
Ryzen 9 9950X, 32GB DDR5 RAM) with hour-scale runtimes.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and made sure that the paper
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is fundamental research and not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Model Details

Single-layer CANN and two-layer CANN. The neural dynamics in a single-layer CANN are
described as:

τ
∂h(θ, t)

∂t
= −h(θ, t) + ρ

∫
J(θ, θ′)u(θ′, t)x(θ′, t)r(θ′, t)dθ′ + Iext(θ, t) + µbξb(θ, t) (5)

The calculation of u(θ, t), x(θ, t), r(θ, t) was identical to the two-layer CANN in Sec. 2. The
time constants for short-term depression (τd) and short-term facilitation (τf ) were set for the STD-
dominated CANN and the STF-dominated CANN models, respectively.

We considered heterogeneity in intra-layer and inter-layer neuronal connections across different
participants by including noise: J̃KM (θK , θ′M ) = JKM (θK , θ′M )(1 + µJξJ), with K,M ∈ {L,H}.
ξJ denotes white Gaussian noise of zero mean and unit variance and µJ the noise strength. We
included noise in the neuronal connections of the single-layer CANN similarly. Model parameters
are shown in Tab..

Population vector method. We decoded orientation value from neural activity across CANN layers
using the population vector method, expressed as:

θd =

∫
θ⟨r(θ, t)⟩dθ∫
⟨r(θ, t)⟩dθ

(6)

where ⟨r(θ, t)⟩ is the averaged firing rate of neurons at θ during the cueing period.

B Experimental Paradigm and Statistical Methods

Post-cueing paradigm. Each trial consists of a first stimulus (S1) lasting 200 ms, an inter-stimulus
interval (ISI) lasting 1000 ms, a second stimulus (S2) lasting 200 ms, a delay period of 3400 ms,
a retrieval cue (Si, i = 1, 2) lasting 500 ms, and an inter-trial interval (ITI) of 1000 ms. In the
single-layer CANN, S2 was recalled during the cue phase to examine the influence of S1 on S2 within
a trial. Simulations were performed for a single trial. In the two-layer CANN, the effects within and
between trials were examined by recalling S1 or S2 during the cue phase in a randomized order across
100 consecutive trials. Simulations were conducted with 20 participants, each with various neuronal
synaptic connection strengths as in Appendix A. For each participant, 100 trials were conducted.

Stimulus orientation settings. Orientations were selected from a uniform distribution over [-90°,
90°) with a step size of 1°. ∆S refers to the angular difference between the previous stimulus and
the current stimulus. To ensure an equal probability of its occurrence, ∆Swithin and ∆Sbetween were
randomly generated with equal probability over [-90°, 90°]. Take the first trial in the two-layer CANN
as an example, θs,1cue was selected from a uniform distribution over [-90°, 90°) randomly, then θs,1uncue

and θs,2cue were calculated:

θs,1uncue = θs,1cue +∆Swithin (7)

θs,2cue = θs,1cue −∆Sbetween (8)

Subsequent stimuli were generated in the same way. For the nth trial, θs,nuncue of the current trial and
θs,n+1

cue of the subsequent trial were calculated according to the following formulas:

θs,nuncue = θs,ncue +∆Swithin (9)

θs,n+1
cue = θs,ncue −∆Sbetween (10)

θncue and θnuncue were assigned to S1 or S2 randomly, meanwhile, the cue index in Sn
cue was determined.

