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Abstract

Quantization offers a practical solution to
deploy LLMs in resource-constraint environ-
ments. But it’s effect on internal representa-
tion is understudied, which can question it’s
reliability. In this study, using various inter-
pretation techniques, we explore the effects of
quantization on model and neuron’s behavior.
We investigate two LLMs Phi-2 and Llama-
2-7b, employing 4-bit and 8-bit quantization.
Our findings reveal several important insights.
First, 4-bit quantized models exhibit slightly
better calibration than 8-bit and 16-bit models.
Second, our analysis of neuron activations in-
dicates that the number of dead neurons, i.e.,
those with activation values close to 0 across
the dataset, remains consistent regardless of
quantization. Regarding contribution of neu-
rons in model prediction, we observe that full-
precision models have fewer salient neurons
overall. The effect of quantization on neuron
redundancy varies across models. Our find-
ings suggest that quantization is a viable ap-
proach for the efficient and reliable deployment
of LLMs in resource-constrained environments.

1 Introduction

The last decade has seen a tremendous amount of
work done in language modeling, specifically in
large language models (LLMs) (Devlin et al., 2019;
Liu et al., 2023a; Touvron et al., 2023). There
is a common trend to increase the number of pa-
rameters in LLMs to improve the performance of
models. However, this approach exacerbates the
challenge of resource requirements, including com-
putational and energy costs (Patterson et al., 2021).
Quantization is one of the model compression tech-
niques that is widely used because of its effec-
tiveness and simplicity (Bondarenko et al., 2024;
Dettmers et al., 2022; Wu et al., 2023). Quantiza-
tion reduces the model size by using lower preci-
sion weights and/or activations, which can improve
its inference speed while using less storage space.

The effect of quantization is generally measured by
comparing a model’s performance on downstream
NLP tasks (Li et al., 2024; Kurti¢ et al., 2024).

While performance on downstream tasks is cru-
cial to understand the end-to-end impact, the evalu-
ation is limited to a set of downstream tasks used
for evaluation. In other words, it does not provide
complete insights into the effect of quantization
on the knowledge learned by the model. In this
work, we argue that the interpretation serves as an
additional metric and evidence to analyze the ef-
fect of quantization on the model. For instance,
it may reveal which types of knowledge or rela-
tionships preserved or degraded by quantization,
giving a deeper understanding of whether essential
patterns remain intact. This is especially important
for safety-critical applications such as finance, law,
and healthcare (Hassan et al., 2024) where relia-
bility of a model is necessary . The insights from
interpretation can further motivate creation of se-
lective quantization strategies, where precision can
be preserved in sensitive parts of the network while
being reduced elsewhere, balancing efficiency and
performance.

In this research, we study the effect of quantiza-
tion, specifically LLMs quantized in 4-bit and 8-bit,
to investigate its’ effect on the model’s behavior
and internal representations.

Specifically, we target the research questions
given below:

1. What is the effect of quantization on a model’s
confidence and calibration?

2. Does quantization influence the contribution
of neurons to model predictions?

3. How does quantization affect the number of
“dead neurons”?

4. Does quantization affect the redundancy of
neurons? In other words, does it result in
more neurons learning identical information?



We analyze two open-source models, Phi-2
(Javaheripi and Bubeck, 2023) and Llama-2-7b
(Touvron et al., 2023) under two quantization
settings: 4-bit (Dettmers et al., 2023) and 8-bit
(Dettmers et al., 2022) and compare them with the
full-precision float-16 weight model. We found that
these LLMs under different quantizations remain
similar in some aspects and are positively impacted
in other aspects, such as model calibration. This
provides an empirical evidence on reliability of
quantized model.

We summarize our main findings as follows:

1. Model confidence remains consistent across
quantization.

2. 4-bit quantized model exhibits less calibration
error for both subject models.

3. Based on neuron activations, quantization
does not have a major effect, i.e., the number
of dead neurons remains largely unchanged.

4. In the attribution-based neuron contribution,
we observe that the full-precision model has a
lower number of salient neurons.

