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Abstract001

Quantization offers a practical solution to002
deploy LLMs in resource-constraint environ-003
ments. But it’s effect on internal representa-004
tion is understudied, which can question it’s005
reliability. In this study, using various inter-006
pretation techniques, we explore the effects of007
quantization on model and neuron’s behavior.008
We investigate two LLMs Phi-2 and Llama-009
2-7b, employing 4-bit and 8-bit quantization.010
Our findings reveal several important insights.011
First, 4-bit quantized models exhibit slightly012
better calibration than 8-bit and 16-bit models.013
Second, our analysis of neuron activations in-014
dicates that the number of dead neurons, i.e.,015
those with activation values close to 0 across016
the dataset, remains consistent regardless of017
quantization. Regarding contribution of neu-018
rons in model prediction, we observe that full-019
precision models have fewer salient neurons020
overall. The effect of quantization on neuron021
redundancy varies across models. Our find-022
ings suggest that quantization is a viable ap-023
proach for the efficient and reliable deployment024
of LLMs in resource-constrained environments.025

1 Introduction026

The last decade has seen a tremendous amount of027

work done in language modeling, specifically in028

large language models (LLMs) (Devlin et al., 2019;029

Liu et al., 2023a; Touvron et al., 2023). There030

is a common trend to increase the number of pa-031

rameters in LLMs to improve the performance of032

models. However, this approach exacerbates the033

challenge of resource requirements, including com-034

putational and energy costs (Patterson et al., 2021).035

Quantization is one of the model compression tech-036

niques that is widely used because of its effec-037

tiveness and simplicity (Bondarenko et al., 2024;038

Dettmers et al., 2022; Wu et al., 2023). Quantiza-039

tion reduces the model size by using lower preci-040

sion weights and/or activations, which can improve041

its inference speed while using less storage space.042

The effect of quantization is generally measured by 043

comparing a model’s performance on downstream 044

NLP tasks (Li et al., 2024; Kurtić et al., 2024). 045

While performance on downstream tasks is cru- 046

cial to understand the end-to-end impact, the evalu- 047

ation is limited to a set of downstream tasks used 048

for evaluation. In other words, it does not provide 049

complete insights into the effect of quantization 050

on the knowledge learned by the model. In this 051

work, we argue that the interpretation serves as an 052

additional metric and evidence to analyze the ef- 053

fect of quantization on the model. For instance, 054

it may reveal which types of knowledge or rela- 055

tionships preserved or degraded by quantization, 056

giving a deeper understanding of whether essential 057

patterns remain intact. This is especially important 058

for safety-critical applications such as finance, law, 059

and healthcare (Hassan et al., 2024) where relia- 060

bility of a model is necessary . The insights from 061

interpretation can further motivate creation of se- 062

lective quantization strategies, where precision can 063

be preserved in sensitive parts of the network while 064

being reduced elsewhere, balancing efficiency and 065

performance. 066

In this research, we study the effect of quantiza- 067

tion, specifically LLMs quantized in 4-bit and 8-bit, 068

to investigate its’ effect on the model’s behavior 069

and internal representations. 070

Specifically, we target the research questions 071

given below: 072

1. What is the effect of quantization on a model’s 073

confidence and calibration? 074

2. Does quantization influence the contribution 075

of neurons to model predictions? 076

3. How does quantization affect the number of 077

“dead neurons”? 078

4. Does quantization affect the redundancy of 079

neurons? In other words, does it result in 080

more neurons learning identical information? 081
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We analyze two open-source models, Phi-2082

