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Abstract

Science has progressed by reasoning on what models could not predict because1

they were missing important ingredients. And yet without correct models, standard2

statistical methods for scientific evidence are not sound. Here, I argue that machine-3

learning methodology provides solutions to ground reasoning about empirically4

evidence more on models’ predictions, and less on their ingredients.5

Science uses false models as means for truer theory [Wimsatt, 1987]. How can statistical tools6

ground valid reasoning on empirical evidence without true models? Generalization is the key. Here7

I develop the argument that, unlike popular belief, reasoning from black-box models is good for8

science, because it builds the validity of inferences on prediction of observables.9

1 Science has progressed by refining relevant constructs from wrong models10

1.1 Observing motions of bodies, working out laws of physics11

Early scientists, such as Aristotle, did not conceive mechanics in terms of acceleration and forces.12

Rather, they thought in terms of natural motion of objects, proportional to their weight. The notion13

of force made its way, as discussed by Ibn Sı̄nā, but motion was seen as proportional to external14

forces. The Copernican revolution motivated the importance of acceleration. Increasingly precise15

astronomical observations led to formulate planetary motion as elliptical trajectories. Scientists such16

as Kepler were seeking simple phenomenological rules, “harmonies” in his words, to explain the17

observations, eg that across the different planets the square of the period is proportional to the cube of18

the major diameter of the orbit. By introducing acceleration via differential calculus, Newton could19

propose laws of mechanics that explained observations of both celestial and earthly motion.20

The birth of Newtonian mechanics illustrates how better observations and statistical models lead21

to better theories, even when starting without the right theoretical framework. It shows how new22

ingredients may be needed, such as introducing the construct of acceleration. It shows that progress23

is driven by seeking theories that generalize across many settings. The importance of acceleration24

was revealed by uniting motion of bodies on Earth and in astronomy. Indeed, as friction is ubiquitous25

on Earth, applying a force to an object often leads to a velocity roughly proportional to this force.26

Later, better observations called for new frameworks, quantum or relativistic. Irregularities in the27

orbit of Mercury were first explained by adding a planet to the solar system, Vulcan. But observations28

of this planet turned out to be flawed, and the irregularities in Mercury’s orbit are now understood29

as relativistic corrections. The Vulcan hypothesis illustrates how theoretical frameworks shape the30

interpretations of empirical results: observations are “theory laden” [Boyd and Bogen, 2021].31

Today, the fundamental laws of physics are incredible precise. Are phenomenological models still32

important for their empirical validation? From a statistical perspective, the Neyman-Pearson lemma33
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tells us that the optimal way to compare models is to use their likelihood [van Dyk, 2014]. Indeed,34

particle physics has long polished probabilistic models, minute stochastic description of observations35

built from first principles [Sjöstrand et al., 2001, Aaltonen et al., 2008]. And yet, recent statistical36

analysis of Higgs bosons is powered by black-box machine learning models –such as boosted decision37

trees– as they capture best background sensor noise [Aaltonen et al., 2009, Radovic et al., 2018].38

1.2 Cognitive neuroscience: uncovering the functional units of human vision39

Cognitive neuroscience strives to explain cognitive functions from neural activity. Which ingredients40

to include in such a model is a more open-ended question in than in physics. Breaking down high-41

level functions into units of investigation is particularly challenging. This endeavor has made much42

progress for the specific problem of vision. Studying early visual cortex response to specially-crafted43

stimuli, Hubel and Wiesel [1959] revealed neurons that form localized edge detectors. Slightly more44

complex shapes isolated other brain units [Logothetis et al., 1995]. These findings are tied to the45

stimuli presented, themselves motivated by cognitive theories used to decompose mental processes.46

Theories of visual processing break down it into successive operations tuned to specific aspects of47

the stimuli [Marr, 1982]. As any cognitive theory, their empirical neuroscience validation is then48

bound to this decomposition. Even with modern neural measurements, a decomposition into invalid49

ingredients, such as “alimentiveness” or “philoprogenitiveness” of 19th century phrenology, would50

lead to a brain mapping valid from the statistical standpoint [Poldrack, 2010].51

