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Abstract

We propose a non-parametric and robust change de-
tection algorithm to detect multiple change points
in time series data under contamination. The con-
tamination model is sufficiently general, in that,
the most common model used in the context of
change detection – Huber contamination model –
is a special case. Also, the contamination model is
oblivious and arbitrary. The change detection algo-
rithm is designed for the offline setting, where the
objective is to detect changes when all data are re-
ceived. We only make weak moment assumptions
on the inliers (uncorrupted data) to handle a large
class of distributions. The robust scan statistic in
the algorithm is fashioned using mean estimators
based on influence functions. We establish the con-
sistency of the estimated change point indexes as
the number of samples increases, and provide em-
pirical evidence to support the consistency results.

1 INTRODUCTION

Change point detection in time series data is the task of
identifying changes in the underlying data generation model
and can be traced back to the initial work of Page [1954,
1955] in the context of statistical process/quality control.
This simple and elegant framework has been deployed in di-
verse applications such as bioinformatics [Vert and Bleakley,
2010], finance [Pástor and Stambaugh, 2001, Pepelyshev
and Polunchenko, 2017], biology [Siegmund, 2013], clima-
tology [Verbesselt et al., 2010], metric learning [Lajugie
et al., 2014]; to name a few.

Change detection methods are mainly classified into on-
line and offline settings. In the online setting, the aim is
to detect changes as soon as they occur in real-time by op-
timizing an objective that trades-off detection delay and
false alarm; see Poor and Hadjiliadis [2008] for a detailed
introduction and Xie et al. [2021] for a survey of recent

developments. In contrast, in the offline setting, the changes
need to be detected in a retrospective manner by ‘segment-
ing’ the entire dataset [Aminikhanghahi and Cook, 2017].
Here the objective is to design consistent algorithms and
empirically validate using well-known metrics such as F1-
Score [de Bem et al., 2020], Hausdorff metric [Harchaoui
and Lévy-Leduc, 2010], etc; see Truong et al. [2020] for
detailed overview of the methods and recent developments.

In this work, we consider the offline setting and contribute
to the literature by relaxing the common assumptions. To
motivate the setup considered with an example, consider
monitoring mean shifts in non-stationary processes using
Wireless Sensor Networks (WSN) [Akyildiz and Vuran,
2010, Cui and Xie, 2019]. In addition to the inherent chal-
lenges such as dealing with non-i.i.d data [Tartakovsky,
2019] and heavy-tails [Fearnhead and Rigaill, 2019, Bhatt
et al., 2021], modern machine learning applications have
to deal with the introduction of adversarial examples in the
dataset [Kurakin et al., 2017, Jia and Liang, 2017]. Specif-
ically, when the WSNs are used in applications such as
healthcare (EEG/ fMRI), environmental impact monitoring,
energy consumption, etc; the sensors are typically deployed
in harsh conditions. This increases data corruption or erro-
neous readings during transmission. When the data from
a collection of near-by sensors are logged for surveillance
and event-classification, any inference procedure should
account for the following salient features: non-i.i.d, out-
liers, and adversarial contamination. This motivates the
development of change detection algorithms in the offline
setting [Aminikhanghahi and Cook, 2017, Truong et al.,
2020] that can tackle all the above challenges in a system-
atic manner.

1.1 MAIN RESULTS

We propose a non-parametric change detection algorithm
that can deal with non-i.i.d data, outliers, and a weak form
of adversarial contamination to identify the change points
in a consistent manner. Specifically, our contributions are:
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1. Non-parametric algorithms feature a key quantity
known as scan statistic, for example CUSUM statis-
tic of Page [1954], which is required to ‘scan’ the
dataset to identify the change points. We propose a
scan statistic based on influence functions proposed
by Catoni [2012] that can handle outliers and heavy-
tails, to deal additionally with contamination. We con-
sider a contamination model, where the outliers (cor-
rupted data) are correlated to each other and to inliers
(uncorrupted data). The inliers can also be correlated
to one another. The resulting robust non-parametric
algorithm RC-Cat announces a change if the scan
statistic exceeds a pre-specified threshold, provided
the scan statistic is a local maximum. This additional
sophistication of local search methods was the intro-
duced in Niu and Zhang [2012] and developed for the
robust version in Li and Yu [2021], to mainly avoid
overestimation of change points.

2. A natural way to theoretically evaluate change detec-
tion algorithms is to establish consistency of the esti-
mated change point indexes as the number of samples
increases. In particular, we show that RC-Cat is con-
sistent in the presence of contamination, i.e, as the
number of data points n ↑ ∞,

P
(
K̂ = K,

K̂
max
k=1
|τ̂k − τk| ≤ w

)
→ 1,

where K is the number of true change points lo-
cated at τk, k ∈ {1, · · · ,K} and K̂ is the num-
ber of detected change points announced at τ̂k, k ∈
{1, · · · , K̂}, and w > 0 is parameter that related to the
window length considered.