Behavioral readout. In a single-layer CANN, external signals are input into the network, and the
output is read from the same network using the population vector method. In a two-layer CANN,
external signals are input into the lower layer, and the output is read from the higher layer.
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Table 1: Model Parameters

Parameter Meaning Value
General Network Parameters
N Number of neurons 100
τ Time constant of synaptic current 0.01 s
µJ Neuronal interaction noise strength 0.01

Parameters for STD-dominated single-layer CANN (Fig. 2A-C)
J0 Maximum synaptic connection strength 0.13
a Range of neuronal interaction 0.5
k Global inhibition strength 0.0018
µb Background noise strength 0.5
τd Time constant of x 3 s
τf Time constant of u 0.3 s
U0 Increment of u produced by a spike 0.5

Parameters for STF-dominated single-layer CANN (Fig. 2D-F)
J0 Maximum synaptic connection strength 0.09
a Range of neuronal interaction 0.15
k Global inhibition strength 0.0095
µb Background noise strength 0.5
τd Time constant of x 0.3 s
τf Time constant of u 5 s
U0 Increment of u produced by a spike 0.2

Parameters for two-layer network (Fig. 3)
J0
LL Max synaptic connection strength (low-to-low) 0.13

aL Range of neuronal interaction (low-level) 0.5
kL Global inhibition strength (low-level) 0.0018
µL Background noise strength (low-level) 0.5
τLd Time constant of x (low-level) 3 s
τLf Time constant of u (low-level) 0.3 s
UL
0 Increment of u produced by a spike (low-level) 0.5

J0
HL Max synaptic connection strength (low-to-high) 0.02

aHL Range of neuronal interaction (low-to-high) 0.15
J0
HH Max synaptic strength (high-to-high) 0.09

aH Range of neuronal interaction (high-level) 0.15
kH Global inhibition strength (high-level) 0.0095
µH Background noise strength (high-level) 0.5
τHd Time constant of x (high-level) 0.3 s
τHf Time constant of u (high-level) 5 s
UH
0 Increment of u produced by a spike (high-level) 0.2

External Input
αsti Strength of external stimulus 20
asti Spatial scale of external stimulus 0.3
µsti Noise strength of external stimulus 0.5
αcue Strength of external cue 2.5
acue Spatial scale of external cue 0.4
µcue Noise strength of external cue 1

Adjustment error. For each trial, we measured the adjustment error as the angular distance between
the cued stimulus angle and the decoded response angle.

Error = θdcue − θscue (11)
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Serial bias analysis. Serial bias was calculated as the averaged adjustment error using a 30° sliding
window, as a function of within-trial and between-trial angular differences. In Fig. 3D, E:

∆Swithin = θs,nuncue − θs,ncue (12)

∆Sbetween = θs,ncue − θs,n+1
cue (13)

In Fig. 3F, we further analyzed the average error as a function of the memory representation angular
difference:

∆Rbetween = θd,ncue − θs,n+1
cue (14)

DoG curve. To measure the amplitude of serial dependence, we fit the error plot with the first
derivative of a Gaussian curve (DoG) G(x) =

√
e(x/σ)ADoG exp(−x2/2σ2), where ADoG is the

amplitude of the curve peak, σ is the curve width.

Partial no-report paradigm. To test whether serial dependence occurs without a prior reported
stimulus, the cue was absent in 40% of the trials. Trials following those without a report were used to
analyze serial biases.

Computer resources. We used Python 3.11.9 and Brainpy 2.6.0.post20240918 for simulations. All
experiments were conducted on a consumer-grade desktop computer (AMD Ryzen 9 9950X, 32GB
DDR5 RAM) with hour-scale runtimes.

C Numerical Simulation of u and x

The fitting of x curve in an STD-dominated single-layer CANN. In an STD-dominated single-layer
CANN, x is fitted by the following equation:

x(θ, t) = 1−A1
x(t) exp

[
(θ − θs1)

2/2a2
]
−A2

x(t) exp
[
(θ − θs2)

2/2a2
]

(15)

For example, in Fig. 2B, we set θs1 = −30°, θs2 = 0° as the initial guess value. The amplitudes
A1

x(t) and A2
x(t) decayed from the early delay period (Fig. S1A) to the late delay period (Fig. S1B).

We calculated these parameters from the time point after S2 disappeared (t0 = 1.5 s) to the time
point before the cue period (te = 4.8 s), shown as dots in Fig. S1C, and found that they decayed
exponentially with a time constant τd (curve in Fig. S1C), described as:

Ai
x(t) = Ai

x(t0) exp [(t− t0)/τd] , i = 1, 2 (16)

where A1
x(t0) = 0.46, A2

x(t0) = 0.68.

