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Abstract

We present the Power Law Graph Transformer, a transformer model
with well defined deductive and inductive tasks for prediction and repre-
sentation learning. The deductive task learns the dataset level (global)
and instance level (local) graph structures in terms of learnable power
law distribution parameters. The inductive task outputs the prediction
probabilities using the deductive task output, similar to a transductive
model. We trained our model with Turkish-English and Portuguese-
English datasets from TED talk transcripts for machine translation and
compared the model performance and characteristics to a transformer
model with scaled dot product attention trained on the same experimental
setup. We report BLEU scores of 17.79 and 28.33 on the Turkish-English
and Portuguese-English translation tasks with our model, respectively.
We also show how a duality between a quantization set and N-dimensional
manifold representation can be leveraged to transform between local and
global deductive-inductive outputs using successive application of linear
and non-linear transformations end-to-end.

1 Introduction

Statistically distributed representations of language models[l] 2] and applica-
tion of attention models [3, [4] resulted in breakthrough improvements in Nat-
ural Language Processing (NLP) tasks using deep neural networks. These ap-
proaches can also be used to design a graph transformer that has deductive
and inductive components more clearly established than a transductive model.
The deductive functionality can be achieved by expanding the data represen-
tation to learn generic representations for a vocabulary V (of tokens), which is
a quantization set of V' discrete graph states (z; € V) that is a superset of a
sentence = {1, %2, ...,£s}. A sentence that is syntactically and semantically
valid in a language model (LM) represents a graph instance of tokens from the



quantization set, each represented with statistically distributed dense embed-
ding vectors with N feature dimensions. A graph transformer model can be
developed if we can learn metric tensor instances of language model manifold
from graph instances and derive an accompanying energy-curvature tensor that
can be used to propagate the language model vectors across the encoder-decoder
network. A big challenge in defining such a model is the need for expert domain
knowledge to define connections between graph states in terms of a weighted
adjacency matrix or a more abstract metric tensor that can generalize to an
N-dimensional manifold where N can be very large. In our previous work [5],
we showed that it is possible to predict molecular properties in a simple one-hot
encoding setting where metric tensor was a hand-engineered inverse-distance
weighted adjacency matrix of size W x W with W being a pre-set maximum
number of nodes for each graph. The energy-curvature tensor was a matrix of
same size derived as part of a learnable coulomb attention model applied on the
adjacency matrix and hidden states. We also proposed in our previous work
that this attention model can be improved and generalized by using distributed
embedding representations and transformer architecture.

In this paper, we present a generalized form of our power law attention model
that is scalable to any graph size for a given quantization base set V of size V
and a non-linear manifold of N feature dimensions. Specifically, we develop
an end-to-end deductive-inductive power law graph transformer (PLGT) model
for machine translation task by using a set of linear embedding vectors from
source and target languages. For deductive task, the model learns generalized
power law coefficients, metric tensor and energy-curvature tensor instances for a
language model manifold. For the inductive task, the attention model learned in
deductive task is used to predict probabilities from source input autoregressively,
producing same output as a transductive transformer.

In the next sections, we will briefly go over background work, and present the
details of the power law attention model and the graph transformer architecture.
Then, we will show our results for Turkish-English (TR-EN) and Portuguese-
English (PT-EN) translation tasks from ted_hrlr_translate dataset [6] [7].

2 Background

A key understanding in data representation that significantly improved the per-
formance of neural machine translation (NMT) models was distributed repre-
sentation of data first introduced in [I]. The distributed representations of
statistical language models developed in [2] demonstrated that the joint prob-
ability distribution of discrete random variables can be used to represent each
token (e.g. word, subword) in a sentence as a dense vector. These vectors can
provide the model with information that grows exponentially within an em-
bedding vector space to reduce the curse of dimensionality. Each embedding
vector is composed of a representation with fixed number of feature dimen-
sions for each token in a vocabulary. Then a joint probability distribution for a
word sequence can be learned from these vectors which are conveniently called



word embeddings. The ability to represent a language model statistically with
word embeddings was further improved for large scale data in [8, @] that in-
troduced projection only training for CBOW and skip-gram word2vec models
with additional optimizations for the objective function. A key achievement
of word2vec was their efficient linear representation of syntactic and semantic
relationships with embedding vectors demonstrating improved analogical rea-
soning [9]. Another word embedding model, GloVe used global corpus statistics
to demonstrate similar analogical reasoning capabilities [10].

State of the art in statistical machine translation (SMT) was further im-
proved by using recurrent neural networks (RNN) with Long-Short Term Mem-
ory (LSTM) cells [1I] and Gated Recurrent Units (GRU) [12] in an encoder-
decoder architecture. The RNN encoder-decoder architectures suffered from
inability to translate longer sentences, where a fixed sized vector formed a bot-
tleneck to represent all the data from source sentence into the decoder. The
introduction of attention models that can attend to different parts of the source
sentence by learning an additive alignment model improved these pioneering
SMT models to predict longer sentences more accurately. An attention model
provides a weighted context vector learned from source sentence to the decoder
to predict the next target word [3] to overcome the bottleneck from a fixed-
length vector. Efficient methods using dot-product attention with global and
local approaches were explored and compared in [I3]. The concept of self atten-
tion that used linear combination of hidden states to achieve representation of
variable length sentences into a fixed sized embedding was demonstrated in [14].
The transformer model [4] that relies on dot product based self attention and
encoder-decoder architecture without recurrent networks demonstrated results
better than RNN based SMT models with reduced training cost. The trans-
former model forms the basis for advanced NLP architectures today [I5] [16].
These models utilize mainly a transductive learning approach [I7].