5. Neuron redundancy differs between the two
subject models. In Phi-2, the full-precision
model exhibits a higher number of correlated
neuron pairs, indicating greater redundancy,
whereas in Llama-2-7b, quantization causes
only a minor difference in redundancy.

2 Methodology

We study the model confidence, output calibration,
neuron activation and attribution with respect to
quantization.

2.1 Confidence Analysis

Confidence analysis aims to find the average confi-
dence of a model in its predictions over a dataset
(Abdar et al., 2021). We calculate the average con-
fidence of the model using the following equation:

N
1
Average Confidence = N z; max P(y;)
1=

Here, N is the total number of data points in the
dataset, and P(y;) represents the softmax probabil-
ity of the output label y; with the highest probabil-
ity for the i-th prediction. The term max (P (y;))
indicates the confidence of the model in its selected
prediction for each example.

2.2 Calibration Analysis

Calibration can be defined as the degree to which
a model’s predicted probabilities reflect the actual
frequencies of those outcomes (Nixon et al., 2020).
Despite high accuracy in classification tasks, mod-
ern deep neural networks often suffer from miscali-
bration—meaning that their confidence scores do
not accurately represent their probability of correct-
ness (Guo et al., 2017).

We use the Adaptive Calibration Error (ACE)
metric (Nixon et al., 2020), which adjusts its assess-
ment based on the actual distribution of confidence
values, enabling a more flexible and precise evalua-
tion of calibration. ACE is calculated as follows:

R

K
1
ACE = R ; Tzl lacc(r, k) — conf(r, k)|

Here, K is the number of classes., R is the num-
ber of adaptive calibration ranges, acc(r, k) and
conf(r, k) are the accuracy and confidence values
for the adaptive range r for class k, respectively.
The calibration range r is determined by dividing
the predictions into R equally populated intervals
based on sorted confidence scores. This way, each
range contains approximately | N/R] predictions,
where NV is the total number of data points.

2.3 Neuron’s Attribution

A neuron’s attribution refers to its role and signifi-
cance in a model’s predictions for a given dataset,
as determined by attribution methods such as in-
tegrated gradient (Sundararajan et al., 2017). To
evaluate the impact of quantization on neuron attri-
butions, we analyze the number of salient neurons
that contribute significantly to the model’s predic-
tions. This analysis shows quantization affects on
the model’s ability to identify and rely on the im-
portant features.

Using Layer Integrated Gradients, we obtain at-
tribution scores for each input token for a given
layer as:

IG([z1, %2, ..., 2y]) = {a1,a2,...,a,}

Here, x; represents each input token and a; is
the attribution score for the token x;.

The attribution score a; is calculated as the sum
of the contributions from individual neurons in a
given layer:



N
a; = E nj
J=1

where N is the total neurons in the given layer,
and nj; is the attribution score of neuron j.

Selection of Top Contributing Neurons: The
input to the model consists of a sequence of to-
kens. We propose two separate methods to select
the salient neuron with respect to the prediction.
Specifically, we select most salient neurons based
on 1) the most salient input token and 2) the input
sequence and combine them. Each technique high-
lights neurons with varying levels of granularity
and context sensitivity.

Most attributed token-based: In this technique,
we only consider the most attributed token’s (i.e.,
input token with max attribution score) represen-
tation and select neurons that have a normalized
attribution score > 0.8. This identifies neurons
that are most important in determining the model’s
predictions for the specific context of the selected
token. Given as:

Tpest = arg mZ?lX{@i}

n;ahem = {n; | rmZan) > 0.8},Vj € Layer
Here, a; is the attribution score for token z; and n;
is the attribution score of neuron j for Tpes;.

Input sequence-based: To identify neurons that
are salient in the context of the input sequence, we
calculate the total attribution over the entire input
sequence by summing the attributions across all
input tokens. We select the neurons that have an
attribution score > 0.8 after normalization. This
approach ensures that the selected neurons reflect
their contributions to the overall meaning of the in-
put, rather than being limited to the most attributed
token only. Given as:

n
s5= D i
=1

nsalient —_ {nj | 55

0.8},Vj € L
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Here, a;; is the attribution of neuron j for token
x;, and s; is the total attribution score of neuron j
summed over all tokens.

