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Abstract

We propose constrained Earth Mover’s Distance (CEMD) Imitation Q-learning that
combines exploration of Reinforcement Learning (RL) and the sample efficiency of
Imitation Learning (IL). Sample efficiency makes CEMD suitable for robot learning.
Immediate rewards can be efficiently computed by a greedy Earth Mover’s Distance
(EMD) variant between observed state-action pairs and state-actions in the stored
expert demonstrations. In CEMD, we constrain the previously proposed non-
stationary greedy EMD reward by proposing a greedy EMD upper bound estimate
and a generic Q-learning lower bound. In PyBullet continuous control benchmarks,
CEMD is more sample efficient, achieves higher performance, and yields less
variance than its competitors.

1 Introduction

Recently, approaches combining Reinforcement Learning (RL) and Imitation Learning (IL) have
gained momentum as RL and IL have complementary strengths and weaknesses for robot learning [4,
17]. Reinforcement Learning enables robots to improve autonomously, but introduces significant
challenges with exploration and stable learning. Imitation learning provides more stable learning
from expert demonstrations, but cannot improve from failures. It is unclear how the two approaches
should be combined to take the best of the both worlds.

There have been multiple attempts to combine RL and IL. The first methods simply learned pre-
liminary policy or its parts from expert demonstrations, and then further improved the policy based
on feedback received from the environment [27, 31]. More recently, methods based on Inverse
Reinforcement Learning (IRL) have been proposed [11, 6, 9]. IRL methods iterate between learning
the underlying reward function for the expert demonstrations, and running RL to find the optimal
policy for the estimated rewards by interacting with the environment. The IRL methods suffer from
sample inefficiency which makes them less suitable for robot learning.

The sample hungry inverse reward optimization can be avoided by defining a computational reward
function. A computational reward is computed using the difference between states and actions
obtained from the environment and those in the expert demonstrations. This line of work has
been found more sample efficient, and the proposed methods mainly differ in how they compute
the reward [1, 8, 4]. The proposed method in this work belongs to this group of methods. The
expert demonstrations are treated as finite distributions, and the reward is computed via distance
metric between the expert and agent obversation distributions. In our work, we adopt the Earth
Mover’s Distance (EMD) as the basic framework. EMD has been used in recent works of Imitation
Learning [16, 8, 4]

The main contribution of this work is 1) a new RL-based imitation learning method, CEMD, that uses
Earth Mover’s Distance (EMD) to compute the RL reward. The EMD reward reflects how well the
obtained actions and states correspond to those in the expert demonstrations. As the starting point, we
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adopt the greedy EMD from [4] which can be computed instantly after each new exploration sample.
Our EMD reward is tightened by more strict upper and lower bounds. We 2) derive a greedy EMD
reward upper bound and 3) a generic Q-learning lower bound. The lower bound is adapted from [30].
The tight reward constraints make CEMD sample efficient during exploration, reduce its variance,
and achieve better overall performance. These findings are experimentally validated with PyBullet
continuous control benchmarks.

2 Preliminaries

2.1 Reinforcement learning

In the classic RL setting [27], Markov Decision Processes (MDPs) are formalized as a tuple M :=
(S,A, r, P, γ, P0) with the state space S and the action space A. A reward function r : S ×A → R
maps a state-action pair to a reward. P (st+1|st, at) denotes the probability of transferring from state
st to state st+1 under action at. P0(s) is the initial state distribution and γ ∈ [0, 1] is a discount
factor. At each time step t, an agent observes a state st ∈ S and chooses an action at ∈ A based
on a policy π(at|st) : S → P(A). The return R(τ) of an MDP is defined as the discounted sum of
rewards r(st, at) along a trajectory τ := (s0, a0, ..., st−1, at−1, st). The classic objective of RL is to
learn an optimal policy π∗ that maximizes the expected cumulative discounted reward:

π∗ = argmax
π

E
(st,at)∼π

[ ∞∑
t=0

γtr(st, at)

]
.

The state-action value function, Q-function Qπ(s, a), provides the expected cumulative discounted
reward of a state s if an action a is taken and the trajectory τ according to the policy π is followed.
Formally, Q-function is defined as Qπ(s, a) = Eπ [R(τ)|s, a]. The value function obeys the Bell-
man equation: Qπ(s, a) = Est+1∼P (st+1|s,a)

[
r(s, a) + γEat+1∼π[Q

π(st+1, at+1)]
]
. The Bellman

operator Bπ : Rn → Rn describes a single step of dynamic programming [27, 21]:

B (Q(s, a)) = r(s, a) + γE [Q(st+1, at+1)] .