3 Model Architecture

Our model follows the general design principles in [4] that uses a scaled dot
product attention (SDPA) based encoder-decoder architecture to represent and
translate data within the model. A key difference is in the attention model
which utilizes both linear self attention and power law attention together with
deeply connected neural layers. The model is autoregressive, consisting of single
layer encoder-decoder configuration that takes in a sequence of input sentences
and target sentence is formed one token at a time, where earlier predicted tokens
are fed as input to the decoder. The encoder and decoder first learn a metric
tensor instance through a deep neural network accepting linear self attention of
source and target inputs, respectively. This metric tensor is then used to learn
the energy-curvature tensor that can facilitate localized linear transformations
between source and target languages. The general layout of graph transformer
is shown in fig.
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Figure 2: Functional diagram of the attention block

3.1 Encoder and Decoder Layers

Encoder first converts the tokenized input sentence = {x1, 2, z3,...,zs} into
a learned embedding matrix X with vector space dimension d..,; for each to-
ken: X € RS*demv A positional encoding is added to X to inform the model of
the sequence of tokens in input sentence after multiplying the embedding ma-
trix with v/demp [4]. The encoder consists of a multi-head attention layer and
deep fully connected dense layers with residual connections and layer normal-
ization [I8] at their output. The power law attention design used in encoder is
a combination of linear transformations and deep residual neural network layers
that learn the source language model (SLM) representation from an ensemble
of source input sentences.

The decoder takes as input an embedding matrix Yu;fieq prepared in the
same way as the input embedding to the encoder layer. The decoder encodes
the right shifted target sentence into a target language model (TLM) represen-
tation in the first attention layer. The second attention layer takes as input the
encoder output for the source language and output of the first attention layer to
form the cross-language model (XLM) representation from projections of source
and target language model representations of input and target sentence. The
last stage of decoder is a fully-connected dense layer same as in encoder. Each
attention layer and dense layer has residual connections followed by layer nor-
malization at the output. The attention output in the decoder is masked to
ensure that the prediction can only depend on known outputs that occur earlier
in the sequence.

We use single encoder and decoder layer for the graph transformer imple-
mented in this work, although it is possible to scale model with identical encoder
and decoder stacks.

3.2 The Power Law Graph Attention (PLGA) Layer

The attention layer for graph transformer consists of three stages as shown in
fig. 2l In the first stage, a metric tensor is inferred from an input graph which



is a matrix formed by concatenating embedding vectors with feature dimension
of demp for S tokens (graph nodes) in the input sentence. Metric tensor for a
language model manifold is a generalized, abstract form of a weighted adjacency
matrix learned through a deep neural network. For many types of unstructured
data that can be represented as a graph with large number of dimensions as
features and many connections between nodes, it is not straightforward to define
a distance metric between each node. In our earlier study [5], the inverse of three
dimensional eucledian norm between each node was used as a hand-engineered
distance metric to define a weighted adjacency matrix for each graph (molecules)
to demonstrate a reasonable level of prediction capacity for the graph attention
model. The first stage learns the metric tensor in an end-to-end fashion using
self attention and a deep residual network without the need to define a distance
heuristic from domain knowledge.

The second stage uses the metric tensor as an input to learn power law
relationships and coupling coefficients for a generalized energy-curvature (EC)
tensor for the language model manifold. Thus, each element of an EC tensor is
a superposition of exponentiated metric tensor elements weighted by a coupling
coefficient. EC tensor corresponds to the generalized form of a language model
represented by a manifold with dy s dimensions. We refer to this tensor the
Energy-Curvature tensor for two reasons: First, it is derived entirely from the
metric tensor in a similar fashion the Ricci tensor that defines the curvature of
a Riemannian manifold is derived. Secondly, imposing a power law relationship
through metric tensor elements approximates a sum of abstract potentials that
manipulates the curvature of the manifold.

The third stage is a linear transformation which evolves the embedding space
representation of the input sentence to an instance of a language model repre-
sentation as output of the attention layer.

The attention layer has multi-head support where input is split into h heads
with depth of each attention sublayer defined as dj, = drar/h. Each head learns
its own subspace of metric tensor and energy-curvature tensor for a subset of
language model dimensions. The attention layer architecture is shown in fig. [3]

3.2.1 Learning Metric Tensor from self-attention

The input to attention model is a dense matrix X of size S X demp sSuperposed
with positional encoding. The language model dimension dy,y; is set to be equal
to embedding dimension dg,,; in our implementation. We define a localized
graph operator for a single input graph instance represented by Q(= X) using
self-attention:

Do =Q"Q=[Q")(Q"| (1)

Dg is a dpy X dpa density matrix operator for a graph (sentence) with
mixed statistically distributed representations. We also introduce the bra-ket
notation for @ which is a concatenated, well-defined sequence of embedding
vectors that carry linear syntactic and semantic relationships and distributed



probabilistic representations of elements in a Vocabulary. To align the size
defined in model implementation (S x dras for Q) with bra-ket notation, Q7
is used as the bra-ket state. Thus ’QT> state has same size of the matrix Q7
(doar x S) and (QT] is the transpose. Each element of @ attends onto other
elements of the same graph and this operator can be used to get the degree
of @Q-ness in another graph V such that |QT> <QT | VT>. The inner product
<QT | VT> is a matrix where each entry is dot product of token vectors and is
a measure of similarity between tokens.

The metric tensor A is learned from the self-attention of training instances
through a deep residual network where each residual unit is composed of two
fully-connected layers of size A-dff with ReLLU activation for each layer followed
by a linear fully-connected layer of size di and layer normalization as shown in
fig.

The generalized metric tensor A is finally wrapped through a fully-connected
layer with learnable weights W and bias by :

AL]W = ReLU (WA + bw) +€ (2)

The use of ReLU activation with a small value of e = 1 x 107 ensures that
Ay is a tensor with positive non-zero elements. We found that the model
converges robustly with this configuration since we also randomly initialize the
learnable elementwise power matrix P defined in next section with glorot ini-
tialization [19].

3.2.2 Learning Energy-Curvature Tensor for the Language Model

The energy-curvature tensor for the language model G, is derived from metric
tensor as:

Gryv = aAfT, +b, (3)

a and b, are the learnable coupling weights and bias for potentials generated
from metric tensor Ay ;. P is a learnable power matrix that is applied to Ay
elementwise.