The above analysis is applicable to other combinations of θs1 and θs2.

Table 2: The fitting parameters of x curve

t (s) θs1 (°) θs2 (°) A1
x A2

x a

2.0 -32.72 6.13 0.39 0.57 0.31
4.5 -32.72 6.13 0.17 0.25 0.31

The fitting of u curve in a STF-dominated single-layer CANN. In an STF-dominated single-layer
CANN, the u curve was fitted by the following equation:

u(θ, t) = A1
u(t) exp

[
(θ − θs1)

2/2a2
]
+A2

u(t) exp
[
(θ − θs2)

2/2a2
]

(17)

In Fig. 2E, we fixed θs1 = −30° and θs2 = 0°. The amplitude parameters A1
u(t) and A2

u(t) decayed
from the early delay period (Fig. S1D) to the late delay period (Fig. S1E). We calculated these
parameters from the time point after S2 disappeared (t0 = 1.5 s) to the time point before the cue
period (te = 4.8 s), shown as dots in Fig. S1F, and found that they decayed exponentially with the
time constant τf (curve in Fig. S1F), described as:

Ai
u(t) = Ai

u(t0) exp [(t− t0)/τf ] , i = 1, 2 (18)

where A1
u(t0) = 0.09, A2

u(t0) = 0.12.

The above analysis is applicable to other combinations of θs1 and θs2.
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Figure S1: The fitting of x and u curves in a single-layer CANN. (A-C) x in an STD-dominated
single-layer CANN. (D-F) u in an STF-dominated single-layer CANN. (A, D) Simulation (gray
curve) and fitting results (dotted curve) in the early delay period (t = 2.0 s). (B, E) Simulation (gray
curve) and fitting results (dotted curve) the late delay period (t = 4.5 s). (C, F) Exponential decay
during the delay period. Dots represent the simulation results, and curves represent the exponential
fitting results.

Table 3: The fitting parameters of u curve

t (s) θs1 (°) θs2 (°) A1
u A2

u a

2.0 -30.00 0.00 0.08 0.11 0.31
4.5 -30.00 0.00 0.05 0.07 0.31

The fitting of xL and uH curve in a two-layer CANN. In a two-layer CANN, the xL curve in the
(n+ 1)th trial was fitted by the following equation:

xL(θL, t) = 1−A1
x(t) exp

[
(θL − θs,n+1

1 )2/2a2x

]
−A2

x(t) exp
[
(θL − θs,n+1

2 )2/2a2x

]
−Acue

x (t) exp
[
(θL − θs,ncue )

2/2a2x
]

(19)

In Fig. 4B, we set θncue = 20°, θn+1
1 = −30°, and θn+1

2 = 0° as the initial guess values. The
amplitude parameters Acue

x (t), A1
x(t) and A2

x(t) decayed from the early delay period (Fig. S2A)
to the late delay period (Fig. S2B). We calculated the fitted parameters from the time point after
Sn+1
2 disappeared (t0 = 7.8 s) to the time point before the cue period (te = 11.1 s), shown as dots in

Fig. S2C, and found that they decayed exponentially with a time constant of τd (curve in Fig. S2C),
which can also be described as:

Ai
x(t) = Ai

x(t0) exp [(t− t0)/τd] , i = 1, 2, cue (20)

where Acue
x (t0) = 0.23, A1

x(t0) = 0.44, A2
x(t0) = 0.68.

The above analysis is applicable to other combinations of θncue, θn+1
1 and θn+1

2 .