(Javaheripi and Bubeck, 2023) and Llama-2-7b083

(Touvron et al., 2023) under two quantization084

settings: 4-bit (Dettmers et al., 2023) and 8-bit085

(Dettmers et al., 2022) and compare them with the086

full-precision float-16 weight model. We found that087

these LLMs under different quantizations remain088

similar in some aspects and are positively impacted089

in other aspects, such as model calibration. This090

provides an empirical evidence on reliability of091

quantized model.092

We summarize our main findings as follows:093

1. Model confidence remains consistent across094

quantization.095

2. 4-bit quantized model exhibits less calibration096

error for both subject models.097

3. Based on neuron activations, quantization098

does not have a major effect, i.e., the number099

of dead neurons remains largely unchanged.100

4. In the attribution-based neuron contribution,101

we observe that the full-precision model has a102

lower number of salient neurons.103

5. Neuron redundancy differs between the two104

subject models. In Phi-2, the full-precision105

model exhibits a higher number of correlated106

neuron pairs, indicating greater redundancy,107

whereas in Llama-2-7b, quantization causes108

only a minor difference in redundancy.109

2 Methodology110

We study the model confidence, output calibration,111

neuron activation and attribution with respect to112

quantization.113

2.1 Confidence Analysis114

Confidence analysis aims to find the average confi-115

dence of a model in its predictions over a dataset116

(Abdar et al., 2021). We calculate the average con-117

fidence of the model using the following equation:118

Average Confidence =
1

N

N∑
i=1

maxP (yi)119

Here, N is the total number of data points in the120

dataset, and P (yi) represents the softmax probabil-121

ity of the output label yi with the highest probabil-122

ity for the i-th prediction. The term max
(
P (yi)