The deductive task infers a generalized metric tensor, energy-curvature ten-
sor and learns coupling and power coeflicients for the language model character-
ized with djj/-dimensional manifold and a quantization set of the Vocabulary
size V. To achieve the inductive task, it is necessary to obtain a localized
instance projection of the energy-curvature tensor that can transform the rep-
resentation of an input graph to a language model representation. The EC
tensor is first projected onto the graph instance by finding the expected value
of the EC tensor weighted over query and key inputs in eq. The localized
EC operator is scaled by +/dj, to avoid small gradient regions. The scaled EC
operator is then run through a Leaky ReLU activation step followed by softmax.
Masking is applied before softmax by setting values to be ignored close to —oo.
The resulting localized graph operator Epj; is then applied onto input value
vector V as a linear transformation (eq. E[):
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Figure 3: Model architecture of attention block implemented within encoder
and decoder of the power law graph transformer.



Eok|Grv] = QGLuK" =(Q"|Gru|KT) (4)
E = LeakyReLU (EQK[GLM]/\/ch) (5)

Epy = softmax [mask(E)] (6)

Vivu = EpuV =Epy|V) (7)

The inductive task output of the attention layer is the language model rep-
resentation of input Vs and the deductive task outputs are: Ep,s, P, a, b,
Gy, ALm-

For the source language model encoder, there is a single stage attention layer
where query, key and value entries are all equal to the source sentence embed-
ding (SE) vector sequence, Qsg = Kgg = Vsg = X. For the decoder, the first
attention layer has its query, key and value as the target sentence embedding
(TE) vector sequence shifted right, Qrg = Krg = Vrg = Yipifrea. For the
second attention layer (XLM) of decoder for cross-language model transforma-
tion, query is the output of the first attention layer, Qxry = Vrroy and key
and value are the output of source encoder layer, Kxrn = Vxrv = Vs

4 The Dataset

The dataset is used in this study is a parallel corpus created from TED Talk
transcripts for two different language families: Portuguese-English (PT-EN) and
Turkish-English (TR-EN) machine translation tasks [6]. The PT-EN dataset is
composed of 51785 sentence pairs for train, 1193 sentence pairs for development
and 1803 sentence pairs for test. The TR-EN dataset is composed of 182450
sentence pairs for train, 4045 sentence pairs for development and 5029 sentence
pairs for test. We used the dataset as prepared in Tensorflow Datasets Catalog
[7]. The training dataset was shuffled before each training run. The datasets
were used to create a subword vocabulary of maximum 15k tokens using the
wordpiece approach used in BERT implementation [20} [I5]. The tokenizer used
for the source and target were Bert Tokenizer implementation in Tensorflow-
Text package [21]. Vocabulary is generated separately for Portuguese and En-
glish (~ 8k tokens each), as well as Turkish and English (~ 15k tokens each)
from their respective paired train datasets.

5 Experimental Setup

We trained graph transformers that have single encoder-decoder layer as shown
in fig. The embedding and language model manifolds have dimension sizes
of deyny = drayr = 512, We ran models with different number of attention
heads and scaled dense connections for the metric tensor and pointwise feedfor-
ward connections accordingly to maintain same A-dff/dy, ratio for all models.
We tried multi-head attention with 1,2,4,8 and 16 heads and scaled residual



layer /residual dense/point-wise feed-forward parameters as shown in table
We also trained a transformer model with scaled dot-product attention (SDPA)
that has 4 encoder-decoder layers, 8 heads and a drop-out rate of 0.1 for com-
parison. SDPA transformer has same dpjs and dff values as the power law
graph transformer models. The number of residual layers for graph transform-
ers and the number of encoder-decoder layers for SDPA model were chosen to be
maximum values a single GPU in our setup can handle for each model without
running out of memory except for model #3 in table

The training is performed by using Adam optimizer [22] at a custom sched-
uled learning rate [4] with warm-up steps of 15000 for PLGA and 4000 for
SDPA transformer models and used a batch size of 64 for both. Attention layer
weights, fully connected layer weights and biases were initialized with glorot
normal, glorot uniform and zeros, respectively. During training, we kept track
of the training and validation cross-entropy loss (log perplexity), and accuracy
at the end of every epoch. Outside the attention layer, drop-out [23] is ap-
plied to embedding inputs after positional encodings are added as well as before
residual sum and layer normalization at the attention layer and encoder-decoder
outputs. Outside drop-out rate was set at 0.4. Inside the attention layer, a drop-
out rate of 0.1 is also applied at output of every residual unit before summing
and layer normalization for metric tensor learning. The drop-out rate within
attention layer for inputs Q, K were kept at zero and dropout rate for Ep s
was set at 0.1. We found these values to give good compromise to avoid overfit
of loss curve quantified by log perplexity over 120 epochs. We kept checkpoints
for the model parameters at 10 epochs after the minimum validation loss is ob-
served [12], at highest validation accuracy and a number of checkpoints sampled
over 120 epochs for comparison. Training took ~ 10 — 36 hours for each model
based on hyperparameters and the dataset. BLEU metric [24] was used to eval-
uate the test dataset. BLEU score was calculated using sacrebleu package [25].
For evaluation of our models, we run predictions using beam search with beam
length of 1 (greedy search) and 4 with length normalization [26]. The maxi-
mum number of iterations carried out for evaluation was set at 50 iterations
above input sentence length. Model variations were implemented using Tensor-
flow [27]. Implementation of Power Law Graph Transformer can be found at
https://github.com/burcgokden /Power-Law-Graph-Transformer.