Table 4: The fitting parameters of xL curve

t (s) θd,ncue (°) θs,n+1
1 (°) θs,n+1

2 (°) Acue
x A1

x A2
x ax

8.3 39.13 -35.41 3.26 0.19 0.37 0.57 0.33
10.8 39.13 -35.41 3.26 0.08 0.16 0.25 0.33
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uH curve in the (n+ 1)th trial can be fit by the following equation:

uH(θH , t) = A1
u(t) exp

[
(θH − θs,n+1

1 )2/2a2u

]
+A2

u(t) exp
[
(θH − θs,n+1

2 )2/2a2u

]
+Acue

u (t) exp
[
(θH − θd,ncue,H)2/2a2u

]
(21)

In Fig. 3C and Fig. 4B, we fixed θncue = 20°, θn+1
1 = −30°, and θn+1

2 = 0°. Acue
u (t), A1

u(t) and A2
u(t)

decayed from the early delay period (Fig. S2D) to the late delay period (Fig. S2E). We calculated
these parameters from the time point after Sn+1

2 disappeared (t0 = 7.8 s) to the time point before the
cue period (te = 11.1 s), shown as dots in Fig. S2F, and found that they decayed exponentially with
the time constant τf (curve in Fig. S2F), which can also be described as:

Ai
u(t) = Ai

u(t0) exp [(t− t0)/τf ] , i = 1, 2, cue (22)

where Acue
u (t0) = 0.22, A1

u(t0) = 0.14, A2
u(t0) = 0.08.

The above analysis is applicable to other combinations of θncue, θn+1
1 and θn+1

2 .

Table 5: The fitting parameters of uH curve

t (s) θd,ncue (°) θs,n+1
1 (°) θs,n+1

2 (°) Acue
u A1

u A2
u au

8.3 20.00 -30.00 0.00 0.20 0.12 0.07 0.31
10.8 20.00 -30.00 0.00 0.31 0.08 0.04 0.31

A B CxL (t = 8.3 s) xL (t = 10.8 s)

D E FuH (t = 8.3 s) uH (t = 10.8 s)
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Figure S2: The fitting of xL and uH curves in a two-layer CANN. (A-C) xL in an STD-dominated
low layer. (D-F) uH in an STF-dominated high layer.

D Dynamics of STP Variables

In Fig. 2A, we illustrated only the dynamics of the available neurotransmitter x(θ, t) to emphasize
that, under the STD-dominated condition (τd ≫ τf ), the slow recovery of x(θ, t) is the main factor
producing the repulsive effect. Here, the release probability u(θ, t) rapidly decays to zero after
stimulus presentation and contributes minimally (Fig. S3A, top). Upon presentation of the retrieval
signal, the instantaneous synaptic efficacy u(θ, t)x(θ, t) shows an asymmetric distribution—the side
near the previous stimulus S1 is weaker (Fig. S3A, bottom), resulting in repulsion.

In Fig. 2D, we illustrated only the dynamics of the release probability u(θ, t) to highlight facilitation
accumulation under the STF-dominated condition (τf ≫ τd). Here, x(θ, t) rapidly recovers to
baseline and contributes minimally (Fig. S3B, top). Upon retrieval, the synaptic efficacy u(θ, t)x(θ, t)
is enhanced near S1 (Fig. S3B, bottom), producing an attractive bias.
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Figure S3: Dynamics of STP components in one-layer networks. (A) STD-dominated condition
(τd ≫ τf ). Top: release probability u(θ, t) rapidly decays. Bottom: synaptic efficacy u(θ, t)x(θ, t)
is weaker near S1. (B) STF-dominated condition (τf ≫ τd). Top: available neurotransmitter x(θ, t)
rapidly recovers. Bottom: synaptic efficacy u(θ, t)x(θ, t) is enhanced near S1.

E Control Analysis on the Recalled Stimulus in the Single-layer CANN

In the one-layer model (Fig. 2), only the second stimulus (S2) was cued to examine the influence of
the preceding one (S1) on the subsequent one (S2) based on the definition of serial dependence. To
confirm that this choice does not qualitatively affect the model behavior, we conducted additional
control experiments in which the one-layer model was re-run with random cueing of either S1 or S2
in interleaved trials.