)
123

indicates the confidence of the model in its selected124

prediction for each example.125

2.2 Calibration Analysis 126

Calibration can be defined as the degree to which 127

a model’s predicted probabilities reflect the actual 128

frequencies of those outcomes (Nixon et al., 2020). 129

Despite high accuracy in classification tasks, mod- 130

ern deep neural networks often suffer from miscali- 131

bration—meaning that their confidence scores do 132

not accurately represent their probability of correct- 133

ness (Guo et al., 2017). 134

We use the Adaptive Calibration Error (ACE) 135

metric (Nixon et al., 2020), which adjusts its assess- 136

ment based on the actual distribution of confidence 137

values, enabling a more flexible and precise evalua- 138

tion of calibration. ACE is calculated as follows: 139

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k)− conf(r, k)| 140

Here, K is the number of classes., R is the num- 141

ber of adaptive calibration ranges, acc(r, k) and 142

conf(r, k) are the accuracy and confidence values 143

for the adaptive range r for class k, respectively. 144

The calibration range r is determined by dividing 145

the predictions into R equally populated intervals 146

based on sorted confidence scores. This way, each 147

range contains approximately ⌊N/R⌋ predictions, 148

where N is the total number of data points. 149

2.3 Neuron’s Attribution 150

A neuron’s attribution refers to its role and signifi- 151

cance in a model’s predictions for a given dataset, 152

as determined by attribution methods such as in- 153

tegrated gradient (Sundararajan et al., 2017). To 154

evaluate the impact of quantization on neuron attri- 155

butions, we analyze the number of salient neurons 156

that contribute significantly to the model’s predic- 157

tions. This analysis shows quantization affects on 158

the model’s ability to identify and rely on the im- 159

portant features. 160

Using Layer Integrated Gradients, we obtain at- 161

tribution scores for each input token for a given 162

layer as: 163

IG([x1, x2, . . . , xn]) = {a1, a2, . . . , an} 164

Here, xi represents each input token and ai is 165

the attribution score for the token xi. 166

The attribution score ai is calculated as the sum 167

of the contributions from individual neurons in a 168

given layer: 169
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ai =

N∑
j=1

nj170

where N is the total neurons in the given layer,171

and nj is the attribution score of neuron j.172

Selection of Top Contributing Neurons: The173

input to the model consists of a sequence of to-174

kens. We propose two separate methods to select175

the salient neuron with respect to the prediction.176

Specifically, we select most salient neurons based177

on 1) the most salient input token and 2) the input178

sequence and combine them. Each technique high-179

lights neurons with varying levels of granularity180

and context sensitivity.181

Most attributed token-based: In this technique,182

we only consider the most attributed token’s (i.e.,183

input token with max attribution score) represen-184

tation and select neurons that have a normalized185

attribution score > 0.8. This identifies neurons186

that are most important in determining the model’s187

predictions for the specific context of the selected188

token. Given as:189

xbest = argmax
i

{ai}190

191

nsalient
j = {nj |

nj

max(nj)
> 0.8}, ∀j ∈ Layer192

Here, ai is the attribution score for token xi and nj193

is the attribution score of neuron j for xbest.194

Input sequence-based: To identify neurons that195

are salient in the context of the input sequence, we196

calculate the total attribution over the entire input197

sequence by summing the attributions across all198

input tokens. We select the neurons that have an199

attribution score > 0.8 after normalization. This200

approach ensures that the selected neurons reflect201

their contributions to the overall meaning of the in-202

put, rather than being limited to the most attributed203

token only. Given as:204

sj =

n∑
i=1

aij205

206

nsalient
j = {nj |

sj
max(sj)

> 0.8}, ∀j ∈ Layer207

Here, aij is the attribution of neuron j for token208

xi, and sj is the total attribution score of neuron j209

summed over all tokens.210

Token-agnostic: Here, we select the attribution211

score of a neuron based on its maximum attribution212

over all tokens in the input sequence. This selec- 213

tion emphasizes neurons important for any part of 214

the input sequence, regardless of specific tokens. 215

Given as: 216

mj = max
i

{aij} 217

218

nsalient
j = {nj |

mj

max(mj)
> 0.8}, ∀j ∈ Layer 219

Here, aij is the attribution score of neuron j for 220

token xi, and mj is the maximum attribution score 221

for neuron j over all tokens. 222

Using all the strategies outlined above, we iden- 223

tify the most important neurons contributing to a 224

single datapoint prediction and collate it over the 225

dataset. Although the same neurons may be se- 226

lected under different strategies, we consider only 227

one occurrence of each selected neuron. 228

2.4 Neuron’s Activations 229

Given the quantization reduced the precision of 230

weights, it may increase the number of insignificant 231

neurons in the network. To select insignificant 232

neurons, we adopt a similar approach to Voita et al. 233

(2023), identifying dead neurons—neurons whose 234

activations remain consistently close to zero across 235

the dataset. 236

2.4.1 Dead/Insignificant Neurons 237

Voita et al. (2023) observed that the number of dead 238

neurons increases with the growth of a model’s pa- 239

rameter count. Their analysis of the OPT language 240

model family, which uses the ReLU activation func- 241

tion, shows that over 70% of neurons in some layers 242

are dead. We hypothesize that quantization, by re- 243

ducing the precision of weights, may contribute to 244

an increase in the number of dead neurons in the 245

network. 246

Apart from ReLU, other activation functions 247

such as GELU (Hendrycks and Gimpel, 2016) and 248

SiLU (Elfwing et al., 2017) may not produce acti- 249

vation values that are exactly zero. To generalize 250

the concept of dead neurons for these activation 251

functions, we define a threshold of −0.1 to 0.1, 252

categorizing neurons as dead if their activation val- 253

ues consistently remain within this range across 254

the dataset. For different activation functions, we 255

define dead neurons as follows: 256

ndead
j (ReLU) = {nj | aj,d = 0,

∀d ∈ dataset}
(1) 257
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ndead
j (OtherActivations) = {nj |