6 Results

Evaluation with beam length=1. The results for inductive task are shown
in table [2] for graph transformers and SDPA transformer model. We ran PT-
EN translation task on all model variations for comparison. The model #2
with 8 heads and 9 residual layers gave the best BLEU score among graph
transformer variations. Model #1 with 16 heads and 10 residual layers exhibited
reduced BLEU scores for PT-EN task compared to model #2 with 8 heads. The
reduction of head size and residual layer size have a big impact on the model
capacity. Model #6 with single head and single residual unit had lowest BLEU

10



Table 1: Set of model hyperparameters used for training the dataset. The
unfilled sections have the same value as model #1. Models #1-6 are power law
graph transformers. SDPA is transformer with scaled dot product attention.

Model # Layers +# Heads A-dff # Res. Dense Layers # Res. Units dpy  dff

#1 1 16 128 2 10 512 2048
#2 8 256 9
43 8 256 8
44 4 512 5
#5 2 1024 2
#6 1 2048 1
SDPA 4 8 n/a n/a n/a 512 2048

score of 16.02 even if the fully connected layers in residual units have the largest
number of neurons per layer. This suggests that the number of deep residual
connections that learn the metric tensor and number of heads exploring alternate
versions of graph manifold are important to represent unstructured data such as
language datasets, that usually employ ambiguous relationships between nodes.
The SDPA model was also trained using PT-EN dataset and had a slightly better
BLEU score of 27.97 vs 27.79 for model #2 variation of the graph transformer.
The models #2 and #3 trained on larger TR-EN dataset gave similar results
of 17.58 and 17.61 which was ~ 0.8 higher than SDPA BLEU score of 16.82 on
the same dataset.

We also compared the loss and accuracy curves over 120 epochs for PLGA

model #2 and SDPA model. The results are shown in fig. [4] for models trained
on PT-EN and TR-EN tasks. The SDPA transformer converges to a minimum
loss earlier during training. The validation loss curve starts to overfit at longer
training times, therefore an early stopping strategy is expected to give the best
case BLEU score for SDPA model in this work. For the PLGA model, the
overfit is much less and validation and training accuracy have a smaller gap.
The best case results and highest accuracy points occur at later epochs for the
PLGA model. This suggests that the PLGA and SDPA architectures explore
the model space differently.
Evaluation with beam length=4. We evaluated the model #2 and SDPA
model with highest BLEU scores using beam search at beam length=4 to com-
pare. The results are shown in table [3] The PLGA model results in better
BLEU score than RNN model [3] with attention evaluated in [6] for PT-EN and
TR-EN tasks with standard (randomly initialized) embeddings. When evalu-
ated at beam length=4, the SDPA model fared better in BLEU score than the
PLGA model for PT-EN and TR-EN tasks.

For the deductive task of the model, we analyzed the 2D heatmap and his-
togram distributions of the set (Epar, Pra, @pnr, b, A, Grar). Out of these
parameters, (P, arar, b,) are learned for the entire dataset and are general-
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Figure 4: Loss and accuracy curves for model #2 (a,b) and SDPA (c,d) archi-
tectures trained on PT-EN and TR-EN datasets. Full (hollow) circles in red
are for train set loss (accuracy) values and full (hollow) triangles in blue are
validation set loss (accuracy) values. For clarity values at every 5 epochs are
plotted.
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Table 2: Greedy search BLEU results for models trained using TR-EN and PT-
EN datasets for 120 epochs and evaluated at various intervals. Maximum BLEU
scores are shown. (HA: model was evaluated at highest validation accuracy.)

Model Dataset BLEU Log Perplexity = Epoch

#1  PT-EN  26.96 2.74 110
#2  PT-EN  27.79 2.64 110(HA)
#2  TR-EN  17.58 2.66 118(HA)
#3  PT-EN  27.66 2.68 120
#3  TR-EN 17.61 2.67 120
#4  PT-EN 2755 2.64 110
#5  PT-EN  16.74 3.42 80
#6  PT-EN  16.02 3.40 118(HA)
SDPA PT-EN  27.97 2.15 17(HA)
SDPA TR-EN  16.82 2.43 30

ized for the language model. The rest of the outputs (Epn, Ay, Grar) are
inferred instances for an input sentence (graph instance). We show in figs.
and |§|, the heatmaps and histograms from head 4 of last attention stage (X-
LM attention) of model #2 trained using PT-EN dataset and evaluated with
greedy search. The outputs from all heads for X-LLM, source LM and target LM
attention models are included in the appendix. Following input sentence from
PT-EN dataset was evaluated to generate the deductive task outputs:

Input :  “este um problema que temos que resolver .”
Prediction :  “this is a problem that we have to solve .”
Ground truth :  “this is a problem we have to solve .”

The heatmaps for (P, arnr, b,) show approximately gaussian distribution
without any clear pattern visible. The histogram distribution for Prs (fig.
has slightly longer tail above zero. The coefficients ar s and bias b, are less
skewed and more broadly distributed around zero value. b, profile indicates that
the model will have a non-zero background distribution if the metric tensor for
an input instance were all zero.

The metric tensor Ay (fig. for input sentence is positive definite and
heat map is intriguingly not approximately gaussian, where the dark regions
close to zero and non-zero “active” regions are grouped and connected similar
to a loosely knit straw basket pattern. The histogram shows a long tail distri-
bution with a sharp peak at number of values close to zero. This indicates that

13



Table 3: BLEU score comparison for PLGA transformer, SDPA transformer
and the RNN model trained in ref. [6] using same datasets with standard and
pre-trained embeddings. PLGA and SDPA transformers were evaluated using
beam length of 4 and 1 (shown in parentheses).

BLEU
Model  Dataset  (std — std)  (pre — pre)
#2  TR-EN 17.79(17.58) -
SDPA TR-EN 18.31(16.82) -
from [6] TR-EN 14.9 17.9
#2  PT-EN  28.33(27.79) -
SDPA  PT-EN  29.57(27.97) -
from [6] PT-EN 26.2 30.8

the metric tensor is still sparse for de,,, = 512 chosen as embedding feature di-
mension in our models. The EC tensor Gy, is shown in fig. and was derived
using eq. [3]in the attention model. Unlike Ay, the EC tensor distribution
has no clear pattern on the heatmap and is approximately gaussian and fairly
centered around zero. Fig. shows the attention weights between source and
predicted target sentences which is similar to attention weights observed from
other attention based models [3, 4]. We observe that the range of attention
weights for E s varies on a scale from 0 to 1. The deductive output values are
well behaved, given that the input is not normalized and learned parameters
are randomly initialized. We suspect that the layer normalization and positive-
definite A s condition applied in eq. [2| help improve the interpretability of the
deductive task outputs.