1.2 RELATED LITERATURE

In the context of robust change detection, a common model
of contamination that is considered to design algorithm is the
Huber contamination model [Huber, 1964]. In this model,
the data generation model is a mixture model (1−η)F+ηQ,
where F is the true distribution before the change and Q is
any arbitrary distribution with a probability η. Using such
a model of contamination, Hušková [2013] make use of
M-estimation idea from robust statistics [Huber, 2004] to
address the change point detection problem in the context
of regression. Fearnhead and Rigaill [2019] consider pe-
nalized M-estimation based procedure that can deal with
outliers. [Prasad et al., 2020] showed that Huber contamina-
tion model is equivalent to assuming a heavy-tailed noise for
the i.i.d data. In light of this, Yu and Chen [2022] propose a
scan statistic based on U-statistics to deal with heavy-tailed
noise distributions. The setup and analysis considered in
this work is closest to Li and Yu [2021], however, with the
following key differences:

• Li and Yu [2021] consider change detection under i.i.d
data. While this is a useful starting point, it only serves

as a crude approximation when the data is gathered
from heterogeneous sources [Mercier et al., 2008] and
is in general non-i.i.d [Tartakovsky, 2019].

• The scan statistics is fashioned using the robust estima-
tor (RUME) in Prasad et al. [2020]. RUME uses half of
the samples to identify the shortest interval containing
at least (1 − η)n fraction of the points, and then the
remaining half of the points is used to return an esti-
mate of the mean. While this is acceptable in the case
of robust mean estimation, it has clear disadvantages
in the context of change point detection, where the
initial segregation might hide/ remove the true change
points. Another feature of RUME is that the amount of
contamination that the estimator can handle is limited,
and this limits the applicability in many applications.

In contrast, our algorithm deals with non-i.i.d inliers and
contamination, where the inliers only have a bounded sec-
ond moment. Also, unlike Li and Yu [2021], we do not seg-
regate the data for robust mean estimation, which avoids the
problem of loosing change points. Using empirical results,
we further show that, not only the proposed algorithm is
more general than that in Li and Yu [2021], it is faster and ob-
tains better detection performance across different settings.

2 MEAN ESTIMATION UNDER
CONTAMINATION

In this section, we propose a robust mean estimator that
can deal with non-i.i.d data with arbitrary contamination.
The estimator is based on influence functions proposed
in Catoni [2012] and Catoni and Giulini [2017], and is
further developed in Bhatt et al. [2022a,b]. Let {Xt}nt=1

be a collection of real-valued random variables. Let F0 de-
note the trivial sigma algebra, and let Ft denote the sigma-
algebra generated by the set {X1, X2, · · · , Xt}, whenceXt

is Ft−measurable. Let [n] := {1, 2, · · · , n}.

C1. The set {Xt}t∈[n] is such that the (unknown) condi-
tional expected value

∀ t ∈ [n], E
[
Xt|Ft−1

]
= µt.

C2. The conditional second moment of Xt is bounded, i.e,
for a knownM > 0,

∀ t ∈ [n], E
[
X2

t |Ft−1

]
≤M.

It is easy to see that i.i.d is a special case that satisfies
C1 and C2. However, the model allows for more general
dependencies, see Seldin et al. [2012].

2.1 CONTAMINATION MODEL

We assume that for some corruption rate 0 < η < 1, an
adversary may change at most ηk of any sub-sequence of



{Xt}t∈[n] with length k ≥ k0, to arbitrary values. The re-
sulting set of observations will be X̃1, X̃2, · · · , X̃n, so that

sup
i∈[n−k]

k∑
j=1

I
(
X̃i+j ̸= Xi+j

)
≤ ηk, (1)

where I(·) denotes the indicator function and k ≥ k0 with
k0 being a fixed integer such that k0 = Ω(log n). The task
is to estimate the true mean µ := 1

n

∑n
i=1 µi based on the

observations X̃1, X̃2, · · · , X̃n. This contamination model
is widely studied in machine learning for i.i.d data [Charikar
et al., 2017, Hopkins and Li, 2018, Lugosi and Mendelson,
2021]. This model is similar to I ∪ O model of Lecué and
Lerasle [2019] and also shares similarities with the Huber
contamination model [Huber, 1964]. While the contamina-
tion can be arbitrary, we do not allow the possibility where
the adversary corrupts a fraction of the sample possibly with
the knowledge of the whole dataset to intentionally hide the
change points, i.e, the contamination is weakly adversarial.

Remark. The well-known Huber contamination model in
change detection [Li and Yu, 2021] is a special case of
the considered adversarial model. Let ϵ ∈ [0, 1] denote the
outlier distribution probability in the Huber contamination
model, i.e, the data is generated as (1−ϵ)P+ϵQ, where P is
the true distribution and Q is any arbitrary distribution. Let
the empirical fraction ϵ̂n = supi∈[n−k]

1
k

∑k
j=1 I

(
X̃i+j ̸=

Xi+j

)
. According to a recent result in Bhatt et al. [2022b],

with probability at least 1− β, we have for all k

ϵ̂n ≤ ϵ+ 1.7
√
ϵ(1− ϵ)

√
log(log(2n)) + 0.72 log 10.4n

β

k︸ ︷︷ ︸
:=f(β,ϵ,k)

.