−0.1 ≤ aj,d ≤ 0.1,

∀d ∈ dataset}
(2)258

Here, aj,d represents the activation of neuron nj259

for a given data point d in the dataset.260

2.5 Correlation Analysis261

We hypothesize that a low-precision quantization262

may cause more neurons to represent identical in-263

formation, i.e., as precision is reduced, high pre-264

cision neuron values may map to the same low265

precision value. Similar to Dalvi et al. (2020), we266

calculate the Pearson correlation of neurons at a267

layer to identify neurons representing similar infor-268

mation. The Pearson correlation is given by:269

r =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2 ·
√∑n

i=1(yi − µy)2
270

Here, x and y are activation arrays for the se-271

lected neuron pair. µx and µy are the means of272

x and y, respectively, and n is the number of273

elements in the arrays.
√∑n

i=1(xi − µx)2 and274 √∑n
i=1(yi − µy)2 are standard deviation for x and275

y respectively. The value of r ranges between -1276

and 1, where r = 1 indicates perfect positive cor-277

relation, r = −1 indicates perfect negative correla-278

tion, and r = 0 indicates no linear correlation.279

In this study, we use the absolute values of corre-280

lation to focus solely on the strength of the relation-281

ship, disregarding its positive or negative direction.282

We consider a neuron pair to be redundant if their283

correlation score r > 0.8.284

3 Experiment Setup285

3.1 Datasets286

We used two datasets for this study: BoolQ287

(Clark et al., 2019) and the Jigsaw Toxicity dataset288

(cjadams et al., 2017). BoolQ is a question-289

answering dataset, while the Jigsaw Toxicity290

dataset focuses on toxicity classification.291

Dataset Train Validation Test

BoolQ 9,427 3,270 -
Jigsaw Toxicity 159,570 63,977 89,185

Table 1: Datapoints count in different split for BoolQ
and Jigsaw Toxicity dataset

Table 1 shows the number of datapoints in differ- 292

ent splits for both datasets. For our experiment, we 293

have used 10k datapoints for BoolQ after combin- 294

ing the train and validation sets, and for the Toxicity 295

dataset, 9k randomly sampled datapoints from the 296

train set. The label distributions for these datasets 297

are as follows: BoolQ has 62% true labels and 38% 298

false labels, while the Toxicity dataset is balanced 299

with 50% true labels and 50% false labels. 300

To limit computational resource usage, we per- 301

formed activation-based analysis exclusively on the 302

BoolQ dataset, which contains 8,421 unique tokens 303

for Phi-2 and 6,472 unique tokens for Llama-2-7b 304

after tokenization. However, both datasets were 305

included in other analyses. 306

Both datasets have binary outputs, either true 307

or false. To align model output to be binary, we 308

modify the prompt to instruct the primary models 309

to generate output as either true or false. Appendix 310

A shows sample prompts and gold outputs from the 311

BoolQ and Jigsaw Toxicity datasets, respectively. 312

3.2 Models 313

The primary models analyzed in our study are Phi- 314

2 (Javaheripi and Bubeck, 2023) and Llama-2-7B 315

(Touvron et al., 2023). Both models feature a simi- 316

lar decoder-only architecture (Vaswani et al., 2017), 317

each comprising 32 decoder blocks. 318

To examine the internal representations within 319

these models, we focus on the output of the first 320

feed-forward layer in the multi-layer perceptron 321

(MLP) block, post-activation. We select this layer 322

as our analysis on the effect of quantization on 323

dead neurons expects output from the activation 324

function. For computational efficiency, experi- 325

ments are conducted on selected layers at decoder 326

blocks 1, 15, and 32 (further in the study named 327

as Layer 1, 15, and 32). Within each of these lay- 328

ers, Phi-2 and Llama-2-7B models contain 10,240 329

and 11,008 neurons, respectively. These mod- 330

els differ in their choice of activation functions: 331

Phi-2 employs the Gaussian Error Linear Unit 332

(GELU) activation function (Hendrycks and Gim- 333

pel, 2016), while Llama-2-7B uses Sigmoid Linear 334

Unit (SiLU) (Elfwing et al., 2017). 335

To find the number of dead neurons and com- 336

pare results with the ReLU activation function, we 337

include the OPT-6.7B model from the OPT model 338

family (Zhang et al., 2022). This model utilizes 339

a similar decoder-only architecture with a layer 340

structure containing 16,384 neurons. 341

During generation, the seed is set to 42, 342
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and default arguments from the Huggingface343