Other head outputs show similar distributions for heatmap and histogram
we presented here for X-LM attention outputs. For source and target attention
blocks, the attention weights E s show more varied patterns among heads.

7 Discussion and Further Work

We can make several key observations about the graph transformer architecture
explained in this work. The model uses a quantization set (subword Vocabulary
generated from dataset) and its dense vector representation for each element in
the set (embedding space vectors with de,,; feature dimensions) for linear trans-
formations. A language model manifold (defined by dps feature dimensions)
is obtained by non-linear transformations through a deep neural network that
learns from a large ensemble of local instances of sentences (graph instances).
The manifold and quantization set define a duality where we can statistically
build global relationships from a large ensemble of local instances and similarly
infer single local instances from global relationships. The deductive task builds

14
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the global relationships by learning (Pps, @, b,) which are parameters char-
acterizing the relationships for the entire language model. These parameters
are not associated with a single sentence but language defined by the entire
dataset available to the model, unlike attention weights that are obtained from
a SDPA transformer model for a single sentence. The inductive task builds the
localized relationships by propagating through (Epas, Ay, G ) from a single
instance of input sentence where the output is same as that of a transductive
transformer model. The duality transformation between local and global rela-
tionships is highly non-linear, defined by a deep residual network. On the other
hand, we take advantage of linear transformations whenever local inferences
were made from an input instance.

The number of heads also have a large impact on locality condition besides
model capacity. The multi-head configuration allows the model to consider mul-
tiple interpretations of an input sentence in sub-spaces. By splitting the input
into smaller size heads, we also enforce the model to consider feature dimen-
sions in the same head split to interact more closely. Therefore, a constraint on
locality is also introduced within each head split.

Several possible configurations were not explored in this study due to lim-
itations of scope and our experimental setup. The model architecture can be
also explored for deeper residual networks with less head splits and multi-layer
encoder-decoder networks. The number of embedding dimensions is another hy-
perparameter that could have an impact on both deductive and inductive task
outputs. The hyperparameters we used in this study were optimizations that
were reported to work well for the SDPA transformer model in the literature. A
better hyperparameter set optimized for graph transformer architecture could
improve the BLEU score of this model further. Other optimizations reported
for large scale NLP systems [28], [29] could be used to scale graph transformer
to larger datasets and multi-GPU setups. The deductive outputs provide a
rich set of statistical information of the language model and neural network
itself. A more in depth analysis of the deductive outputs can provide better
understanding of the dataset domain and model architecture.

8 Conclusion

We presented a generalized power law graph transformer architecture with well
defined deductive and inductive tasks. The deductive task learns the global char-
acteristics of the dataset using a power law attention model. The inductive task
uses the global characteristics to predict the output probabilities for an input
instance through encoder-decoder architecture. We applied our model for TR-
EN and PT-EN machine translation tasks and compared its performance and
characteristics to a SDPA transformer model evaluated on same experimental
setup. The graph transformer developed in this work used many of the opti-
mizations that SDPA transformer was shown to benefit from in the literature
and we believe that hyperparameters better optimized for graph transformer
architecture can result in higher BLEU scores.
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Our model empirically takes advantage of a duality between a subword Vo-
cabulary represented by de,, embedding feature dimensions and a language
model represented by dy s feature dimensions to define local and global statis-
tics from a machine translation dataset. While a single instance of a sentence
can be considered as a graph instance exploring a local region of the language
model manifold, a large ensemble of such localized instances can be used to
learn an abstract, statistical representation for the entire manifold.

In more general terms, graph samples generated from a linear quantization
set are used to build a statistical representation for a non-linear manifold using
deep residual networks and attention based on a power-law relationship. The
power law relationship is inherently scale invariant and we expect that it will be
particularly interesting to apply the model to datasets with varying scale and
features from domains beyond NLP tasks such as graph databases, communica-
tion networks, and many-body problems in quantum mechanics and astronomy.
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Figure A.1: Ep); heatmap plots for all heads from XLM attention stage from graph transformer model

#2.



P,y FOR HEAD 1

1 -0.3
9
17 -0.2
25
g 0.1
33
[0
T a 0.0
a9
57 -0.1
- )] ~ n m - -] ~
- N m < < n
depth
P,m FOR HEAD 3
-0.2
0.1
0.0
-0.1
depth
P,m FOR HEAD 5
257 5 .
265 -0.20
273 -0.15
= 281 0.10
2 289 0.05
2 .
T 207 0.00
305 -0.05
313 -0.10
~ n m - )] ~ n m
n ©o ~ © © o [=] -
~N ~N N ~N N N m m
depth
P,m FOR HEAD 7
385
393
401 - 02
s 409 oa
Q 417 '
[
T 425
0.0
433
a4a1
-0.1
n m - (<)) ~ n m -
© - o o - o m <
m m < < < < < <
depth

depth

depth

depth

depth

193
201 -0.3
209
0.2
217
225
0.1
233
241 0.0
249
-0
m - )] ~ n m - (2]
=] o o - I\ m < <

A2

P.m FOR HEAD 2
65

3 -0.3
81
0.2
89
97 0.1
105
113 0.0
121
-o.
n m - (-] ~ n m -
© ~ -] o )] o - N

1
1

-
depth

P.m FOR HEAD 4

[} N N N N N N N

depth

P.m FOR HEAD 6

.1

321
3209 - 03
337
0.2
345
353 0.1
361
369 0.0
377
-0.1
- o ~ n m L] o ~
N I ) < n © © N