Fix k0 > c log(n/β) and set

ϵ+ f(β, ϵ, k0) =: η.

Clearly, for all k ≥ k0, we have the corruption fraction ϵ̂n
to be at most η with a very high probability.

2.2 MEAN ESTIMATION WITH INFLUENCE
FUNCTIONS

The idea of using influence functions for robust mean estima-
tion is not new [Huber, 2004]. However these M-estimators
are unable to scale gracefully with dimension [Maronna,
1976, Donoho and Gasko, 1992], and Prasad et al. [2020]
show that the bias scales polynomially with dimension. This
led to the development of a class of M-estimators introduced
by Catoni [2012] that can be used to obtain dimension-free
bounds in the vector settings [Catoni and Giulini, 2017].
With a similar future objective in mind, we make use of the
influence functions proposed in these works to fashion a
robust estimator that has minimax optimal asymptotic bias

in the contamination parameter when the data sequence is
more general than i.i.d.

Consider a non-decreasing function ψ : R→ R such that

− log(1− x+ x2/2) ≤ ψ(x) ≤ log(1 + x+ x2/2)

for all x ∈ R as in Catoni [2012]. One can choose such a
function that is bounded: specifically, we assume that for
some 0 < A <∞,

|ψ(x)| ≤ A for all x ∈ R. (2)

From Catoni [2012], the narrowest possible choice for the
influence function has A = log 2, and is given by

ψ(x) =


− log(1− x+ x2/2), 0 ≤ x ≤ 1,

log(2), x ≥ 1,

−ψ(−x), −1 ≤ x ≤ 0,

− log(2), x ≤ −1.

(3)

We consider an estimator based on soft-truncation after re-
scaling, defined by

µ̂η :=
α

n

n∑
i=1

ψ(
X̃i

α
), (4)

where α > 0 is a re-scaling parameter, and the uncontami-
nated version is given as

µ̂ :=
α

n

n∑
i=1

ψ(
Xi

α
). (5)

In the absence of contamination, depending on the choice
of ψ(·) and α, the estimator (5) can closely approximate the
empirical mean; see Holland [2019] for example. Similar
estimator for i.i.d data was considered in Holland [2019],
where the deviation bounds were characterized using well-
known PAC Bayesian inequalities inspired by Donsker-
Varadhan’s variational formula [Catoni, 2004, Dupuis and
Ellis, 2011]. However, since the data are not i.i.d in our case,
we need a different approach to characterize the deviations,
and this is the main contribution of this section.

Theorem 1. Consider a collection of random vari-

ables {X̃t}t∈[n]. Let α =
√

M

2

(
log(2/δ)

n +2Aη

) and δ ∈

(0, 1). The estimator (4) satisfies

|µ̂η − µ| ≤
√

2M
( log(2/δ)

n
+ 2Aη

)
, (6)

with probability at least 1− δ.

A high-probability deviation bound for µ̂, i.e, in the absence
of contamination is first characterized as a function of α,
whence we obtain

|µ̂− µ| ≤ M
2α

+
α log(2/δ)

n
.



From (2), we have the following relation

|µ̂η − µ| ≤ |µ̂− µ|+ 2Aηα.

This provides the deviation bound of the overall soft-
truncation estimator (4).

Corollary 2. Let B > 1. Under the assumptions as in
Theorem 1 such that (6) holds, we have with probability at
least 1− 2 exp

(
− Aη

B n
)

|µ̂η − µ| ≤ c0
√
Mη, (7)

where c20 := 2A(1/B + 2).

Corollary 2 obtains the deviation purely in terms of the con-
tamination fraction, and will be useful later in establishing
the consistency of change detection algorithms. Another use-
ful feature is that it informs the choice of segmentation win-
dow length that guarantees a tight deviation characterization.

From (6), it is clear that there is an asymptotic (n ↑ ∞)
bias of O(

√
Mη) associated with the estimator owing to

contamination. Also, when µt ∈ [0, 1] with a possibly heavy
tail martingale difference noise– a common assumption in
bandits [Lattimore and Szepesvári, 2020] and reinforcement
learning [Agarwal et al., 2019]– the deviation bound and
hence the bias can be written in terms of the (conditional)
variance σ2 as O(σ

√
η) by using the standard Cr inequal-

ity1. This matches the minimax lower bound [Diakonikolas
et al., 2017, Hopkins and Li, 2018] that is shown to be
information theoretically optimal.

However, in general, as the deviation (6) depends on the
non-centered moment, it is sensitive to the location of the
distribution. Catoni and Giulini [2017] propose a ‘shifting-
device’ approach to obtain centered estimates that can be
used to obtain a deviation bound in terms of the conditional
variance. This has been used for PAC-Bayesian analysis
using influence functions in Holland [2019].