The results showed that under STD-dominance, the model consistently exhibited a significant
repulsive bias (ADoG = −3.51◦; t(19) = 168.57, p < .001, Fig. S4A), identical in sign and statistical
significance to the repulsion reported in Fig. 2C. Under STF-dominance, the model consistently
exhibited a significant attractive bias (ADoG = 1.68◦; t(19) = 96.97, p < .001, Fig. S4B), identical
to the attraction reported in Fig. 2F. These findings demonstrate that the choice of the recalled stimulus
(S1 or S2) does not alter the qualitative pattern of serial dependence, confirming the robustness of our
main conclusions.

A B

Figure S4: Control analysis of the recalled stimulus in the one-layer model. (A) STD-dominated
single-layer CANN re-run with randomly cued S1 or S2 in interleaved trials. The adjustment error
curve showed a significant repulsive bias. (B) STF-dominated single-layer CANN re-run with
randomly cued S1 or S2 in interleaved trials. The adjustment error curve showed a significant
attractive bias.

F Readout Rules

In our main analyses, we decoded orientation from neural activity via population vector method
(PVM, Appendix A). To evaluate potential readout bias from asymmetrical responses, we reanalyzed
Fig. 3D using three other methods:

Center-of-Mass (COM). The center-of-mass (COM) decoding computes the firing-rate-weighted
circular mean of the population activity, implemented explicitly as a center-of-mass estimator on the
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unit circle:

θ̂COM = arg

(∑
i

rie
jθi

)
.

In our simulations, the COM and population vector method (PVM) yield identical estimates. This
equivalence arises because the tuning curves are symmetric, densely and uniformly distributed across
the stimulus space, and without truncation or nonlinearity. Under such conditions, both COM and
PVM effectively perform a linear weighted average of the population activity.

Maximum Likelihood (ML). We assume that each neuron’s firing rate follows a Poisson distribution
with a mean λi(θ) given by its tuning curve. The most likely stimulus θ̂ML maximizes the log-
likelihood function:

θ̂ML = argmax
θ

∑
i

[ri log λi(θ)− λi(θ)− log(ri!)] .

We evaluated the log-likelihood across all candidate θ values and selected the one that yielded the
maximum.

Peak Decoding (Peak). As a minimal heuristic, we also tested a peak decoder, which simply selects
the preferred stimulus of the neuron with the highest firing rate:

θ̂Peak = θi∗ , i∗ = argmax
i

ri.

All three methods produced consistent results with PVM, confirming robust within-trial repulsion
(serial bias amplitudes/curve peak at: PVM: -0.90°/37.92°, Fig. 3D; COM: -0.90°/37.92°, Fig. S5A;
ML: -0.97°/36.97°, Fig. S5B; Peak: -0.61°/45.34°, Fig. S5C) and between-trial attraction (PVM:
1.17°/19.34°; COM: 1.17°/19.34°; ML: 1.05°/19.86°; Peak: 1.93°/18.21°). These results demonstrate
that the qualitative pattern of serial dependence is robust to the choice of readout rule.

A B C

Figure S5: Comparison of different readout rules for decoding perceptual decisions. (A) Center-of-
mass (COM) decoding. (B) Maximum likelihood (ML) decoding. (C) Peak decoding.

G Importance of the Order Between STD and STF Layers

To examine the importance of the order of short-term depression (STD) and short-term facilitation
(STF) in the model architecture, we conducted control simulations with reversed synaptic configura-
tions. A network with a lower STF-dominated layer (τf = 5, τd = 0.3) and a higher STD-dominated
layer (τd = 3, τf = 0.3) exhibited exclusively attractive serial biases. Both within-trial effects
and between-trial effects showed robust attraction (Fig. S6), confirming that the functional synergy
between sensitivity and stability critically depends on the correct sequential order of STD and STF
layers.