4
4
4
4

4

4
4
5

3
3
3

m m

3
3

m
depth

P.m FOR HEAD 8

49 -0.3
57
65 0.2
73
81 0.1
89
0.0
97
05
-o.
(=] ~ n m - (-] ~ n
< n ©o ~ -] © ) o

< < < < < < < n

depth

Figure A.2: Py s heatmap plots for all heads from XLM attention stage from graph transformer model

492,



300

250

200

Count

150

100

50

300

250

200

150

Count

100

50

350

300

250

200

Count

150

100

50

300

250

200

150

Count

100

50

0o

-0.18

-0.15

-0.11

-0.09

-0.14 -0.09

P.v FOR HEAD 1

-0.04 0.03

0.10

Values

0.17 0.23

P.m FOR HEAD 3

-0.03 0.03

0.09

Values

0.15 0.20

P.m FOR HEAD 5

0.08 0.13 0.18
Values

-0.03 0.02

P.m FOR HEAD 7

0.30

0.26

0.24

-0.13

-0.07

-0.01 0.05

0.11

Values

0.17

0.23

0.29

Count

Count

Count

Count

A3

P.v FOR HEAD 2

300

250

200

150

100

50

N lin;
-0.11 -0.05 0.02 0.08 0.15 0.21 0.28 0.34
Values

P,y FOR HEAD 4
300
250
200

150

100
50
° I i

-0.11 -0.04 0.02 0.09 0.15 0.22 0.28 0.35
Values

P.m FOR HEAD 6
350

300
250
200
150
100

50

° >
-0.12 -0.06 0.01 0.08 0.14 0.21 0.28 0.34
Values

P.vm FOR HEAD 8

300
250
200
150
100

50

0 = | I i
-0.14 -0.07 -0.01 0.06 0.12 0.19 0.25 0.31
Values

Figure A.3: Ppjs histogram plots for all heads from XLM attention stage from graph transformer

model #2. Dashed line in orange marks zero value.



arm FOR HEAD 1

1
° -0.10
17
0.05
=25
B 33
& 0.00
T n
-0.05
a9
57 -0.10
- )] ~ n m - )] ~
- N m < < n
depth
-0.10
0.05
0.00
-0.05
-0.10
)] ~ n m - [-)] ~ n
~N m < n ©o © ~ ©
- - - - - - - -
depth
a,m FOR HEAD 5
257 - -
265 - - -0.10
273 0.05
< 281
0.00
Q. 2
2 289
© 297 -0.05
305
313 -0.10
~ n m - )] ~ n m
n ©o ~ © © o (=] -
~N ~N N ~N N N m m
depth
-0.10
0.05
0.00
-0.05
-0.10

n m - )] ~ n m -

-] -] o =] - [>] m <

m m < < < < < <
depth

A4

arm FOR HEAD 2

65
73 -0.10
81
0.05
c 89
2 o7 0.00
S .
T 105
-0.05
113
121 -0.10
n m - (-] ~ n m -
©o ~ 0 © [} o - N
- - -
depth
arm FOR HEAD 4
193 o B
- - 1
201 -0.10
209
0.05
£ 217
Q. 225 0.00
3
233 -0.05
241
-0.1
249 0.10
m - (-] ~ n m - )
[} o o - N m < <
- N N N N N N N
depth
a,m FOR HEAD 6
-0.10
0.05
0.00
-0.05
-0.10
-0.10
0.05
0.00
-0.05
-0.10

depth

Figure A.4: arp heatmap plots for all heads from XLM attention stage from Graph transformer model

492,



Count

Count

Count

Count

a.m FOR HEAD 1

300
250
200
150
100

50

o illl || [ 8

-0.13 -0.09 -0.05-0.02 0.02 0.06 0.09
Values

0.13

a,ym FOR HEAD 3
300

250
200
150
100

50

o all
-0.13 -0.09

-0.05-0.02 0.02
Values

0.06 0.10 0.14

arm FOR HEAD 5

0.09

0 ]
-0.15 -0.11 -0.07 -0.03 0.01

Values

0.05 0.13

ary FOR HEAD 7

200

150

100

50
0 =

-0.15 -0.11 -0.06 -0.02 0.02 0.06 0.11 0.15
Values

Count

Count

Count

Count

Ab

a.m FOR HEAD 2

250
200
150
100

50

ol I

-0.14 -0.10 -0.06 -0.02 0.02 0.06
Values

0.10 0.14

a,y FOR HEAD 4

300

200

150

100

50

-0.02 0.02
Values

0o

-0.15 -0.11 -0.07 0.06 0.10 0.14

a,m FOR HEAD 6

300 1
| I W=

-0.02 0.02 0.10 0.13
Values

250
200
150
100

50

. I

-0.14 -0.10

-0.06

arm FOR HEAD 8
1

200
150
100

50

]
-0.15 -0.11 -0.07 -0.03

0.02
Values

0.06 0.10 0.14

Figure A.5: arpjs histogram plots for all heads from XLM attention stage from Graph transformer

model #2. Dashed line in orange marks zero value.