Theorem 3. Consider the set of r.vs {X̃t}t∈[n] such
that µt = µ, ∀ t. Additionally, let V denote an upper
bound on conditional variance of the uncontaminated ran-
dom variables. Let 0 < k < n denote the length of the

data to create a shifting device. Let α =

√
(V+ϑ2

k)

2

(
log(2/δ)

n−k +2Aη

)
with ϑk =

√
2M

(
log(2/δ)

k + 2Aη
)

. The estimator (4) sat-

isfies

|µ̂η − µ| ≤
√
2(V + ϑ2k)

( log(4/δ)
n− k

+ 2Aη
)
, (8)

with probability at least 1− δ.
1For any random variable Y , real number γ, and r > 0,

|Y |r ≤ max{2r−1, 1}(|Y − γ|r + |γ|r).

Theorem 3 provides a deviation bound as a function of the
conditional variance. When the contamination level η is neg-
ligible, a judicious choice of k will lessen the dependence
on the raw moments, and the conditional variance in the
deviation term. Theorem 3 works to combat sensitivity to
the distribution location. A procedure to obtain an estimator
having the deviation bound as in (8) is given as follows:

i.) Shifting-Device: Let {X̃i}ki=1 denote a sub-set of the
collection. Compute a soft-truncated estimate using
these k samples,

µ̄η :=
ᾱ

k

k∑
i=1

ψ(
X̃i

ᾱ
),

where ᾱ is informed by Theorem 1.

ii.) Shift the remaining n − k samples by µ̄η, i.e, X̃ ′
i =

X̃i − µ̄η, whence the conditional second moment of
this data is now bounded by (V + ϑ2k). Computing the
soft-truncated estimate of this data

µ′
η :=

α′

n− k

n∑
i=k+1

ψ(
X̃ ′

i

α′ ),

where α′ is informed by Theorem 3.

iii.) Estimator µ̂η = µ′
η + µ̄η has the desired properties.

3 OFFLINE CHANGE DETECTION

In the rest of the paper, we assume that the contamination
model used by the adversary is as in (1). We first provide
an algorithm based on the robust estimation techniques dis-
cussed in Section 2.2, and later establish the theoretical
properties of the algorithm.

3.1 THE PROPOSED ALGORITHM

Algorithm 1 is an offline robust change detection algorithm
that can handle η fraction of weakly adversarial contamina-
tion when the data is not necessarily i.i.d. The methodology
is inspired by Niu and Zhang [2012] and Li and Yu [2021],
which handle the uncontaminated and weak contamination
situations respectively.

Algorithm 1 is an intuitive solution that combines local and
global search methods in a non-parametric manner to iden-
tify the change points. It works as follows: The dataset is
scanned using the scan statistic Sw(·), which is the abso-
lute difference between the robust estimates of mean over
specified length w. Here the estimator over length w > 0,

Ψ({X̃i}wi=1) :=
α

w

w∑
i=1

ψ
(X̃i

α

)
,

with one possible choice of ψ(·) given by (3). The nature
of the (non-parametric) scan statistic, where normalized



Algorithm 1 Robust Change Detection with Catoni
(RC-Cat)

1: Input: {X̃}ni=1, b(threshold) > 0, 2w(window) > 0,
η ∈ (0, 1), λ ≥ 1

2: L ← ∅, G ← ∅
3: for j ∈ {w + 1, · · · , n− w} do
4: Sw(j)←

∣∣∣Ψ(
{X̃i}j+w

i=j+1

)
−Ψ

(
{X̃i}j−1

i=j−w

)∣∣∣
5: end for
6: for j ∈ {λw + 1, · · · , n− λw} do
7: if j is a λw−local maximizer of Sw(j) then
8: L ← L ∪ {j}
9: end if

10: end for
11: for k ∈ L do
12: if Sw(k) > b then
13: G ← G ∪ {k}
14: end if
15: end for
16: Output: G

estimates of equal length of samples are compared, is well-
studied in the literature. For example, Cao et al. [2019] make
use of similar ideas for empirical means of independent
sub-gaussian distributions to detect changes in the mean in
multi-armed bandit problems, while Niu and Zhang [2012]
consider an application in bioinformatics. The robust scan
statistic is closest to that in Li and Yu [2021], except with
a few key differences: (i) There is no sample splitting to
estimate the location parameter using RUME [Prasad et al.,
2020]. In Li and Yu [2021], the data over w/2 is used to
simply identify a high-confidence interval, and the remain-
ing w/2 portion is used to calculate the robust mean. This
not only increases the variance of the estimator, but also
may hide/ remove change points depending on which ofw/2
points is selected. This affects the detection delay and hence
the consistency. (ii) The worst case computational complex-
ity of RC-Cat is O(nw), whereas the worst case complex-
ity in case of Li and Yu [2021] is O(n2w log(w)). Here
the w log(w) is from ranking the data to find the shortest in-
terval involved in RUME. Note that the state-of-the-art, such
as penalized bi-weight loss, methods have a computational
complexity of O(n3) [Fearnhead and Rigaill, 2019].

The λw−local maximizer is inspired by Niu and Zhang
[2012] and also appears in Li and Yu [2021]. Sw(j) is a
h−local maximizer if Sw(j) ≥ Sw(k) for all k ∈ (j −
h, j + h), and is motivated by two key ideas: (i) It helps to
avoid overestimating the number of change points. (ii) It
helps to localize change points with a high probability.

