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Abstract

Child language learners develop with remark-
able uniformity, both in their learning trajecto-
ries and ultimate outcomes, despite major dif-
ferences in their learning environments. In this
paper, we explore the role that the frequencies
and distributions of irregular lexical items in
the input plays in driving learning trajectories.
I conclude that while the Tolerance Principle,
a type-based model of productivity learning,
accounts for inter-learner uniformity, it also
interacts with input distributions to drive cross-
pattern variation in learning trajectories.

1 Introduction

One of the most striking characteristics of child lan-
guage acquisition is its uniformity (Labov, 1972).
Children in the same speech community acquire
the same grammars despite the lexical variation in
each child’s individual input: a recent quantitative
study of child-directed speech (CDS) finds Jaccard
similarities of only 0.25-0.37 between individual
portions of the Providence Corpus (Richter, 2021),
not much higher than the lexical similarity between
CDS and adult genres (Kodner, 2019). Thus, to
explain uniformity of outcomes, grammar learning
must not depend primarily on lexical identity but
on more general patterns in the learner’s input.

Learners not only acquire the essentially same
grammars but acquire them following similar trajec-
tories. For example, English learners consistently
acquire the verbal -s and -ing before the past -ed
(Brown, 1973), the last of which shows a u-shaped
developmental regression (Ervin and Miller, 1963;
Pinker and Prince, 1988). Individuals may show
relative delays correlating to estimated working vo-
cabulary size (Fenson et al., 1994, ch. 5-6), but
variability is otherwise limited. However, while
individuals learning the same pattern show unifor-
mity, expected learning paths vary across patterns.
Among English learners, for example, -ing does
not show u-shaped learning, unlike -ed. Children

Figure 1: Visualizing the Tolerance Principle on a num-
ber line. e falls in the range [0, N ]. If it lies below
θ (gold), then the learner should acquire the pattern
and memorize the exceptions. If e lies above θ (blue),
the learner should resort to memorization instead. The
number line extends as the learner’s vocabulary grows.

learning Spanish verb stem alternations also show
u-shaped learning, but they begin to over-regularize
a year earlier than English past tense learners (Clah-
sen et al., 2002). One potential reason for this, dif-
ferences in patterns’ distributions in the input, is
investigated here.

This paper introduces a quantitative means of
assessing the role that the distribution of linguistic
patterns in learner input plays in shaping learning
trajectories and variation even prior to the grammar
and individual cognitive factors. Adopting the Tol-
erance Principle (TP; Yang, 2016) as a type-based
model of productivity learning, we find that the
type-frequency and (indirectly) token frequency of
exceptions to linguistic patterns have a dramatic
effect on the expected learning trajectories across
patterns while also quantifying expected uniformity
across individuals within a given pattern.

2 The Learning Model

The Tolerance Principle (TP; Yang, 2016) is a
cognitively motivated type-based learning model
which casts generalization in terms of productiv-
ity in the face of exceptions. The model has
gained support in recent years through its success-
ful application to problems in syntax and seman-
tics (e.g., Yang, 2016; Irani, 2019; Lee and Kod-
ner, 2020), morphology (e.g., Yang, 2016; Kod-
ner, 2020; Björnsdóttir, 2021; Belth et al., 2021),



and phonology (e.g., Yang, 2016; Sneller et al.,
2019; Kodner and Richter, 2020; Richter, 2021).
It has increasingly received backing from a range
of psycholinguistic experiments (Schuler, 2017;
Koulaguina and Shi, 2019; Emond and Shi, 2020).
It is adopted here because it makes categorical and
auditable predictions about productivity and thus
provides a clear means for investigating and the
relationship between distributions in the input and
the dynamics of learning.

The TP serves as a decision procedure for the
learner. Once the learner hypothesizes a general-
ization in the grammar, it establishes the threshold
θN at which it becomes more economical in terms
of lexical access time to accept the hypothesis and
exceptions rather than to just memorize items in-
dividually. (1) formalizes the TP. The tolerance
threshold θN is defined as the number of known
types that a generalization should apply to divided
by its natural logarithm.1

(1) Tolerance Principle (Yang, 2016, p. 8):
If R is a productive rule applicable to
N candidates, then the following relation
holds between N and e, the number of ex-
ceptions that could but do not follow R:

e ≤ θN where θN :=
N

lnN

The derivation of the TP acknowledges that
items in the input follow long-tailed Zipfian fre-
quency distributions (Zipf, 1949) in which few
items are well-attested and others are rarely attested
in the input. Zipfian and other long-tailed distribu-
tions are quite common throughout language and
are very prominent in lexical and inflectional fre-
quencies (e.g., Miller, 1957; Jelinek, 1997; Baroni,
2005; Chan, 2008; Yang, 2013; Lignos and Yang,
2018)

Figure 1 provides a visualization of the Toler-
ance Principle over individual development. Cru-
cially, N depends on a learner’s current working
vocabulary and is not a comment on the language’s
vocabulary in general. An individual learner’s N
and e increase as they learn more vocabulary, and
a pattern may fall in and out of productivity.