A6

b, FOR HEAD 1 b, FOR HEAD 2
-0.3
-0.3
-0.2 -0.2
0.1
0.1 -
k- 0.0
0.0 0]
° -0.1
-0.1 02
-0.2 -0.3
-
depth
b, FOR HEAD 4
~0.3 193 -0.3
-0.2 -0.2
0.1 0.1
0.0 0.0
-0.1
-0.1
-0.2
-0.2
-0.3
m - =) ~ n m L) )
[} o o - N m < <
- N N N N N o~ N
depth depth
b, FOR HEAD 5 b, FOR HEAD 6
257 - - -0.3 -0.3
265 0.2 -0.2
273
0.1
0.1
s 281
% 289 0.0 0.0
T 207 -0.1
-0.1
305 —0.2
313 -0.2
-0.3
~ n m - )] ~ n m - [~} ~ n m - [~} ~
n ©o ~ © © -] o - o N m < n ©o ©o ~
~N N N ~N ~N N m m m m m m m m m m
depth depth
b, FOR HEAD 8
-0.3
0.2 -0.3
0.2
0.1
0.1
0.0
0.0
-0.1
-0.1
-0.2
-0.2
-0.3
-0.3
n m - ) ~ n m - (=] ~ n m - (-] ~ n
© [~ o o - o m < < n ©o ~ -] © ()] o
m m < < < < < < < < < < < < < n
depth depth

Figure A.6: b, heatmap plots for all heads from XLM attention stage from graph transformer model
#2.



b, FOR HEAD 1

250
200

150

Count

>

100

50

-0.27 -0.19 -0.11 -0.03 0.05 0.14 0.22
Values

b, FOR HEAD 3
300

250
200

150

Count

100

50

-0.33 -0.24 -0.15 -0.05 0.04 0.13 0.22
Values

b, FOR HEAD 5
250
200

150

Count

>

100

50

-0.28 -0.19 -0.11 -0.03 0.05 0.14 0.22
Values

b, FOR HEAD 7

250

200

150

Count

100

50

0
-0.35 -0.25 -0.16 -0.06 0.03 0.13 0.22
Values

0.30

0.31

0.30

0.31

Count

Count

Count

Count

300

250

200

150

100

50

200

150

100

50

250

200

150

100

50

300

250

200

150

100

50

0o

-0.36

-0.29

-0.34

-0.32

AT

b, FOR HEAD 2

-0.26

-0.20

-0.16

-0.06 0.03
Values

0.13

b, FOR HEAD 4

-0.12

-0.03 0.06 0.14

Values

b, FOR HEAD 6

-0.25 -0.16

-0.21

-0.06 0.03
Values

0.12

b, FOR HEAD 8

-0.11

-0.01 0.09
Values

0.19

0.23

0.23

0.22

0.29

0.33

0.31

Figure A.7: b, histogram plots for all heads from XLM attention stage from graph transformer model

#2. Dashed line in orange marks zero value.



A8

A;m FOR HEAD 1 A;m FOR HEAD 2
65
-3.5 -3.0
73
-3.0 81 -2.5
2.5
< 89 - 2.0
2.0 o
2 97 15
1.5 T 105
1.0
1.0 113
- 0.5
0.5 121
n m - (-] ~ n m -
© ~ - ~N
- - -
depth depth
A;m FOR HEAD 3 A;m FOR HEAD 4
129 193
-3.5
137 201
-3.0
145 209
-2.5
< 153 Y < 217 o
% 161 % 225
T 169 T 233 1.5
177 241 1.0
185 -0.5 249 - 0.5
m - (-] L) )
)] - N m
I-I l-l I-I I-I FI l-1 I-I I-I - (3] ~N o~ ~N (3] o~ (]
depth depth
A;m FOR HEAD 5 A;m FOR HEAD 6
257 321
-a
265 329 -3.0
273 3 337 - 2.5
281 345
-‘E_ -‘E_ - 2.0
289 353
) -2 ) 15
T 207 T 361
305 , 369 - 10
313 377 - 0.5
~ n m n m - -] ~ )] ~
©o (-] -] [} N < n ©o
~N N N ~N ~N (o] m m m m m m m m m m
depth depth
A;m FOR HEAD 7 A;vm FOR HEAD 8
385 _ 449
3.0
393 as7
-2.5 -3.0
401 465
-2.0
= 409 = 473
B 417 B 481
S 1.5 2
T 425 T 489
1.0
433 a97 1.0
441 05 505
n m
© o o - o m <
m m < < < < < < <f <f Q !l‘ Q <f <f Iﬂ
depth depth

Figure A.8: Ay heatmap plots for all heads from XLM attention stage from graph transformer model
#2.



2000
1750
1500

¥ 1250

3

S 1000

750
500
250

2000

1500

Count

1000

500

2000

1500

Count

1000

500

2000

1500

Count

1000

500

A,m FOR HEAD 1

T

0.00 0.54 1.08 1.61 2.15 2.69 3.23
Values
A;v FOR HEAD 3
L“—
0.00 0.52 1.05 1.57 2.09 2.61 3.14
Values
A;m FOR HEAD 5
mERNEN
0.00 0.62 1.24 1.85 2.47 3.09 3.71
Values
A;m FOR HEAD 7
[[]
0.00 0.44 0.88 1.32 1.76 2.20 2.64
Values

3.76

3.66

4.33

3.08

Count

Count

Count

2000

1500

1000

500

2000
1750
1500
1250
1000
750
500
250

2000

1500

1000

500

2000

1500

1000

500

0

A9

A, v FOR HEAD 2

prr

nllN
0.00 0.46 0.92 1.39 1.85 2.31 2.77 3.24
Values
A;v FOR HEAD 4
mEN il
0.00 0.52 1.03 1.55 2.07 2.58 3.10 3.62
Values
A,y FOR HEAD 6
mill
0.00 0.49 0.97 1.46 1.95 2.44 2.92 3.41
Values
A.v FOR HEAD 8
[[] O
0.00 0.52 1.05 1.57 2.10 2.62 3.15 3.67
Values

Figure A.9: Ap,s histogram plots for all heads from XLM attention stage from graph transformer
model #2.