transformers library are used.344

3.3 Quantization Configurations345

To perform comparative analysis across models un-346

der different quantization settings, we employed347

two widely-used quantization techniques: 4-bit348

(Dettmers et al., 2023) and 8-bit (Dettmers et al.,349

2022). Models are quantized using bitsandbytes350

config through Huggingface transformers integra-351

tion. Table 2 shows the hyperparameters used dur-352

ing quantization.353

Hyperparameter Value
8-bit Quantization

load_in_8bit True
bnb_8bit_compute_dtype torch.float16
bnb_8bit_use_double_quant True

4-bit Quantization
load_in_4bit True
bnb_4bit_quant_type nf4
bnb_4bit_use_double_quant True
bnb_4bit_compute_dtype torch.float16

Table 2: Quantization Hyperparameters

3.4 Attribution Technique354

To find salient neurons in a neural network, we use355

Integrated Gradients (Sundararajan et al., 2017)356

using Captum (Kokhlikyan et al., 2020; Miglani357

et al., 2023).358

4 Findings359

4.1 Accuracy360

We calculate the accuracy of subject models for361

selected datasets, i.e., BoolQ (Clark et al., 2019)362

and Jigsaw Toxicity dataset (cjadams et al., 2017)363

to ensure that the models under observation have364

comparable performance to results reported in the365

literature. Since both datasets require the output366

token to be either true or false, we constrain model367

generation to a single token. As language models368

can start generation with arbitrary tokens (such as “369

", “\n", “Answer: " etc.) even after giving instruc-370

tion prompt, we only inspect the Softmax probabil-371

ity of true or false, and whichever has the highest372

probability is selected as the final model genera-373

tion. This final token is then used to calculate the374

accuracy for both models in all quantizations.375

Figure 1 presents a line chart depicting the accu-376

racy of both models across various levels of quanti-377

zation. The x-axis represents different quantization378

levels, while accuracy is displayed on the y-axis.379

Figure 1: Accuracy of Phi-2 and Llama-2-7b on BoolQ
and Toxicity datasets within different quantizations.

Model Quant. L1 L15 L32 Total

Phi-2
4-bit 65 1004 35 1104
8-bit 61 1048 45 1154
16-bit 57 868 41 966

Llama-2-7b
4-bit 39 1334 20 1393
8-bit 52 1209 18 1279
16-bit 66 1198 16 1280

Table 3: Number of salient neurons for Phi-2 (total neu-
rons - 10, 240) and Llama-2-7b (total neurons - 11, 008)
across quantizations (Quant.) within different layers
(L∗).

Quantization effect on accuracy is dataset- 380

dependent; for the BoolQ dataset, both the subject 381

models, irrespective of quantization, exhibit similar 382

performance. For Toxicity dataset, 4-bit quantized 383

model has worse accuracy, notably in Llama-2-7b 384

it dropped 10% and in Phi-2 it decreased by 3%. 385

However, we observe comparable accuracy for both 386

datasets for 8-bit and 16-bit models. 387

4.2 Effect of Quantization on Confidence and 388

Calibration 389

In this analysis, we observe the effect of quantiza- 390

tion on the model’s confidence and calibration. 391

4.2.1 Confidence Analysis 392

Figure 2 shows the average confidence of sub- 393

ject models across quantization separately for both 394

datasets. Overall, we notice a very minor effect 395

with only 0.02 due to quantization on average confi- 396

dence, with the exception of 4-bit quantized Llama- 397

2-7b on the toxicity dataset where average confi- 398

dence dropped ∼0.12. For BoolQ, quantization has 399

stable accuracy for both subject models. 400

Interestingly, comparing average confidence 401

with our previous analysis on accuracy, we do not 402
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Figure 2: Average confidence of Phi-2 and Llama-2-7b
under different quantizations.

observe similar values for accuracy and average403

confidence of the model. In particular, for a given404

model, whether quantized or full-precision, we no-405

tice more than 10% difference in accuracy and av-406

erage confidence. This observation motivated our407

subsequent analysis on model calibration.408

4.2.2 Calibration Analysis409

Figure 3: Adaptive Calibration Error (ACE) scores for
Phi-2 and Llama-2-7b on BoolQ and Toxicity dataset
within different quantizations (lower is better).

