Modeling the Relationship between Input Distributions and Learning Trajectories with the Tolerance Principle

Anonymous CMCL submission

Abstract

Child language learners develop with remarkable uniformity, both in their learning trajectories and ultimate outcomes, despite major differences in their learning environments. In this paper, we explore the role that the frequencies and distributions of irregular lexical items in the input plays in driving learning trajectories. We conclude that while the Tolerance Principle, a type-based model of productivity learning, accounts for inter-learner uniformity, it also interacts with input distributions to drive cross-linguistic variation in learning trajectories.

1 Introduction

One of the most striking characteristics of child language acquisition is its uniformity (Labov, 1972). Children in the same speech community acquire the same grammars despite the lexical variation in each child’s individual input. A recent quantitative study of child-directed speech (CDS) finds Jaccard similarities of 0.25-0.37 between individual portions of the Providence Corpus (Richter, 2021), not much higher than the lexical similarity between CDS and adult genres (Kodner, 2019). Thus, to explain uniformity of outcomes, grammar learning must not depend primarily on lexical identity but on more general patterns in the learner’s input.

Learners not only acquire the same grammars but acquire them following similar trajectories. For example, English learners consistently acquire the verbal -s and -ing before the past -ed (Brown, 1973) which shows a u-shaped developmental regression (Ervin and Miller, 1963; Pinker and Prince, 1988). Individuals may show relative delays correlating to estimated working vocabulary size (Fenson et al., 1994, ch. 5-6), but variability is otherwise limited. However, while individuals learning the same pattern show uniformity, expected learning paths vary across patterns. Children learning Spanish verb stem alternations also show u-shaped learning, but they begin to over-regularize a year earlier than English past tense learners (Clahsen et al., 2002).

This paper introduces a quantitative means of assessing the role that the distribution of linguistic patterns in learner input plays in shaping learning trajectories and variation even prior to the grammar and individual cognitive factors. Adopting the Tolerance Principle (TP; Yang, 2016) as a type-based model of productivity learning, we find that the type-frequency and (indirectly) token frequency of exceptions to linguistic patterns have a dramatic effect on the expected learning trajectories across patterns while also quantifying expected uniformity across individuals within a given pattern.

2 The Learning Model

The Tolerance Principle (TP; Yang, 2016) is a cognitively motivated type-based learning model which casts generalization in terms of productivity in the face of exceptions. The model has gained support in recent years through its successful application to problems in syntax and semantics (e.g., Yang, 2016; Irani, 2019; Lee and Kodner, 2020), morphology (e.g., Yang, 2016; Kodner, 2020; Belth et al., 2021), and phonology (e.g., Yang, 2016; Sneller et al., 2019; Kodner and Richter, 2020; Richter, 2021). It has increasingly received backing from a range of psycholinguistic experiments (Schuler, 2017; Koulaguina and Shi, 2019; Emond and Shi, 2020).
The TP serves as a decision procedure for the learner. Once the learner hypothesizes a generalization in the grammar, it establishes the threshold \(\theta_N \) at which it becomes more economical in terms of lexical access time to accept the hypothesis and exceptions rather than to just memorize items individually. (1) formalizes the TP. The tolerance threshold \(\theta_N \) is defined as the number of known types that a generalization should apply to divided by its natural logarithm.\(^1\)

\[
(1) \quad \text{Tolerance Principle (Yang, 2016, p. 8):}
\]

If \(R \) is a productive rule applicable to \(N \) candidates, then the following relation holds between \(N \) and \(e \), the number of exceptions that could but do not follow \(R \):

\[
e \leq \theta_N \text{ where } \theta_N := \frac{N}{\ln N}
\]

The derivation of the TP acknowledges that items in the input follow long-tailed Zipfian frequency distributions (Zipf, 1949) in which few items are well-attested and others are rarely attested in the input. Zipfian and other long-tailed distributions are quite common throughout language and are very prominent in lexical and inflectional frequencies (and indeed other domains as well, e.g., Miller, 1957; Jelinek, 1997; Baroni, 2005; Chan, 2008; Yang, 2013; Lignos and Yang, 2018).

Figure 1 provides a visualization of the Tolerance Principle over individual development. Crucially, \(N \) depends on a learner’s current working vocabulary and is not a comment on the language’s vocabulary in general. An individual learner’s \(N \) and \(e \) increase as they learn more vocabulary, and a pattern may fall in and out of productivity.

3 Input Distributions driving Trajectories

This section calculates likely learning trajectories and variability in learning trajectories given distributions of regular and irregular forms in the input and discusses the impact that input distributions have on learning paths. It presents two illustrative examples and a case study.