Token-agnostic: Here, we select the attribution
score of a neuron based on its maximum attribution

over all tokens in the input sequence. This selec-
tion emphasizes neurons important for any part of
the input sequence, regardless of specific tokens.
Given as:

m; = max{a;; }
A

n;ahent _ {nj | J

ax(m;)
Here, a;; is the attribution score of neuron j for
token z;, and m; is the maximum attribution score
for neuron j over all tokens.

> 0.8},Vj € Layer

Using all the strategies outlined above, we iden-
tify the most important neurons contributing to a
single datapoint prediction and collate it over the
dataset. Although the same neurons may be se-
lected under different strategies, we consider only
one occurrence of each selected neuron.

2.4 Neuron’s Activations

Given the quantization reduced the precision of
weights, it may increase the number of insignificant
neurons in the network. To select insignificant
neurons, we adopt a similar approach to Voita et al.
(2023), identifying dead neurons—neurons whose
activations remain consistently close to zero across
the dataset.

2.4.1 Dead/Insignificant Neurons

Voita et al. (2023) observed that the number of dead
neurons increases with the growth of a model’s pa-
rameter count. Their analysis of the OPT language
model family, which uses the ReLLU activation func-
tion, shows that over 70% of neurons in some layers
are dead. We hypothesize that quantization, by re-
ducing the precision of weights, may contribute to
an increase in the number of dead neurons in the
network.

Apart from ReLU, other activation functions
such as GELU (Hendrycks and Gimpel, 2016) and
SiLU (Elfwing et al., 2017) may not produce acti-
vation values that are exactly zero. To generalize
the concept of dead neurons for these activation
functions, we define a threshold of —0.1 to 0.1,
categorizing neurons as dead if their activation val-
ues consistently remain within this range across
the dataset. For different activation functions, we
define dead neurons as follows:

n?ead(ReLU) ={nj| ajq=0,
Vd € dataset}



n?ead(Othgr Activations) = {nj ’
—-0.1<ajq <0.1, &)
Vd € dataset}

Here, a; 4 represents the activation of neuron n;
for a given data point d in the dataset.

2.5 Correlation Analysis

We hypothesize that a low-precision quantization
may cause more neurons to represent identical in-
formation, i.e., as precision is reduced, high pre-
cision neuron values may map to the same low
precision value. Similar to Dalvi et al. (2020), we
calculate the Pearson correlation of neurons at a
layer to identify neurons representing similar infor-
mation. The Pearson correlation is given by:

_ S (@i — pa) (i — 1ay)
Vil (@i — pa)? /3 (i — )

Here, x and y are activation arrays for the se-
lected neuron pair. i, and p, are the means of
x and y, respectively, and n is the number of
elements in the arrays. /> . ;(z; — pz)? and
Vo1 (yi — p1y)? are standard deviation for x and
y respectively. The value of r ranges between -1
and 1, where r = 1 indicates perfect positive cor-
relation, » = —1 indicates perfect negative correla-
tion, and » = 0 indicates no linear correlation.

In this study, we use the absolute values of corre-
lation to focus solely on the strength of the relation-
ship, disregarding its positive or negative direction.
We consider a neuron pair to be redundant if their
correlation score r > 0.8.

r

3 Experiment Setup

3.1 Datasets

We used two datasets for this study: BoolQ
(Clark et al., 2019) and the Jigsaw Toxicity dataset
(cjadams et al., 2017). BoolQ is a question-
answering dataset, while the Jigsaw Toxicity
dataset focuses on toxicity classification.

Dataset | Train | Validation | Test
BoolQ 9,427 3,270 -
Jigsaw Toxicity | 159,570 63,977 89,185

Table 1: Datapoints count in different split for BoolQ
and Jigsaw Toxicity dataset

Table 1 shows the number of datapoints in differ-
ent splits for both datasets. For our experiment, we
have used 10k datapoints for BoolQ after combin-
ing the train and validation sets, and for the Toxicity
dataset, 9k randomly sampled datapoints from the
train set. The label distributions for these datasets
are as follows: BoolQ has 62% true labels and 38%
false labels, while the Toxicity dataset is balanced
with 50% true labels and 50% false labels.