Complete models of cortical visual processing assemble brain functional units, each implementing52

specific operations [Riesenhuber and Poggio, 1999]. They derive from many studies of neural53

responses to elementary manipulations of visual stimuli. But their neuroscience validity faced a54

chicken-and-egg problem as long as each functional unit had been studied in isolation: each study55

had investigated only one aspect of otherwise very complex stimuli, natural images. Models of vision56

can be derived without invoking neuroscience arguments, as in computer vision where computational57

models are optimized directly on natural images, eg for object recognition [Pinto et al., 2009, Sermanet58

et al., 2014]. In fact, encoding studies showed that pure computational models explain better neural59

activity than models based on hand-crafted reductions of natural images [Yamins et al., 2014]. These60

computer-vision models, based on artificial neural networks, extract intermediate representations of61

natural images, which can be mapped to brain responses, confirming functional units obtained in62

more hypothesis-laden neuroscience experiments [Eickenberg et al., 2017].63

The large computational models do not answer some cognitive-neuroscience debates, such as the64

specific semantic tuning of functional areas. For instance, a brain area crucial to recognizing human65

faces is known as the fusiform face area [Kanwisher et al., 1997]. Yet, some researchers claim that66

its role is best explained by implementing visual expertise, rather than face recognition [Tarr and67

Gauthier, 2000]. As the corresponding brain area responds to both types of stimuli, the debate became68

trapped in a ontological disagreement: which of visual expertise or face recognition is a more central69

mental function? One side argues visual expertise leads to face recognition, and the other that face70

recognition is innate to the social human.71

Encoding studies use as ingredients to map brain responses the internals of large computational72

models of vision. As such, they circumvent questions related to finding valid ontologies of cognitive73

processes: on the one hand, they cannot bring evidence in favor of ontological choices, but on74

the other hand they enable empirical evidence without buying into one framework. There are two75

ingredients to this robustness. First, encoding studies can work on more ecological and richer stimuli.76

Hence they capture all facets of cognition, but must rely on computational models of the stimuli,77

typically borrowing from artificial intelligence [Varoquaux and Poldrack, 2019]. Second, they model78

brain responses using high-dimensional statistical models focused on prediction. These can fit more79

ingredients jointly, avoiding difficult modeling choices. As a result, they can generalize findings80

across stimuli probing different parts of a cognitive ontology: natural images, simplified faces, or81

wedges traditionally used for retinotopic mappings [Eickenberg et al., 2017]. This is in sharp contrast82

with conventional brain mapping methodology: based on oppositions between stimuli, it does not83

lead to formal models bridging results from different experimental paradigms.84
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2 How do statistical tools fit in scientific progress85

2.1 From scientific evidence to scientific knowledge: more than data86

Internal versus external validity The validity of a study’s findings is more than a statistical87

question. Internal validity controls inferences about the relations across the quantities in the study,88

for instance that measurements have no unmodeled errors. External validity, more important but less89

discussed, asserts that those relations are maintained beyond the study’s settings [Cook and Campbell,90

1979]. It may for instance fail when running a study on a sample non representative of the population.91

Validity of constructs Scientific theories and models are constructed from abstract ingredients92

such as “intelligence” or phrenology’s “alimentiveness” in psychology. These constructs are central93

to reasoning about empirical evidence, to position it in a broader context. A good construct is one94

that is useful to explain many different observations, beyond a single study [Cronbach and Meehl,95

1955]. Interpreting an empirical study in a theoretical framework requires construct validity of its96

measures and manipulations: that these indeed to relate well to the construct of interest. For instance,97

to be interpretable as intelligence, IQ tests should not be counfounded by cultural knowledge.98

Stances on theories Models, and thus theory, are needed to interpret empirical finding. The99

acceptance of these theories often builds upon implicit stances on their ingredients. In psychology,100

Fried [2020] argues that statistical models should build on “strong theories” and provide “explanation101

of a phenomenon” relating valid psychological constructs, beyond mere data fit. Yarkoni [2020]102

points out that such a view carries implicit preferences on choices of construct that may be difficult to103

defend. In particular, such model esthetic assumes realism about psychological constructs: that these104

have an absolute existence beyond the minds of the scientists. A scientific discourse must position its105

claims on unobservable constructs, for instance centers of gravity in mechanics. Realism accepts to106

build scientific knowledge on unobservable entities only if they are objective and mind-independent.107

Instrumentalism, rather, accepts that some ingredients of theories are mere instruments needed to tie108

together observable outcomes, and that the success of a theory is asserted solely on these observables.109

Questions on the validity of basic modeling ingredients are less discussed in a well-established110

science such as physics, as there is a consensus on the ingredients: forces, acceleration, temperature111

–which has a non-trivial definition–... And yet, this consensus was achieved through iterations.112

Planetary observations in the times of Kepler were analyzed with phenomenological models lacking113

the ingredients of dynamics, but were fundamental to nourishing Newtonian mechanics.114

2.2 Reasoning with statistical tools115

Statistics gives the scientist tools to reason from noisy observations. The prevailing approach is116

model reasoning: a probabilistic model describing data generation is built, encompassing ingredients117

of the application domain. Parameters estimated using this model are interpreted within its logic [Cox,118

2006, chap 9]. Cox [2001] goes as far as saying that statistical models are “efforts to establish data119

descriptions that are potentially causal”. Another form of reasoning –design-based [Cox, 2006, chap120