3.2 THE ANALYSIS

RC-Cat is a computationally appealing solution to offline
change detection. In this section, we establish that it is con-

sistent as well, i.e, as the number of data samples increase,
the regime changes are identified within a prescribed margin
with a high probability. We need to make a few standard
assumptions to enable this result.

Let K be the number of true change points located
at τk, k ∈ {1, · · · ,K} with τ0 = 0 and τK+1 = n. Let
K̂ be the number of detected change points announced
at τ̂k, k ∈ {1, · · · , K̂} by RC-Cat. Let the collections be
denoted as K := {τ1, · · · , τK} and K̂ := {τ̂1, τ̂2, · · · , τ̂K̂}
respectively. Let the minimal spacing be denoted as δ =
mink∈K |τk+1 − τk| and the jump size be denoted as θ =
mink∈K |µτk+1 − µτk |.

A1. The conditional expectation in C1 is constant between
change points, that is,
for k ∈ {1, 2, · · · ,K + 1},

µt = µτk−1
, ∀ τk−1 ≤ t < τk.

A2. The minimal spacing δ > λw for some λ ≥ 2.

A3. The jump size θ >
√
3b, where b is the threshold.

A2 essentially says that the process has slow changes and
A3 is related to detectability. The assumptions A2 and A3
are intuitive and standard in the change detection litera-
ture [Niu and Zhang, 2012, Cao et al., 2019, Yu, 2020, Li
and Yu, 2021], while A1 simplifies exposition. While these
conditions are necessary for characterizing the theoretical
properties, deviations from these assumptions do not dras-
tically affect the empirical performance. Also, we should
mention that, A1 can be relaxed to allow small perturbations
between change points for the conditional expectation, and
the same analysis carries over.

Theorem 4. Let {X̃i}i∈[n] be the collection of r.vs input
to RC-Cat. Let the threshold b = 2c0

√
Mη and window

w ≥ c1 log(n)/η. Under assumptions A1 - A3, it holds that

P
(
K̂ = K,

K̂
max
k=1
|τ̂k − τk| ≤ w

)
≥ 1− n−c1 . (9)

Theorem 4 shows that for large dataset, RC-Cat identi-
fies the change points or the segments to within specified
tolerance with a high probability. In other words, as n ↑ ∞,

P
(
K̂ = K,

K̂
max
k=1
|τ̂k − τk| ≤ w

)
→ 1.

Due to the nature of the robust estimator used in the scan
statistic, RC-Cat can handle data from heterogeneous
sources and non-i.i.d as specified by C1 and C2.

Corollary 5. Let K = ∅. Under the same assumptions as
in Theorem 4, there is a constant c1 > 0 such that

P(K̂ = 0) ≥ 1− n−c1 .

Corollary 5 says that when K = ∅, the proposed algorithm
RC-Cat is still consistent, and provides an upper bound on
the false detection probability.



4 PROOFS OF MAIN RESULTS
In this section, we provide the proofs of the main results.
The proof of Theorem 1 builds on the standard martingale
analysis [Freedman, 1975, Seldin et al., 2012] to establish
the bounds for bounded functions of real-valued random
variables. The key idea is to make use of the fact that the
influence function ψ(·) is bounded by logarithmic functions,
and to construct a supermartingale as a function of ψ(·). The
result then follows using Markov’s inequality. The proof
of Theorem 4 closely follows Niu and Zhang [2012], but
under weaker assumptions on the data and the parameters.
Also, in comparison with Li and Yu [2021], for a fixed con-
fidence δ, RC-Cat achieves consistency even over smaller
sized datasets.

4.1 PROOF OF THEOREM 1

Before establishing the result, we will first characterize the
high-probability deviation bound for the robust estimator
in the absence of contamination as a function of α. This is
given as Lemma 6.

Lemma 6. Let the set of r.vs {Xt}t∈[n] satisfy C1 and C2.
For α > 0 and δ ∈ (0, 1), the estimator (5) satisfies with
probability at least 1− δ

|µ̂− µ| ≤ M
2α

+
α log(2/δ)

n
.

Proof. For any t ≤ n, we have the following using the
upper bound on the influence function ψ(·),

E
[
exp

(
ψ
(Xt

α

))∣∣∣Ft−1

]
≤ E

[
1 +

Xt

α
+
X2

t

2α2

∣∣∣Ft−1

]
,

≤ 1 +
µt

α
+

1

2α2
E
[
X2

t

∣∣∣Ft−1

]
.

Using the fact that 1 + x ≤ ex for all x ∈ R, we have
using C2

E
[
exp

(
ψ
(Xt

α

))∣∣∣Ft−1

]
≤ exp

(µt

α
+
M
2α2

)
. (10)

Construct a sequence of random variables Yt as fol-
lows: Y0 = 1 and for t ≥ 1,

Yt = Yt−1 exp
(
ψ
(Xt

α

))
exp

(
−
(µt

α
+
M
2α2

))
.