To limit computational resource usage, we per-
formed activation-based analysis exclusively on the
BoolQ dataset, which contains 8,421 unique tokens
for Phi-2 and 6,472 unique tokens for Llama-2-7b
after tokenization. However, both datasets were
included in other analyses.

Both datasets have binary outputs, either true
or false. To align model output to be binary, we
modify the prompt to instruct the primary models
to generate output as either true or false. Appendix
A shows sample prompts and gold outputs from the
BoolQ and Jigsaw Toxicity datasets, respectively.

3.2 Models

The primary models analyzed in our study are Phi-
2 (Javaheripi and Bubeck, 2023) and Llama-2-7B
(Touvron et al., 2023). Both models feature a simi-
lar decoder-only architecture (Vaswani et al., 2017),
each comprising 32 decoder blocks.

To examine the internal representations within
these models, we focus on the output of the first
feed-forward layer in the multi-layer perceptron
(MLP) block, post-activation. We select this layer
as our analysis on the effect of quantization on
dead neurons expects output from the activation
function. For computational efficiency, experi-
ments are conducted on selected layers at decoder
blocks 1, 15, and 32 (further in the study named
as Layer 1, 15, and 32). Within each of these lay-
ers, Phi-2 and Llama-2-7B models contain 10,240
and 11,008 neurons, respectively. These mod-
els differ in their choice of activation functions:
Phi-2 employs the Gaussian Error Linear Unit
(GELU) activation function (Hendrycks and Gim-
pel, 2016), while Llama-2-7B uses Sigmoid Linear
Unit (SiLU) (Elfwing et al., 2017).

To find the number of dead neurons and com-
pare results with the ReLU activation function, we
include the OPT-6.7B model from the OPT model
family (Zhang et al., 2022). This model utilizes
a similar decoder-only architecture with a layer
structure containing 16,384 neurons.

During generation, the seed is set to 42,



and default arguments from the Huggingface
transformers library are used.

3.3 Quantization Configurations

To perform comparative analysis across models un-
der different quantization settings, we employed
two widely-used quantization techniques: 4-bit
(Dettmers et al., 2023) and 8-bit (Dettmers et al.,
2022). Models are quantized using bitsandbytes
config through Huggingface transformers integra-
tion. Table 2 shows the hyperparameters used dur-
ing quantization.
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Figure 1: Accuracy of Phi-2 and Llama-2-7b on BoolQ
and Toxicity datasets within different quantizations.

8-bit
Quantization

16-bit

Model | Quant. | L1 | L15 | L32 | Total |
4bit | 65 | 1004 | 35 | 1104

Phi-2 8-bit | 61 | 1048 | 45 | 1154
16-bit | 57 | 868 | 41 | 966
4bit | 39 | 1334 | 20 | 1393

Llama-2-7b | 8-bit | 52 | 1209 | 18 | 1279
16:bit | 66 | 1198 | 16 | 1280

Table 2: Quantization Hyperparameters

3.4 Attribution Technique

To find salient neurons in a neural network, we use
Integrated Gradients (Sundararajan et al., 2017)
using Captum (Kokhlikyan et al., 2020; Miglani
et al., 2023).

4 Findings
4.1 Accuracy

We calculate the accuracy of subject models for
selected datasets, i.e., BoolQ (Clark et al., 2019)
and Jigsaw Toxicity dataset (cjadams et al., 2017)
to ensure that the models under observation have
comparable performance to results reported in the
literature. Since both datasets require the output
token to be either true or false, we constrain model
generation to a single token. As language models
can start generation with arbitrary tokens (such as “
", “\n", “Answer: " etc.) even after giving instruc-
tion prompt, we only inspect the Softmax probabil-
ity of true or false, and whichever has the highest
probability is selected as the final model genera-
tion. This final token is then used to calculate the
accuracy for both models in all quantizations.
Figure 1 presents a line chart depicting the accu-
racy of both models across various levels of quanti-
zation. The x-axis represents different quantization
levels, while accuracy is displayed on the y-axis.