To evaluate the calibration of a model, we need410

to assess how well the model’s predicted proba-411

bilities align with the true likelihood of outcomes.412

Figure 3 presents the Adaptive Calibration Error413

(ACE) scores, illustrating the impact of quantiza-414

tion on model calibration. As results indicate, us-415

ing 4-bit quantization slightly decreases the error in416

calibration which makes it better calibrated, mak-417

ing it a better option to deploy models using this418

quantization where calibration is of utmost impor-419

tance. This drop in calibration error is the result420

of quantized model dropped accuracy and equiv-421

alently drop in confidence for those predictions422

making it better calibrated.423

Phi-2 model exhibits lower error even in full-424

precision. While it slightly increases in the 8-bit425

quantized model, it further decreases again with 426

4-bit quantization. For the Llama-2-7b model, the 427

results vary by dataset. On the toxicity dataset, the 428

calibration error remains consistent across differ- 429

ent quantization levels. However, for the BoolQ 430

dataset, the overall calibration error is higher. 431

Nonetheless, there is a declining trend with respect 432

to quantization levels, with lower quantization (e.g., 433

4-bit) reducing the error by approximately 0.3 when 434

compared with full-precision. 435

Model Quant. L1 (%) L15 (%) L32 (%)

OPT-6.7B
4-bit 23.43 0.35 0.12
8-bit 23.45 0.26 0.15

16-bit 23.35 0.24 0.14

Phi-2
4-bit 21.46 0.00 0.01
8-bit 21.52 0.00 0.01

16-bit 21.51 0.00 0.01

Llama-2-7B
4-bit 0.05 0.00 0.00
8-bit 0.05 0.00 0.00

16-bit 0.05 0.00 0.00

Table 4: Percentage of dead neurons across models and
quantizations(Quant.) within different layers (L∗).

4.3 Quantization’s Effect on the Contribution 436

of Neurons to Model Predictions 437

Table 3 shows the count of salient neurons for both 438

the Phi-2 and Llama-2-7b within different quanti- 439

zation, divided by layers. Phi-2 in full precision 440

has the least number of salient neurons, i.e., 966, 441

compared to 4-bit and 8-bit which have 1104 and 442

1154 salient neurons respectively. This highlights 443

that in full-precision model there are fewer neurons 444

contributing to the final prediction for the BoolQ 445

dataset. A higher number of salient neurons in a 446

quantized model indicates that quantization makes 447

the model sensitive to certain features as more neu- 448

rons need to contribute to the final prediction. As 449

the attribution technique quantizes the contribution 450

of each input token in final prediction and each 451

input token attribution is sum over individual neu- 452

rons contribution for that token, a higher number 453

of neurons indicates that the model becomes more 454

sensitive to certain features, and more neurons need 455

to collectively contribute to prediction. 456

Llama-2-7b has a similar number of salient neu- 457

rons for 8-bit and 16-bit as 1279 and 1280 respec- 458

tively. The 4-bit quantized model contains a higher 459

number of salient neurons given as 1393, which 460
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indicates that in 4-bit quantization, there are rela-461