Clearly, E
[
Yt

∣∣∣Ft−1

]
≤ Yt−1 as Yt−1 is Ft−1 measurable

and (10) holds. We have that the unconditional expectation

E[Yn] ≤ E[Y1] ≤ · · · ≤ E[Y0] = 1.

Recursively, Yn is expressed as

Yn = exp
( n∑

t=1

ψ
(Xt

α

))
exp

(
−
(nµ
α

+
nM
2α2

))
,

= exp
(nµ̂
α

)
exp

(
−
(nµ
α

+
nM
2α2

))
.

Here µ̂ is given as in (5) and µ = 1
n

∑n
t=1 µt. By Markov’s

inequality, we have that

P(Yn ≥ 2/δ) ≤ δE[Yn]
2

≤ δ

2
.

In other words, we have that

P
(nµ̂
α
≥ nµ

α
+
nM
2α2

+ log(2/δ)
)
≤ δ

2
.

Dividing by n
α gives the deviation in one direction. Using

the lower bound on the influence function, we have that

E
[
exp

(
− ψ

(Xt

α

))∣∣∣Ft−1

]
≤ exp

(
− µt

α
+
M
2α2

)
.

Analogous arguments establish the deviation of the estima-
tor µ̂ in the other direction, whence

P
(nµ
α
− nµ̂

α
≥ nM

2α2
+ log(2/δ)

)
≤ δ

2
.

The result follows.

From (2), we have the following relation

|µ̂η − µ| ≤ |µ̂− µ|+ 2Aηα. (11)

From (6) and (11), we have with probability at least 1− δ,

|µ̂η − µ| ≤
M
2α

+
α log(2/δ)

n
+ 2Aηα.

The main result holds by setting α.

4.2 PROOF OF COROLLARY 2

From Theorem 1, we have with probability at least 1− δ

|µ̂η − µ| ≤
√

2M
( log(2/δ)

n
+ 2Aη

)
.

By choosing n ≥ B
Aη log(2/δ), we have the result.

4.3 PROOF OF THEOREM 4

The proof is established using the following reasoning.
Let T := {x : |x − τk| > w, ∀ k ∈ K} denote the set
of all points that are at least w−away from the true change
points. Consider the following events,

E1(x) = {Sw(x) < b},
E2(y) = {Sw(y) > b},

En =
(
∩Kk=1 E2(τk)

)
∩
(
∩x∈T E1(x)

)
.

Here E1(x) captures the events that false detection was not
raised, E2(y) captures all the events when the algorithm
raised a detection, and En captures the event that detection



was raised only around the region where the true changes
occurred. The result holds if we establish two relations

On event En, we have

K̂ = K & max
k∈K̂
|τ̂k − τk| ≤ w, and

P(Ecn)→ 0.

We begin by characterizing the probability of each event as
separate results to highlight the assumptions required, and
the main result follows from Lemmas 7-9.

Lemma 7. Let {X̃i}i∈[n] be a collection that is input to
RC-Cat. Let the threshold b = 2c0

√
Mη. For x ∈ T , we

have under assumption A1

P(Sw(x) < b) ≥ 1− δ.

Proof. As x ∈ T , by definition there is no change point
in the interval [x − w, x + w]. Consider the random vari-
ables {X̃i}x+w

i=x−w. Let µx denote the mean of the seg-
ment. Let Ψ({X̃i}x−1

i=x−w) and Ψ({X̃i}x+w
i=x+1) define the

scan statistic in RC-Cat. By Corollary 2, we have us-
ing w ≥ B

Aη log(4/δ),

|Ψ({X̃i}x−1
i=x−w)− µx| ≤ c0

√
Mη,

|Ψ({X̃i}x+w
i=x+1)− µx| ≤ c0

√
Mη,

each with probability at least 1 − δ/2. Therefore, the
event E1(x) occurs with probability at least 1− δ. Indeed,
by triangle inequality

Sw(x) = |Ψ({X̃i}x−1
i=x−w)−Ψ({X̃i}x+w

i=x+1)| ≤ 2c0
√
Mη.

The result holds.

Lemma 8. Let {X̃i}i∈[n] be a collection that is input to
RC-Cat. Let the threshold b = 2c0

√
Mη. Let assump-

tions A1 - A3 hold. For y ∈ K, we have

P(Sw(y) > b) ≥ 1− δ.

Proof. For any k, consider y = τk. By assumption A1 and
A2, we have that the segment {X̃i}τk+w

i=τk+1 has mean µτk and
the segment {X̃i}τk−1

i=τk−w has mean µτk−1
. For simplicity,

we abuse the notation and denote Ψ({X̃i}τk+w
i=τk+1) := Ψ1,

and Ψ({X̃i}τk−1
i=τk−w) := Ψ2. We have using the inequality

(x+ y)2 ≥ x2/2− y2 for any x, y ∈ R,∣∣∣(Ψ1 − µτk

)
−
(
Ψ2 − µτk−1

)
+ (µτk − µτk−1

)
∣∣∣2

≥ θ2/2−
∣∣∣(Ψ1 − µτk

)
−
(
Ψ2 − µτk−1

)∣∣∣2.
By Corollary 2, we have using w ≥ B

Aη log(4/δ),∣∣∣(Ψ1 − µτk

)∣∣∣2 ≤ b2/4,∣∣∣(Ψ2 − µτk−1

)∣∣∣2 ≤ b2/4,

each with probability at least 1 − δ/2. The result follows
using assumption A3.