Table 3: Number of salient neurons for Phi-2 (total neu-
rons - 10, 240) and Llama-2-7b (total neurons - 11, 008)
across quantizations (Quant.) within different layers
(Lx).

Quantization effect on accuracy is dataset-
dependent; for the BoolQ dataset, both the subject
models, irrespective of quantization, exhibit similar
performance. For Toxicity dataset, 4-bit quantized
model has worse accuracy, notably in Llama-2-7b
it dropped 10% and in Phi-2 it decreased by 3%.
However, we observe comparable accuracy for both
datasets for 8-bit and 16-bit models.

4.2 Effect of Quantization on Confidence and
Calibration

In this analysis, we observe the effect of quantiza-
tion on the model’s confidence and calibration.

4.2.1 Confidence Analysis

Figure 2 shows the average confidence of sub-
ject models across quantization separately for both
datasets. Overall, we notice a very minor effect
with only 0.02 due to quantization on average confi-
dence, with the exception of 4-bit quantized Llama-
2-7b on the toxicity dataset where average confi-
dence dropped ~0.12. For BoolQ, quantization has
stable accuracy for both subject models.
Interestingly, comparing average confidence
with our previous analysis on accuracy, we do not
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Figure 2: Average confidence of Phi-2 and Llama-2-7b
under different quantizations.

observe similar values for accuracy and average
confidence of the model. In particular, for a given
model, whether quantized or full-precision, we no-
tice more than 10% difference in accuracy and av-
erage confidence. This observation motivated our
subsequent analysis on model calibration.

4.2.2 Calibration Analysis
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Figure 3: Adaptive Calibration Error (ACE) scores for
Phi-2 and Llama-2-7b on BoolQ and Toxicity dataset
within different quantizations (lower is better).

To evaluate the calibration of a model, we need
to assess how well the model’s predicted proba-
bilities align with the true likelihood of outcomes.
Figure 3 presents the Adaptive Calibration Error
(ACE) scores, illustrating the impact of quantiza-
tion on model calibration. As results indicate, us-
ing 4-bit quantization slightly decreases the error in
calibration which makes it better calibrated, mak-
ing it a better option to deploy models using this
quantization where calibration is of utmost impor-
tance. This drop in calibration error is the result
of quantized model dropped accuracy and equiv-
alently drop in confidence for those predictions
making it better calibrated.

Phi-2 model exhibits lower error even in full-
precision. While it slightly increases in the 8-bit

quantized model, it further decreases again with
4-bit quantization. For the Llama-2-7b model, the
results vary by dataset. On the toxicity dataset, the
calibration error remains consistent across differ-
ent quantization levels. However, for the BoolQ
dataset, the overall calibration error is higher.
Nonetheless, there is a declining trend with respect
to quantization levels, with lower quantization (e.g.,
4-bit) reducing the error by approximately 0.3 when
compared with full-precision.

| Model | Quant. | L1(%) | L15(%) | L32(%) |
4bit | 2343 0.35 0.12
OPT-6.7B 8-bit | 2345 0.26 0.15
16-bit | 23.35 0.24 0.14
4-bit | 21.46 0.00 0.01
Phi-2 8-bit | 21.52 0.00 0.01
16-bit | 21.51 0.00 0.01
4-bit 0.05 0.00 0.00
Llama-2-7B | 8-bit 0.05 0.00 0.00
16-bit | 0.05 0.00 0.00

Table 4: Percentage of dead neurons across models and
quantizations(Quant.) within different layers (Lx).

4.3 Quantization’s Effect on the Contribution
of Neurons to Model Predictions

Table 3 shows the count of salient neurons for both
the Phi-2 and Llama-2-7b within different quanti-
zation, divided by layers. Phi-2 in full precision
has the least number of salient neurons, i.e., 960,
compared to 4-bit and 8-bit which have 1104 and
1154 salient neurons respectively. This highlights
that in full-precision model there are fewer neurons
contributing to the final prediction for the BoolQ
dataset. A higher number of salient neurons in a
quantized model indicates that quantization makes
the model sensitive to certain features as more neu-
rons need to contribute to the final prediction. As
the attribution technique quantizes the contribution
of each input token in final prediction and each
input token attribution is sum over individual neu-
rons contribution for that token, a higher number
of neurons indicates that the model becomes more
sensitive to certain features, and more neurons need
to collectively contribute to prediction.
Llama-2-7b has a similar number of salient neu-
rons for 8-bit and 16-bit as 1279 and 1280 respec-
tively. The 4-bit quantized model contains a higher
number of salient neurons given as 1393, which



indicates that in 4-bit quantization, there are rela-
tively more neurons contributing to the prediction
of the model.