3 Input Distributions driving Trajectories

This section uses the Tolerance Principle to calcu-
late likely learning trajectories and variability in

1See Yang (2016, pp. 10, 144) for the full mathematical
derivation. θN approximates the N th harmonic number

learning trajectories given distributions of regular
and irregular forms in the input, and it discusses
the impact that input distributions have on learning
paths. It presents two illustrative examples and a
case study from English past tense learning. For
clarity, Ntgt and etgt are used here to represent the
expected mature learner state, since N and e prop-
erly represent speaker-internal quantities and are
not a description of the target language.

3.1 Calculating Trajectories with the TP

In the first illustrative example, Ntgt = 82 and
etgt = 32. This pattern should not be produc-
tive for a mature speaker (etgt > θNtgt = 18.6),
but learners may pass through a period of over-
generalization if their N and e support it at some
point during development. To help with concep-
tualizing these developments, I introduce a visu-
alization called a Tolerance Principle state space
for this system in Figure 2. The x-axis indicates
the number of regular forms that an individual has
learned so far (N − e), and the y-axis indicates the
number of irregular forms learned so far. Color
indicates whether or not a learner at (N − e, e)
should learn a productive generalization. These
are the two “zones” in the state space. The bottom
left corner, N = 0, indicates the initial state for
all learners, and the top right corner (N = Ntgt),
indicates the mature state. In this example, the final
state is in the non-productive zone.2

As learners mature, they “move” through the
state space along some path from the bottom left
to top right. The paths that individuals take are
a function of the order in which they personally
acquired regular and irregular items. Learners may
pass in and out of the productive zone as they de-
velop. In this example, a learner who passes tem-
porarily through the productive zone may produce
over-generalization errors, one source of u-shaped
learning.

Not all paths through the state space are equally
likely. It would be strange, for example, if a learner
acquired all the irregular items before any of the
regular items, or vice-versa. One could ask, for
a learner who knows a given N , what is the like-
lihood that e of those are irregulars? Or equiv-
alently in the state space, what is the likelihood
that a learner should pass through a given point
(N − e, e)? This can be modeled probabilistically

2The TP breaks down for very small N . This area is placed
in the non-productive zone by convention.



0 10 20 30 40 50
N-e (# Regulars Learned)

0

5

10

15

20

25

30

e 
(#

 Ir
re

gu
la

rs
 L

ea
rn

ed
)

N_tgt=82, e_tgt=32: TP States

Non-Productive
Productive

Figure 2: Tolerance Principle state space indicating
productivity for every (N − e, e) pair that a learner
may pass through during vocabulary learning. Ntgt=82,
etgt=32.
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Figure 3: Likelihood of (N − e, e) for each N . Darker
indicates more likely path through the Fig. 2 TP space.

as a function of the relative token frequencies of
the items. If irregulars are distributed uniformly
throughout the distribution of types, path likelihood
is well-approximated by a central hypergeometric
distribution calculated for each N . Diagonals from
top left to bottom right are “lines of constant N .”
Figure 3 visualizes this, with darker colors indicat-
ing more likely ratios of regulars and irregulars for
a given N .

It is now possible to calculate the probability of
falling in the productive and non-productive zones
for each vocabulary size by summing over lines
of constant N . The results, visualized in Figure 4
can be interpreted as the probability that a learner
will generalize at each vocabulary size. Correlated
with vocabulary size estimates by age, this can pre-
dict developmental trajectories. In this example,
learners are will pass through a phase of early over-
generalization. This falls rapidly such that only
about half should overgeneralize at N = 15. There
is still a non-zero chance of over-generalizing be-
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Figure 4: Likelihood of generalization and non-
generalization by vocabulary size for Figs. 2-3.

fore N = 45, but after that point, all learners con-
verge on adult-like non-productivity.

Note that productivity is driven entirely by the
relative number of lexical items that follow or dis-
obey the learner’s hypothesized generalization and
not the presence or absence of any individual lex-
ical items. Learner outcomes are instead driven
directly by the type frequency of patterns and the
TP. Token frequencies play an indirect but crucial
role as well. They determine the likely relative
order that regular and irregular items are learned.
The second illustration demonstrates this.

3.2 Effect of Irregular Token Frequency

This illustrative example examines the effect of
irregular token frequency on learning trajectories
by adopting a more realistic Zipfian input distribu-
tion.3 The pattern Ntgt = 90, etgt = 18 should
be acquired productively (Ntgt is in the productive
zone of the state space visualized in Figure 5).

The 90 items are assumed to be distributed ac-
cording to a Zipfian distribution. This should bow
the most likely path through the state space, po-
tentially pushing it into our out of the productive
zone.4 For example, if irregulars tend to fall on the
frequent end of the distributions, these will tend
to be heard, and therefore acquired earlier. This
should bow the likely path upward and deeper into
the non-productive zone. Three irregular distribu-

3Irregulars are often clustered in the high-frequency range
(e.g., English past tense), but this is not universal. Other
irregulars are more uniformly distributed in CDS (e.g., English
plurals, Spanish verbs (Fratini et al., 2014)).