Lemma 9. Let the threshold b = 2c0
√
Mη. Let assump-

tions A1 - A3 hold. On event En, we have

{K̂ = K} & max
k∈K̂
|τ̂k − τk| ≤ w.

Moreover, P(Ecn)→ 0.

Proof. First, note that τ̂k ∈ T c, ∀ k ∈ K̂ by definition
of T , where τ̂k are the change points detected by RC-Cat.
Therefore, we have that

τk ∈ [τ̂k − w, τ̂k + w].

By assumption A2, we have that there are no other change
points in this interval.

Next, we show that there is a change point identified in the
interval (τk − w, τk + w). Let λ The intervals

Ω+ := (τk+w, τk+(λ+1)w) & Ω− := (τk−w, τk−(λ+1)w)

are contained in T by definition and A2. This implies
that on every x ∈ Ω+ ∪ Ω−, the event E1(x) holds with
the corresponding scan statistic Sw(x) < b. However, by
Lemma 8 we have Sw(τk) > b. This implies that there
is a local maximum, say τ̂k ∈ (τk − w, τk + w), and
Sw(τ̂k) ≥ Sw(τk) > b.

Using union bound, we have

P(Ecn) ≤
∑
k∈K

P(Ec2(τk)) +
∑
x∈T

P(Ec1(x)).

From Lemma 7 and Lemma 8, we have the trivial upper
bound

P(Ecn) ≤ 2nδ.

The result holds by choosing δ = 1
nc1+1 for c1 > 0.

4.4 PROOF OF COROLLARY 5

Let [m] := {t : w + 1 ≤ t ≤ n− w}. As K = ∅, we have
that the event

En = ∩x∈[m]E1(x)

has a probability lower bound using Lemma 7 as

P(En) ≥ 1− nδ,

where δ = 1
nc1+1 for c1 > 0.
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Figure 1: The figures show the performance of Algorithm 1
under different distributions for the outliers. The yellow line
indicates the positions at which the distribution of the inliers
changed, and the black dotted line shows the positions at
which changes were announced by the algorithm. It can
be seen that while the contamination level η influences the
offset – increases with increase in η – it has limited bearing
on the number of change points detected under a careful
choice of the algorithm parameters.

4.5 PROOF OF THEOREM 3

The soft-truncation of k samples as µ̄η obtains from Theo-
rem 1, the deviation bound

|µ̄η − µ| ≤ ϑk :=

√
2M

( log(4/δ)
k

+ 2Aη
)
,

with probability at least 1− δ/2. For the shifted data X̃ ′
i =

X̃i − µ̄η note that E[X̃ ′2|F ] ≤ (V + ϑ2k). So the soft-
truncation estimate of shifted data obtains from Theorem 1,
the deviation bound

|µ′
η − (µ− µ̄η)| ≤

√
2(V + ϑ2k)

( log(4/δ)
n− k

+ 2Aη
)
,

with probability at least 1−δ/2. Defining µ′
η := µ̂η−µ̄η , the

result follows with probability 1−δ as both high-probability
events should hold.

5 NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
performance of Algorithm 1. Our main objective is to pro-

vide empirical evidence to support the consistency results.

5.1 SYNTHETIC DATA

We assume that the adversary/ nature replaces the original
data with samples generated from random distributions. The
algorithm parameters for all the figures in Figure 1 are
chosen as follows. The inlier distributions are modeled as

Xt = µt + ζt,

where ζt is a martingale difference noise. From Theorem 3,
the choice of w is given as w ≥ B

Aη log(4/δ) for a con-
fidence level δ = 0.01, B = 2, and A = log 2. The
value µt ≤ 3, ∀ t, obtaining a bound M = 10 for unit
variance. There is a trade-off between false detection and no-
detection for different choices of b informed by Theorem 1.
For good performance, we recommend setting smaller than
that informed by theory and increasing the neighbourhood
width λ for local search and elimination. For Figure 1, λ = 3
was chosen and α is informed by Theorem 1.

5.2 COMPARISON WITH ARC METHOD

In this section, we compare our method with a recent state-
of-art method, the ARC algorithm [Li and Yu, 2021]. Specif-
ically, we examine the robustness of proposed method and
ARC under three different contamination settings.

(Setting 1) Pareto contamination. The inliers follow student-
t distribution with degree of freedom 3. Outliers follow
pareto distribution with degree freedom 2.

(Setting 2) One-sided arbitrary contamination. The inliers
follow student-t distribution with degree of freedom 3. Out-
liers are fixed at 100.

(Setting 3) Two-sided arbitrary contamination. The inliers
follow student-t distribution with degree of freedom 3. Out-
liers are fixed at 100 or -100.