3.1 Calculating Trajectories with the TP

In the first illustrative example, \(N=82 \) and \(e=32 \). This pattern should not be productive for a mature speaker \((e < \theta_N=18.6) \), but a learner may pass through a period of over-generalization if their \(N \) and \(e \) support the generalization at some point during development. Figure 2 plots a Tolerance Principle state space for this system. Every point \((N-e, e)\) represents a logically possible learner vocabulary. Color indicates whether nor not a learner in that state will generalize. The top right corner represents a mature individual with \(N=82 \).\(^2\)

As learners progress from \(N=0 \) up to an adult-like \(N \), they move through this space from the bottom left to top right. Falling into and out of productivity is conceptualized as passing in and out of the productive zone. The paths that learners take through this space are a function of lexical learning, specifically the relative order of acquisition of regular and irregular items. This can be modeled probabilistically as a function of the relative token frequencies of the items. If irregulars are distributed uniformly throughout the distribution of types, path likelihood is well-approximated by a central hypergeometric distribution calculated for each \(N \). Diagonals from top left to bottom right are “lines of constant \(N \).” Figure 3 visualizes this, with darker colors indicating more likely paths.

Composed this with the state space (Fig. 2) and summing over the lines of constant \(N \) yields an estimate of the proportion of learners who are productive or unproductive for each vocabulary size (Fig. 4). Correlated with vocabulary size estimates by age, this can predict developmental trajectories.

Note that productivity is driven entirely by the relative number of lexical items that follow or disobey the learner’s hypothesized generalization and not the presence or absence of any individual lexical items. Learner outcomes are instead driven directly by the type frequency of patterns and the

\(^1\)See Yang (2016, pp. 10, 144) for the full mathematical derivation. \(\theta_N \) approximates the \(N \)th harmonic number.

\(^2\)The TP breaks down for very small \(N \). This area is placed in the non-productive zone by convention.
3.2 Effect of Irregular Token Frequency

This illustrative example examines the effect of irregular token frequency on learning trajectories.\(^3\) The pattern \(N=90, e=18\) should be acquired productively. Assuming the 90 items exhibiting the pattern follow a typical Zipfian distribution, the relative token frequency rank of irregular items in the input will bow learners’ most likely paths through the Tolerance Principle space, pushing it into or out of the productive zone.\(^4\) This is visualized in Figure 5 for three distributions of irregulars: They are a) the 18 most frequent items (the head of the Zipfian curve), b) the 9 most frequent and 9 least frequent items, and c) the 18 least frequent items.

Even though the type distribution is the same in each case, the expected learning trajectories differ dramatically (Fig. 6). In the top-heavy case, nearly no learners are productive from \(N=20-80\), then everyone rapidly achieves productivity. In the bottom-heavy all learners achieve productivity as soon as they hypothesize the generalization. The split case predicts transient variation. The likely path through the state space skirts the tolerance threshold, so there is a period where individuals fall into or out of productivity based on which items they happen to have learned. Nevertheless, almost everyone ultimately permanently achieves productivity by \(N=60\).

3.3 Application to English Past Tense

This section applies these methods to English past tense data extracted with frequencies from the CHILDES database (MacWhinney, 2000). Two expected learning paths were calculated: the default past -ed \((N=1328, e=98\) in this data) and the sing-sang sub-pattern \((N=26, e=8)\). English learning children consistently acquire productive -ed around age three (Berko, 1958; Marcus et al., 1992). In contrast, the sing-sang pattern is not productive, though there is some transient variation (Berko, 1958; Xu and Pinker, 1995; Yang, 2016).

Figure 7 compares the results. Learners show great uniformity in the acquisition of -ed. Even though they must have been exposed to different specific items, they consistently acquire the rule by the time they know 400-500 verbs. It is not clear...
whether this lines up with empirical evidence. Estimates of vocabulary size by age vary by method, but Marcus et al. (1992, ch. 5) report that Sarah and Adam from the Brown corpus have produced 300-350 unique verbs by age three. Productive vocabulary understimates working knowledge (Fenson et al., 1994, ch. 5-6). The situation for sing-sang is quite a bit different. There is significant variability when vocabulary size is small, but learners uniformly decide on non-productivity by around N=12. In the Berko (1958) study, only three of 86 pre-schoolers produce an -ang(ed) past form for stimuli gling+PAST or bing+PAST, suggesting low variability and low-productivity in that age group.5

4 Discussion

This paper presents a means of modeling expected learning trajectories for productivity using the Tolerance Principle. As a type-based model of productivity learning, the TP only relies directly on the type attestation of regular and irregular items in the input. Since the grammar which is learned only depends on which side of the tolerance threshold the number of irregulars falls and not the lexical identity of the items or their exact number, it explains the general uniformity of outcomes observed across individual learners.

The TP was derived assuming that learners expect long-tailed frequency distributions in their input, and it provides an indirect role for token-frequency in learning. Higher frequency items are more likely to be attested early and learned early. Thus while the type distribution of irregulars governs the ultimate learning outcome, their token distribution drives the learning trajectory: the vocabulary size at which the adult-like grammar is settled on, the likelihood of over-regularization, and the degree of variability among individual learners.

The distribution of irregulars in the input can be measured empirically from corpora of child-directed speech since it is a property of the lexicon and of discourse concerns. The input has a clear effect on the path of learning even prior to adopting specific assumptions about the underlying grammar that children acquire. This suggests quantitatively re-evaluating the input as a way forward for explaining cross-linguistic differences in child language development as a complement to cross-linguistic theoretical and experimental work.

5Adults and children seem to approach the wug test differently (Schütze, 2005), with many adults treating it as an analogy game (Derwing and Baker, 1977). Adults can be prompted to analogize the sing-sang pattern Berko (1958).
References