H Parameter Sensitivity Analysis

To evaluate the robustness of the model with respect to the choice of short-term plasticity (STP)
parameters, we conducted a series of sensitivity analyses. The time constants for STD-dominated and
STF-dominated synapses τs were selected based on previous physiological studies[47, 48, 53, 50] .
As these parameters are critical for shaping the network dynamics, we varied their absolute values
while preserving their dominance relationship (i.e., τd ≫ τf for STD, and τf ≫ τd for STF).
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A

Figure S6: Effect of reversing STD/STF order on serial dependence bias. Both within-trial and
between-trial bias curves showed exclusively attractive effects.

A B

DC
within trial
between trial

within trial
between trial

Figure S7: Sensitivity of serial dependence effects to short-term plasticity (STP) parameters. (A)
Robustness of STD-dominated synapses in producing repulsive bias. All parameter sets showed
significant repulsion effects. (B) Robustness of STF-dominated synapses in producing attractive
bias. All parameter sets showed significant attraction effects. (C–D) Robustness of serial dependence
in two-layer networks. In both cases, within-trial repulsion and between-trial attraction remained
significant, differing only in effect magnitude.

Robustness of STD dominance in inducing repulsion effects. For the STD-dominated condition
(Fig. 2C), we maintained τd ≫ τf and compared two sets of parameters (τf = 0.1, τd = 3 vs.
τf = 0.3, τd = 4). In both cases, the model exhibited a statistically significant repulsion effect
(both t(19) > 213.97, p < .001), with only the magnitude of repulsion varying (−2.29◦ in Fig. 2C,
−1.34◦ and −3.61◦ in Fig. S7A).

Robustness of STF dominance in inducing attraction effects. For the STF-dominated condition
(Fig. 2F), we maintained τf ≫ τd and compared two sets of parameters (τf = 5, τd = 0.1 vs.
τf = 4, τd = 0.3). In both cases, the model exhibited a statistically significant attraction effect (both
t(19) > 85.12, p < .001), with only the magnitude of attraction varying (1.48◦ in Fig. 2F, 1.56◦ and
1.16◦ in Fig. S7B).
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Robustness of parameters in two-layer networks. Using the same ISI and ITI parameters as in
Fig. 3D, we adjusted the absolute values of τd and τf in the low and high layers while preserving
their relative relationships (τLd ≫ τLf and τHf ≫ τHd ). Serial dependence effects were computed
for two parameter sets (τLd = 2, τHf = 4 in Fig. S7C; τLd = 4, τHf = 6 in Fig. S7D). The results
showed that within-trial repulsion and between-trial attraction effects remained statistically significant
(within-trial: both t(19) > 5.52, p < .001; between-trial: both t(19) > 3.48, p < .01), with only
their magnitudes varying (within-trial: −0.34◦ and −1.44◦; between-trial: 0.73◦ and 1.16◦).

Our results demonstrated that, although changes in absolute values of τd and τf modulate the strength
of sequence-dependent effects, it is their relative relationship (i.e., whether STD or STF dominance)
that determines the qualitative nature of repulsion and attraction.

I Effect of Synaptic Heterogeneity on Model Performance

To explore how the heterogeneity of STP affects model performance, we re-ran the model with
an inter-stimulus interval (ISI) of 1 s and applied ±10% random perturbations to STP parameters
(τd and τf ) of all synapses. Under STD-dominance, the adjustment error curve (variant STD,
Fig. S8A) aligned with that in Fig. 2C (uniform STD, Fig. S8A). Results showed minimal amplitude
change (from −2.29◦ to −2.28◦) and minimal DoG peak shift (from 31.71◦ to 31.78◦). Under
STF-dominance, the adjustment error curve (variant STF, Fig. S8B) also closely matched that in
Fig. 2F (uniform STF, Fig. S8B). Results showed stable attraction amplitude (1.48◦) and minimal
DoG peak shift (from 24.49◦ to 24.41◦). These results indicate that moderate heterogeneity in STP
has a negligible impact on the qualitative pattern of serial dependence.

A B

Figure S8: Effect of synaptic heterogeneity on model performance. (A) STD-dominated single-layer
CANN re-run with uniform or variant τd. (B) STF-dominated single-layer CANN re-run with uniform
or variant τf .
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