G.m FOR HEAD 1

-1.00
-0.75
0.50
0.25

depth
o

0.00
41

-0.25
49

-0.50

57

-0.75

17

n o0 L) ]
<

o m <
depth

~
n

G.m FOR HEAD 3

[} ~ n m )] ~ n
N M < n © © N ©
- - - - - - -

depth

G.m FOR HEAD 5

-1.00

-0.75
0.50
0.25
0.00
-0.25
-0.50

-0.75

~ n m [l
n © ~ © ©
N N N N

N
depth

297
305
313

G.m FOR HEAD 7

0.5

0.0

depth

A10

65
-0.75
73
81 0.50
o 89 0.25
2
o %7 0.00
T 105
-0.25
113
121 ~0.50
G,.m FOR HEAD 4
-1.0
0.5
=
-
8 0.0
o
-0.5
-1.0
m - (-] ~ n m - )
)] o o - o~ m < <
- ~N N N N N o~ N
depth
G,.m FOR HEAD 6
321 E - 10
329
337 0.5
= 345
B 353 0.0
2 .
T 361
369 -0.5
377
-1.0
- (-] ~ n m - a ~
N N m < n © ©o ~
m m m m m m m m
depth
-1.0
0.5
0.0
-0.5
-1.0

depth

Figure A.10: Grp; heatmap plots for all heads from XLM attention stage from graph transformer

model #2.



G.m FOR HEAD 1

250

200

150

Count

100

50

0 < II

-0.89 -0.59 -0.29 0.01 0.31 0.62 0.92 1.22
Values

G, m FOR HEAD 3

300
|

250
200

150

Count

100

50

-0.97 -0.71 -0.44 -0.18 0.08 0.34 0.61 0.87
Values

G.m FOR HEAD 5

-0.83 -0.56 -0.29 -0.03 0.24 0.51 0.78 1.04
Values

250

200

150

Count

100

50

G.m FOR HEAD 7

300

250

200

150

Count

100

50

o ]
-0.89 -0.60 -0.31 -0.02 0.27 0.56 0.85 1.14
Values

Count

Count

Count

Count

250

200

150

100

50

300

250

200

150

100

50

300

250

200

150

100

50

250

200

150

100

50

0o

-0.75

-1.18

-1.10

-1.07

]
-0.51

[
-0.83

-0.79

All

G.m FOR HEAD 2

-0.28

-0.05 0.18
Values

0.41

G.m FOR HEAD 4

-0.49

-0.15 0.20
Values

0.54

G.m FOR HEAD 6

-0.48

-0.17 0.15
Values

0.46

G.m FOR HEAD 8

-0.75

-0.43

-0.11 0.21
Values

0.53

0.64

0.88

0.85

0.87

1.23

1.08

1.17

Figure A.11: G histogram plots for all heads from XLM attention stage from graph transformer

model #2. Dashed line in orange marks zero value.



E m FOR HEAD 1
[START]

este

e

um
problema
que
temos
que
resolver

[END]

o £ ] .
s 3

T

()
3
T

[START]
este
temos
resolver

©
£

K]

2
°
13
s

E,m FOR HEAD 3

[START]
este

e

um
problema
que
temos
que
resolver

[END]

[START]
este

e

um
problema
que
temos
que
resolver

E;m FOR HEAD 5
[START]

este

e

um
problema
que
temos
que
resolver

[END]

[START]
este

e

um
problema
que
temos
que
resolver

E.m FOR HEAD 7
[START]

este

e

um
problema
que
temos
que
resolver

[END]

[START]
este

e

um
problema
que
temos
que
resolver

Figure A.12: Ep,; heatmap plots for all heads from SLM attention stage
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Figure A.13: Prj; heatmap plots for all heads from SLM attention stage from graph transformer model

#2 for PT-EN translation task.
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Figure A.17: b, heatmap plots for all heads from SLM attention stage from graph transformer model

#2 for PT-EN translation task.
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Figure A.22: Gpps histogram plots for all heads from SLM attention stage from graph transformer
model #2 for PT-EN translation task. Dashed line in orange marks zero value.



E.m FOR HEAD 1

this -1.0
is
a -0.8
problem
that 0.6
we
have
to - 0.4
solve
. - 0.2
[END]
-0.0
w v © % 0o © o0 o - =
s~ § & ¢ 2 ® 2 )
* s ¥ £ [ w
o =1
1Y
o
E.m FOR HEAD 3
this -1.0
is
a -0.8
problem
that 0.6
we
have
to - 0.4
solve
. - 0.2
[END]
- 0.0
w v © % 9 0 o 0 b~
g * " fs5s: 322218
* ¥ < 2 w
° =1
1Y
o
E.m FOR HEAD 5
this -1.0
is
a -0.8
problem
that _ 0.6
we
have
to 0.4
solve
) - 0.2
[END]
-0.0
w v © % 9 0 o 0 I~
£ E s ¢ 52 % g
“ s ¥ < [ w
° —
=
a
E.m FOR HEAD 7
this -1.0
is
a -0.8
problem
that 0.6
we
have
to - 0.4
solve
. - 0.2
[END]
-0.0
0 n L] = (] (] o (4 I~
2 2 E s ¢ & 25 g
* s ¥ £ 2 w
° —
1Y
o

Figure A.23: FEpj; heatmap plots for all heads from TLM attention stage from

model #2 for PT-EN translation task.
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Figure A.24: Ppj; heatmap plots for all heads from TLM attention stage from graph transformer

model #2 for PT-EN translation task.
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Figure A.25: Ppj; histogram plots for all heads from TLM attention stage from graph transformer
model #2 for PT-EN translation task. Dashed line in orange marks zero value.
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Figure A.26: apjs heatmap plots for all heads from TLM attention stage from Graph transformer
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Figure A.28: b, heatmap plots for all heads from TLM attention stage from graph transformer model
#2 for PT-EN translation task.
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Figure A.29: b, histogram plots for all heads from TLM attention stage from graph transformer model

#2 for PT-EN translation task. Dashed line in orange marks zero value.
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Figure A.30: Ay heatmap plots for all heads from TLM

model #2 for PT-EN translation task.
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Figure A.31: Apjs histogram plots for all heads from TLM attention stage from graph transformer
model #2 for PT-EN translation task.
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Figure A.32: Gpj; heatmap plots for all heads from TLM attention stage from graph transformer
model #2 for PT-EN translation task.
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Figure A.33: G histogram plots for all heads from TLM attention stage from graph transformer
model #2 for PT-EN translation task. Dashed line in orange marks zero value.
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