The total time horizon T is fixed at 1500, the confidence
level δ = 0.01, A = log(2), B = 2,M = 5, the true
mean is in the range, −3 ≤ µt ≤ 3 and two underlying
change points equally spaced between [0, T ]. We consider
varying the following tuning parameter. The contamination
rate η ∈ {5%, 10%, 20%, 30%, 40%}. Window size w ∈
{80, 100, 120}. Average differences (i.e., average of |τ̂k −
τk|’s) between detected time and true change points are
reported. To be fair (without deliberately tuning threshold
b), for both methods, the detected change points are chosen
to be time stamps with top two Sw(k) values.

Based on the Tables 1 - 3, we can find that the proposed
method is robust to different contamination level, while
ARC method is not. Especially when we increase contami-
nation rate η to 40 %, ARC behaves much worse. Moreover,
our method is also less sensitive to the choices of window



Setting 1
w = 80

η 0.05 0.1 0.2 0.3 0.4
Ours 6.5 13.3 31.3 43.3 55.9
ARC 18.5 26.1 40.9 44.2 58.6

w = 100
η 0.05 0.1 0.2 0.3 0.4

Ours 3.6 6.6 14.8 26.4 31.2
ARC 19.8 20.2 22.6 32.7 36.9

w = 120
η 0.05 0.1 0.2 0.3 0.4

Ours 2.9 3.4 7.0 7.7 17.7
ARC 17.7 18.0 19.9 23.5 25.6

Table 1: The table of detection error under Setting 1 with
various choices of tuning parameters η and w. Each case is
replicated for 500 times.

Setting 2
w = 80

η 0.05 0.1 0.2 0.3 0.4
Ours 2.0 3.5 9.6 25.8 43.5
ARC 15.3 14.4 19.7 134.6 46.2

w = 100

η 0.05 0.1 0.2 0.3 0.4
Ours 2.0 2.9 13.4 21.3 44.9
ARC 13.8 14.5 34.5 119.4 98.7

w = 120

η 0.05 0.1 0.2 0.3 0.4
Ours 2.1 2.5 11.8 25.6 44.0
ARC 16.0 14.5 20.4 81.0 84.7

Table 2: The table of detection error under Setting 2 with
various choices of tuning parameters η and w.

size than ARC method. These results indicate that RC-Cat
is indeed a better method.

5.3 REAL-WORLD DATA

We consider two real data sets in this subsection, the well-
log data [Jeremias, 2018, Fearnhead and Rigaill, 2019, Li
and Yu, 2021] which has been widely studied in the existing
literature and PM2.5 index data [URL, 2018] which has not
been considered in the literature.

Well-log data set contains 4050 measurements of nuclear
magnetic response during the drilling of a well. Majority of
the observations behave very well and a small proportion of
the observations are far away from the mean value.

PM2.5 index data set records air quality of Hong Kong dur-
ing 1-Jan 2014 to 2-Feb-2022. The PM2.5 index fluctuates
occasionally over the total period of time.

Setting 3
w = 80

0.05 0.1 0.2 0.3 0.4
Ours 2.6 3.9 10.6 25.5 36.5
ARC 14.8 14.3 13.9 81.8 130.7

w = 100

0.05 0.1 0.2 0.3 0.4
Ours 2.9 3.7 10.0 21.0 34.1
ARC 15.0 13.7 18.8 97.1 96.1

w = 120

0.05 0.1 0.2 0.3 0.4
Ours 2.6 3.6 9.1 15.2 32.2
ARC 15.7 14.7 14.0 70.6 62.2

Table 3: The table of detection error under Setting 3 with
various choices of tuning parameters η and w.

0 1000 2000 3000 4000
Time

Well-log data

0 750 1500 2250 3000
Days

PM2.5 Hong Kong

Figure 2: The detection results returned by RC-Cat for
two real-world data sets, well-log data and PM2.5 index
data. In the experiment, we choose tuning parameters b =
c0
√
Mη/2 and λ = 1.

From Figure 2, we can see that the proposed method
RC-Cat can well detect the jump points in well-log data
and is very robust to those outliers. Our method can also
capture the fluctuations of Hong Kong PM2.5 index.

6 CONCLUSION

In this work, we have provided a robust change detection
algorithm based on influence functions that can deal with a
fraction of arbitrary but weakly adversarial contamination.
Key contributions to the vast literature on robust offline
change detection methods include: (i) The ability to han-
dle non-i.i.d data along with contamination, when minimal
assumptions are made on the distributions of the inliers.
(ii) A computationally appealing algorithm that is consis-
tent. The algorithm itself is intuitive, and combines local
search methods to segment the dataset. Also, empirical re-
sults confirm that the algorithm outperforms the state of
the art offline change detection algorithm in terms of aver-
age detection times, demonstrating significant gains under
heavy-contamination. This work motivates change detection
in multi-variate datasets, possibly in the presence of con-
tamination, motivated by the appealing aspect of obtaining
dimension-free robust estimation in high-dimension using
influence functions; see Catoni and Giulini [2017].
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