4.4 Quantization Affect on the number of
‘“dead neurons”?

To measure the effect of quantization on neuron
activation we report the number of dead neurons
across models and quantizations.

As shown in Table 4, quantization causes only
a minor change in the count of dead neurons. The
trend across layers seems to be consistent, as the
initial layer has sparse neurons, while the interme-
diate and the final layer contain few to none, with
the exception of Llama-2-7b, in which there are
only 0.5% dead neurons in the initial layer and no
dead neurons in middle and last layer.

This pattern likely reflects the role of initial lay-
ers in learning sparse, low-level features, while
later layers capture higher-level contextual features
(Dalvi et al., 2022; Voita et al., 2023). In Llama-2-
7b, we hypothesize that the consistently low count
of dead neurons is due to the use of the SiLU acti-
vation function.

4.5 Quantization’s Affect on the Redundancy
of Neurons

As identified in the works of Dalvi et al. (2020)
language models can maintain 97% of performance
while using only 10% of the original neurons. This
finding is valuable for model pruning efforts. We
investigate whether quantization leads to higher
redundancy. We perform correlation analysis on
neurons of a model where a high correlation reflects
higher redundancy.

4.5.1 Correlation Analysis

Figures 4 and 5 show neuron pairs count corre-
sponding to correlation scores for 4-bit, 8-bit and
full-precision configurations of Phi-2 and Llama-2-
7b respectively. The X-axis highlights the different
correlation score bins ranging from 0.0-0.1 to 0.9-
1.0. This binning process helps to clearly observe
the redundant neuron pairs count across all the lay-
ers. The Y-axis shows the count of neuron pairs
that fall in that bin. Notice that the count is given
for neuron pairs across all the layers, as our main
focus for this analysis is to observe the effect on
redundancy of neurons within different quantiza-
tions.

Considering the highly correlated neurons, i.e.,
bins having correlation score >=0.8, Phi-2 in

full precision shows the highest redundancy, with
907,352 correlated neuron pairs, compared to
781,583 in the 4-bit and 748,867 in the 8-bit con-
figurations. This points to Phi-2 in full-precision
having higher redundancy compared to quantized
models.

In Llama-2-7b, the 8-bit configuration has the
highest redundancy with 24,124 correlated neuron
pairs, which is slightly better in 4-bit with 23,315
pairs. unlike Phi-2, the full-precision Llama-2-7b
has the fewest correlated pairs (21,644), indicat-
ing lower redundancy compared to its quantized
versions. However, the difference between neuron
pairs in quantized versions is not as substantial as
Phi-2.

5 Related Work

This section reviews the relevant literature and re-
cent advancements in quantization techniques and
their analysis.

5.1 Quantization Techniques and Analysis

Quantization (Gray and Neuhoff, 1998) is a tech-
nique used to reduce the memory requirement by
reducing the size of weight and/or activation and
increasing the inference time of a model (Jacob
et al., 2017; Gholami et al., 2021).

Quantization can be applied by re-training the
model, i.e., Quantization aware training or after the
training, i.e., post-training quantization.

Quantization-aware training (QAT) is costly and
uses re-training of a model on a dataset to main-
tain accuracy (Liu et al., 2023b; Du et al., 2024;
Dettmers et al., 2023; Kim et al., 2023).