tively more neurons contributing to the prediction462

of the model.463

4.4 Quantization Affect on the number of464

“dead neurons”?465

To measure the effect of quantization on neuron466

activation we report the number of dead neurons467

across models and quantizations.468

As shown in Table 4, quantization causes only469

a minor change in the count of dead neurons. The470

trend across layers seems to be consistent, as the471

initial layer has sparse neurons, while the interme-472

diate and the final layer contain few to none, with473

the exception of Llama-2-7b, in which there are474

only 0.5% dead neurons in the initial layer and no475

dead neurons in middle and last layer.476

This pattern likely reflects the role of initial lay-477

ers in learning sparse, low-level features, while478

later layers capture higher-level contextual features479

(Dalvi et al., 2022; Voita et al., 2023). In Llama-2-480

7b, we hypothesize that the consistently low count481

of dead neurons is due to the use of the SiLU acti-482

vation function.483

4.5 Quantization’s Affect on the Redundancy484

of Neurons485

As identified in the works of Dalvi et al. (2020)486

language models can maintain 97% of performance487

while using only 10% of the original neurons. This488

finding is valuable for model pruning efforts. We489

investigate whether quantization leads to higher490

redundancy. We perform correlation analysis on491

neurons of a model where a high correlation reflects492

higher redundancy.493

4.5.1 Correlation Analysis494

Figures 4 and 5 show neuron pairs count corre-495

sponding to correlation scores for 4-bit, 8-bit and496

full-precision configurations of Phi-2 and Llama-2-497

7b respectively. The X-axis highlights the different498

correlation score bins ranging from 0.0-0.1 to 0.9-499

1.0. This binning process helps to clearly observe500

the redundant neuron pairs count across all the lay-501

ers. The Y-axis shows the count of neuron pairs502

that fall in that bin. Notice that the count is given503

for neuron pairs across all the layers, as our main504

focus for this analysis is to observe the effect on505

redundancy of neurons within different quantiza-506

tions.507

Considering the highly correlated neurons, i.e.,508

bins having correlation score >=0.8, Phi-2 in509

full precision shows the highest redundancy, with 510

907,352 correlated neuron pairs, compared to 511

781,583 in the 4-bit and 748,867 in the 8-bit con- 512

figurations. This points to Phi-2 in full-precision 513

having higher redundancy compared to quantized 514

models. 515

In Llama-2-7b, the 8-bit configuration has the 516

highest redundancy with 24,124 correlated neuron 517

pairs, which is slightly better in 4-bit with 23,315 518

pairs. unlike Phi-2, the full-precision Llama-2-7b 519

has the fewest correlated pairs (21,644), indicat- 520

ing lower redundancy compared to its quantized 521

versions. However, the difference between neuron 522

pairs in quantized versions is not as substantial as 523

Phi-2. 524

5 Related Work 525

This section reviews the relevant literature and re- 526

cent advancements in quantization techniques and 527

their analysis. 528

5.1 Quantization Techniques and Analysis 529

Quantization (Gray and Neuhoff, 1998) is a tech- 530

nique used to reduce the memory requirement by 531

reducing the size of weight and/or activation and 532

increasing the inference time of a model (Jacob 533

et al., 2017; Gholami et al., 2021). 534

Quantization can be applied by re-training the 535

model, i.e., Quantization aware training or after the 536

training, i.e., post-training quantization. 537

Quantization-aware training (QAT) is costly and 538

uses re-training of a model on a dataset to main- 539

tain accuracy (Liu et al., 2023b; Du et al., 2024; 540

Dettmers et al., 2023; Kim et al., 2023). 541

Post-training quantization quantizes models 542

without any additional finetuning of the model with 543

a limited dataset, but also suffers from performance 544

issues (Banner et al., 2019; Cai et al., 2020). In 545

case of LLM’s Post Training Quantization can be 546

of 3 types: i) Weight-Only Quantization (Park et al., 547

2024; Frantar et al., 2023; Chee et al., 2024; Lin 548

et al., 2024), ii) Weight-Activation Quantization 549

(Yao et al., 2022; Yuan et al., 2023; Guo et al., 550

2023; Wei et al., 2023), and iii) KV Cache Quanti- 551

zation (Hooper et al., 2024; Yue et al., 2024). 552

Xia et al. (2021) explores confidence and calibra- 553

tion relation between quantized and full-precision 554

model by using symmetric quantization. Prosku- 555

rina et al. (2024) shows quantization improves cali- 556

bration in LLMs. 557
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Figure 4: Neurons pair count based on correlation for Phi-2.