9] or warranted reasoning [Cook, 1991, Baiocchi and Rodu, 2021]– relies on specific experimental121

design, as randomization, for causal inferences without a model of the data-generating mechanism.122

Finally, Breiman [2001] famously noted that increasingly many statistical tools forgo data modeling,123

to focus on algorithmic capacity to approximate relations. Their success is established by outcome124

reasoning: gauging predictions on observables [Baiocchi and Rodu, 2021], key to machine learning.125

3 Grounding more statistical reasoning on output rather than models126

With a historical emphasis on data modeling, statistics has an implicit realism stance. Yet, as we have127

seen in physics or vision neuroscience, scientific progress is achieved despite analyzing observations128

without the right conceptual framework. Outcome reasoning, with tools of machine learning, gives a129

robust statistical framework for science: given imperfect premises, it fails less.130
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3.1 Robustness to model mis-specification131

With model reasoning, parameters can be interpreted only conditional to the choice of model, which132

is outside of statistical control. Statisticians often assume that many hard modeling questions can be133

resolved by domain experts. Yet science is performed by limited beings [Wimsatt, 2007] and even134

experts have finite resources to dedicate to a given problem [Simon, 1955]. Model imperfections can135

have vast consequences on statistical conclusions. Botvinik-Nezer et al. [2020] asked 70 different136

teams of experts to analyze the same brain imaging data. Variations in modeling choices –all based on137

linear models– lead to vastly different parameters, and qualitatively different neuroscience findings.138

Controlling predictions instead of model parameters leads to a different statistical regime. Even the139

simple case of the linear model changes drastically: with learning theory, analysis is possible even140

in the miss-specified setting, showing that multi-colinearity in the design is not an issue [Hsu et al.,141

2014], unlike when performing inference on model parameters. Higher-dimensional settings are142

possible, which means that the analyst no longer has to cherry-pick a small number of descriptors.143

In neuroscience, it has enabled studying richer descriptions of the stimuli, generated by artificial144

intelligence techniques rather than set in a specific reductionist theoretical framework. Switching to145

output reasoning requires reinventing analytical paradigms: in brain imaging switching to decoding146

models that gauge the ability to predict neural responses.147

3.2 Putting explicit generalization at the center of the inference148

Judging a model by its predictions is good science. It shifts the burden on validity on observables.149

These may suffer biases, such as censoring, which must be accounted for even in machine-learning150

settings [Ishwaran et al., 2008]. But in the long run, the validity of scientific theories is established by151

their ability to generalize across many settings.152

Cross-validation on a study sample is however not a test of a strong ability to generalize; it gives153

no evidence of external validity. Machine-learning models may easily create local approximations154

which do not generalize to new settings, bad scientific models. Yet, their ability to generalize can155

be explicitly tested. This is unlike model-based tests of qualitative theories, as in psychology or156

sociology. Indeed, a methodology based on machine learning can be applied to rich descriptions157

of the objects under study –the raw images presented–, while model-based reasoning is applied to158

a small number of features, specially crafted to represented the constructs of interest –a face-place159

opposition. In the former, the generalization is readily tested on data from different settings via a160

quantitative prediction error. In the latter, the finding is more conceptual and given a new setting it161

must be instantiated with a new modeling effort.162

Beyond broad generalization, an oft-requested feature of an analytical model is to provide “under-163

standing”. For domain reasoning, it is helpful to try to tease out the contribution of various ingredients.164

An emerging non-parametric statistical toolbox is catering to this purpose: black-box explanation165

techniques [Molnar, 2020], such as partial dependency plot [Friedman, 2001] or the knock-off [Barber166

and Candès, 2019]. These tools ground their inferences on model outputs, the quantities amenable167

to strong empirical validation. Demanding more from an analytical model, for instance opposing168

phenomenological data explanations with valid theoretical understanding, forces buying into a given169

theoretical framework Yarkoni [2020], with the risk of circular reasoning on the evidence.170

Parametric models are appealing for intuitive counterfactual reasoning [Angrist and Pischke, 2008]:171

they appear as “data descriptions that are potentially causal” [Cox, 2001]. Yet, more than a para-172

metric model, valid causal inference needs a structural characterization of variables, distinguishing173

confounders, colliders, mediators... [Greenland et al., 1999]. In such settings, machine learning174

models shine by their potential robustness to mismodeling [Rose and Rizopoulos, 2020].175

Black-box models for thinking outside the box Empirical validation of a theory tied to its176

ingredients smells of self-fulfilling prophecies. This is the risk of model-based statistical reasoning.177

Science needs statistical reasoning based more on model predictions. Machine learning will provide178

the building blocks, for broad generalization and counterfactual reasoning.179
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