Post-training quantization quantizes models
without any additional finetuning of the model with
a limited dataset, but also suffers from performance
issues (Banner et al., 2019; Cai et al., 2020). In
case of LLM’s Post Training Quantization can be
of 3 types: 1) Weight-Only Quantization (Park et al.,
2024; Frantar et al., 2023; Chee et al., 2024; Lin
et al., 2024), ii) Weight-Activation Quantization
(Yao et al., 2022; Yuan et al., 2023; Guo et al.,
2023; Wei et al., 2023), and iii) KV Cache Quanti-
zation (Hooper et al., 2024; Yue et al., 2024).

Xia et al. (2021) explores confidence and calibra-
tion relation between quantized and full-precision
model by using symmetric quantization. Prosku-
rina et al. (2024) shows quantization improves cali-
bration in LL.Ms.
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Figure 5: Neurons pair count based on correlation for Llama-2-7b.

6 Conclusion

In this study, we have investigated the impact of
quantization on internal representations of LLMs.
Our experimental settings focused on two main
LLMs: Microsoft’s Phi-2 and Meta’s Llama-2-7b,
employing two widely adopted quantization tech-
niques - 4-bit and 8-bit precision. To evaluate the
effects of quantization, we utilized two datasets:
BoolQ for boolean question answering capabilities
and the Jigsaw Toxicity dataset for content mod-
eration assessment. This systematic investigation
provides crucial insights into the trade-offs between
model compression and knowledge preservation.

We have found that representation within model
neurons is either preserved or improved in some
cases of quantization. Confidence and Calibration
analysis reveal that 4-bit quantization slightly im-
proves the calibration of the model. Neuron’s con-
tribution highlights number of salient neurons re-
mains low for full-precision model. In terms of
activations, there is no major change in number of

dead neurons. In terms of redundancy, Phi-2 and
Llama-2-7b exhibit different patterns. As in the
case of Phi-2 in full-precision had a higher number
of neurons learning similar information, while in
Llama-2-7b, there was a minor difference between
highly correlation neuron pairs.

Overall, these findings contribute to our under-
standing of the quantization effect on LLM’s in-
ternal representation and knowledge preservation.
The results suggest that the effect of quantization
could be dependent on the model’s architecture
and task. However, in our analysis, we don’t see
any major effect that could discourage the use of
quantization as a practical approach for model de-
ployment.

7 Limitations

Like all research, this study has certain limitations
that should be considered when interpreting the re-
sults. Due to computational constraints, our experi-
ments were limited to specific quantization config-
urations, model sizes, and datasets, which may not



fully capture the impact of quantization across all
LLMs or in varied deployment settings. Expanding
the study to include a broader set of models with
similar architecture could help confirm some of the
hypotheses of architecture effect within quantized
and full-precision model.
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A Dataset Samples

Tables 5 and 6 show samples from BoolQ and Jig-
saw Toxicity respectively.
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Prompt

Gold

Respond with True or False only.
do iran and afghanistan speak the same language
Answer:

True

Respond with True or False only.

do good samaritan laws protect those who help
at an accident

Answer:

True

Respond with True or False only.

is windows movie maker part of windows essen-
tials

Answer:

True

Respond with True or False only.

is confectionary sugar the same as powdered
sugar

Answer:

True

Respond with True or False only.
is elder scrolls online the same as skyrim
Answer:

False

Table 5: Samples from BoolQ dataset

Prompt

Gold

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.

Sentence: ‘Red herrings to continue to excuse
Breivik. Go away, nasty person.’

Answer:

True

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.

Sentence: ‘That is just plain BS, forgive the
wording....if you look at that rule, it is meant
for “empty" sites that redirect to a site with con-
tent. The original URL is to a site with content.
User:kalimantan’

Answer:

False

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.

Sentence: ‘lori Furukawa There’s a name war-
rior at Jori Furukawa, thought you should check
it out since you moved it. Thanks,

Answer:

False

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.

Sentence: ‘YOU’RE BLOCKED FOR 700
DAYS. SHUSHING COW’

Answer:

True

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.

Sentence: ‘Bautista’s Bat Flip Do you think it
should be added in this article or in 2015 Toronto
Blue Jays season article? If it should be added,
then an image of the bat flip should be added as
well. What do you think?’

Answer:

False

Table 6: Samples from Jigsaw Toxicity dataset
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