Figure 5: Neurons pair count based on correlation for Llama-2-7b.

6 Conclusion558

In this study, we have investigated the impact of559

quantization on internal representations of LLMs.560

Our experimental settings focused on two main561

LLMs: Microsoft’s Phi-2 and Meta’s Llama-2-7b,562

employing two widely adopted quantization tech-563

niques - 4-bit and 8-bit precision. To evaluate the564

effects of quantization, we utilized two datasets:565

BoolQ for boolean question answering capabilities566

and the Jigsaw Toxicity dataset for content mod-567

eration assessment. This systematic investigation568

provides crucial insights into the trade-offs between569

model compression and knowledge preservation.570

We have found that representation within model571

neurons is either preserved or improved in some572

cases of quantization. Confidence and Calibration573

analysis reveal that 4-bit quantization slightly im-574

proves the calibration of the model. Neuron’s con-575

tribution highlights number of salient neurons re-576

mains low for full-precision model. In terms of577

activations, there is no major change in number of578

dead neurons. In terms of redundancy, Phi-2 and 579

Llama-2-7b exhibit different patterns. As in the 580

case of Phi-2 in full-precision had a higher number 581

of neurons learning similar information, while in 582

Llama-2-7b, there was a minor difference between 583

highly correlation neuron pairs. 584

Overall, these findings contribute to our under- 585

standing of the quantization effect on LLM’s in- 586

ternal representation and knowledge preservation. 587

The results suggest that the effect of quantization 588

could be dependent on the model’s architecture 589

and task. However, in our analysis, we don’t see 590

any major effect that could discourage the use of 591

quantization as a practical approach for model de- 592

ployment. 593

7 Limitations 594

Like all research, this study has certain limitations 595

that should be considered when interpreting the re- 596

sults. Due to computational constraints, our experi- 597

ments were limited to specific quantization config- 598

urations, model sizes, and datasets, which may not 599

8



fully capture the impact of quantization across all600

LLMs or in varied deployment settings. Expanding601

the study to include a broader set of models with602

similar architecture could help confirm some of the603

hypotheses of architecture effect within quantized604

and full-precision model.605
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A Dataset Samples852

Tables 5 and 6 show samples from BoolQ and Jig-853

saw Toxicity respectively.854

Prompt Gold
Respond with True or False only.
do iran and afghanistan speak the same language
Answer:

True

Respond with True or False only.
do good samaritan laws protect those who help
at an accident
Answer:

True

Respond with True or False only.
is windows movie maker part of windows essen-
tials
Answer:

True

Respond with True or False only.
is confectionary sugar the same as powdered
sugar
Answer:

True

Respond with True or False only.
is elder scrolls online the same as skyrim
Answer:

False

Table 5: Samples from BoolQ dataset

Prompt Gold
Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.
Sentence: ‘Red herrings to continue to excuse
Breivik. Go away, nasty person.’
Answer:

True

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.
Sentence: ‘That is just plain BS, forgive the
wording....if you look at that rule, it is meant
for “empty" sites that redirect to a site with con-
tent. The original URL is to a site with content.
User:kalimantan’
Answer:

False

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.
Sentence: ‘Iori Furukawa There’s a name war-
rior at Iori Furukawa, thought you should check
it out since you moved it. Thanks,’
Answer:

False

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.
Sentence: ‘YOU’RE BLOCKED FOR 700
DAYS. SHUSHING COW’
Answer:

True

Given a sentence, respond with only ‘True’ if
the sentence is toxic or else ‘False’.
Sentence: ‘Bautista’s Bat Flip Do you think it
should be added in this article or in 2015 Toronto
Blue Jays season article? If it should be added,
then an image of the bat flip should be added as
well. What do you think?’
Answer:

False

Table 6: Samples from Jigsaw Toxicity dataset
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