4Directly calculating each (N − e, e) probability is in-
tractable if every item has its own frequency. Wallenius’
noncentral hypergeometric distr. allows class but not item
weighting and was found to be a poor approximation. Thus,
probabilities were calculated by simulating 100,000 trials.



Figure 5: TP state space for Ntgt = 90, etgt = 18. This
pattern should be acquired productively.

Figure 6: Likelihood of (N − e, e) for each N and a)
top-heavy, b) split, c) bottom-heavy e distributions.

tions are tested: They are a) the 18 most frequent
items (the head of the Zipfian curve), b) the 9 most
frequent and 9 least frequent items, and c) the 18
least frequent items. They are visualized in Figure
6 for three distributions of irregulars:

Even though the type distribution is the same
in each case, the expected learning trajectories dif-
fer dramatically (Fig. 7). In the top-heavy case,
nearly no learners are expected to be productive
between N = 20 and N = 80, then everyone
rapidly achieves productivity. In the bottom-heavy
all learners achieve productivity as soon as they
hypothesize the generalization. The split case pre-
dicts transient variation where all early learners are
essentially adult-like, but many temporarily aban-
don productivity before relearning it later. This is
because the likely path through the TP state space
skirts the tolerance threshold, so slight variation
in each individual’s e predicts a large categorical
difference in the grammar.
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Figure 7: Likelihood of generalization and non-
generalization by vocabulary size given Fig. 6.

3.3 Application to English Past Tense

This section applies the methods described thus far
to real data: English past tense items extracted
with frequencies from the CHILDES database
(MacWhinney, 2000). Two expected learning paths
were calculated: the default past -ed (N = 1328,
e = 98 in this data) and the relatively common sing-
sang, ring-rung sub-pattern (N=26, e=8). English
learning children consistently acquire productive
-ed around age three (Berko, 1958; Marcus et al.,
1992). In contrast, the sing-sang pattern is not pro-
ductive, though there is some transient variation
(Berko, 1958; Xu and Pinker, 1995; Yang, 2016).
This is because it has many exceptions (e.g., sting-
stung, bring-brought).
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Figure 8: Generalization probability by vocabulary size
for English past tense -ed and sing-sang. -ed was calcu-
lated on all data but trimmed to N=700 for visualization.

Figure 8 visualizes the results. Learners are pre-
dicted to show great uniformity in the acquisition
of -ed. They consistently acquire the rule when
they know 400-500 verbs. This qualitative uni-
formity is consistent with known developmental
facts, but it is not immediately clear whether these
particular numbers line up with the empirical ev-
idence. Estimates of vocabulary size by age vary
by method, but Marcus et al. (1992, ch. 5) re-
port that Sarah and Adam from the Brown Corpus
have produced 300-350 unique verbs by age three,
but productive vocabulary underestimates working
knowledge (Fenson et al., 1994, ch. 5-6), which is
what is being modeled here.

The predictions for sing-sang is quite a bit differ-
ent. There is significant variability when vocabu-
lary size is small, but learners uniformly decide on
non-productivity by around N=12. This appears
to be consistent with wug-test results for children.
In the original Berko (1958) study, only three of
86 pre-schoolers produce an -ang(ed) past form for
stimuli gling+PAST or bing+PAST, suggesting low
variability and low-productivity in that age group.5

5Adults and children seem to approach the wug test dif-
ferently (Schütze, 2005), with many adults treating it as an
analogy game (Derwing and Baker, 1977). Adults can be
prompted to analogize the sing-sang pattern Berko (1958)

4 Discussion

This paper presents a means of modeling expected
learning trajectories for productivity using the Tol-
erance Principle. As a type-based model of produc-
tivity learning, the TP only relies directly on the
type attestation of regular and irregular items in the
input. Since the grammar which is learned only
depends on which side of the tolerance threshold
the number of irregulars falls and not the lexical
identity of the items or their exact number, it ex-
plains the general uniformity of outcomes observed
across individual learners.

The TP was derived assuming that learners ex-
pect long-tailed frequency distributions in their
input, and it provides an indirect role for token-
frequency in learning. Higher frequency items are
more likely to be attested early and learned early.
Thus while the type distribution of irregulars gov-
erns the ultimate learning outcome, their token dis-
tribution drives the learning trajectory: the vocabu-
lary size at which the adult-like grammar is settled
on, the likelihood of over-regularization, and the
degree of variability among individual learners.

One advantage of the TP for the purposes of this
type of modeling is that it makes clear binary pre-
dictions about productivity. This study provides a
novel means for making concrete predictions about
the learning paths predicted by the TP. It remains to
be seen how well these predictions fit the empirical
data in a wider range of case studies. Another open
question is whether other generalization models
would make similar or different predictions, and if
so, which best fit the empirical data.

The distribution of irregulars in the input can
be measured empirically from corpora of child-
directed speech since it is a property of the lexicon
and of discourse concerns. The input has a clear
effect on the path of learning even prior to adopting
specific assumptions about the underlying grammar
that children acquire. This suggests quantitatively
re-evaluating the input as a way forward for explain-
ing cross-linguistic differences in child language
development as a complement to cross-linguistic
theoretical and experimental work.
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