Qπ is the fixed point of the operator Bπ(Q) to which the process Qk+1 := Bπ(Q)k converges.
For high-dimensional and continuous state and action spaces, we need to approximate Q(s, a) to
efficiently solve for Qπ. Let’s denote with θ and ω the parameters of a Q-function Qθ(s, a) and the
associated parameterized policy πω, correspondingly. In addition, a double target function Qθ̄ is
often used to reduce value overestimation [7]. Now, improving Qθ(s, a) relies on finding values θ
that minimize the Mean Squared Bellman Error (MSBE). Since the approximation function often
takes the form of a neural network, it is convenient to define the error as a loss term:

LMSBE = Eπ

[
(Qθ(s, a)−Qtarget(s, a))

2
]
, (1)

where Qtarget = r(s, a) +Qθ(st+1, πω(st+1)) is the target for minimizing MSBE, or alternatively
Qtarget = r(s, a) +Qθ̄(st+1, πω(st+1)) in the double target function formulation. Optimization of
the MSBE loss (1) is the fundamental step in many SotA off-policy RL methods [18, 15, 7, 2, 10].

2.2 Earth Mover’s Distance (EMD)

The Earth Mover Distance (EMD, a.k.a Wasserstein metric or distance) [25] is based on the minimal
cost that must be paid to transform one distribution into another. Consider two finite distributions:
X = {(x1, w1), ..., (xM , wM )} with points xi ∈ Rd and Y = {(y1, u1), ..., (yN , uN )} with yj ∈
Rd, where wi ∈ R and uj ∈ R represent the weights of each point in X and Y . The flow matrix
F = (fij) ∈ Rm×n has elements fij that denote the amount of weight at xi matched to the amount
of weight at yj . The EMD between two finite distributions is cast as a linear programming problem
to find F that minimizes

EMD(F,X, Y ) = min
fij

M∑
i=1

N∑
j=1

fijdij , (2)

where dij = d(xi, yj) is the metric distance between xi and yj in the d-dimensional feature (or
state-action) space. In this case, the flow F is a solution to the optimal transport problem such that
the overall transportation cost is minimized.
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The EMD linear programming problem has the following constraints: (i) fij ≥ 0 requires the all
weights of xi matched to yj be non-negative; (ii)

∑N
j=1 fij ≤ wi, i = 1, 2, ...,M ensures that the

transported weight from each xi over all yj does not exceed wi; (iii)
∑M

i=1 fij ≤ uj , j = 1, 2, ..., N
ensures that weights over all xi transported to each yj do not exceed uj ; and (iv)

∑
i,j fij =

min(
∑

wi,
∑

uj) forces the total flow to be equal to the total weights of the smaller of the two
distributions. Fig. 1(a) visualizes the original EMD that we denote as the optimal coupling EMD.

Greedy EMD As mentioned in [4], the original optimal coupling EMD has an undesirable property
to require that the two distributions X an Y are known in order to solve the optimal weight trans-
portation problem. Consequently, Q-function updates using the MSBE loss (1) and EMD can be
computed only after an exploration episode is completed. This leads to sample inefficient episodic
learning which in [4] is solved by proposing a greedy coupling EMD.

To bring EMD to the Imitation Learning (IL) context, we define X as the agent’s sample trajectory
after M samples, and Y of N elements is the static set of trajectories obtained through expert
demonstrations. The sets X and Y are sequences of observed states, {s0, s1, ..., sN−1} for X , or
state-action pairs {⟨s0, a0⟩, ⟨s1, a1⟩, ..., ⟨sN−1, aN−1⟩}, depending on the problem. The greedy
EMD (EMDg) is defined for horizon of M observations in X as

EMDg(F g, X, Y ) =

M∑
i=1

egi =

M∑
i=1

N∑
j=1

fg
ijdij .

Let’s further assume that N expert trajectory points have the capacity of ui =
1
N and the mass of the

each obtained agent sample is wi =
1
M . The greedy EMD cost egi for the sample si is defined as:

egi = argmin
fg
ij

∑N
j=1 d(xi, yj)f

g
ij

N∑
j=1

fg
ij =

1

M︸ ︷︷ ︸
Constraint 1

, ∀k ∈ [1 : N ] :

i−1∑
i′=1

fg
i′k + fg

ik ≤ 1

N︸ ︷︷ ︸
Constraint 2

.
(3)

The first greedy EMD constraint ensures that all the agent’s dirt (EMD terminology) appearing at the
time step i is transported. The second constraint guarantees that each of the expert holes cannot take
more dirt load than its capacity allows. Greedy EMD provides a sub-optimal transport solution, and
is an upper bound estimate of the true EMD costs e⋆i [4]:

EMDg(F g, X, Y ) =

M∑
i=1

egi ≥
M∑
i=1

e⋆i . (4)

The RL agent objective is to minimize the upper bound estimate of the EMD distance between the
expert and the agent policies. Figure 1(b) illustrates how the agent mass sπi is assigned to the expert
holes sej under the greedy-coupling EMD. The reward ri = r(s, a) in MSBE loss (1) is computed
from egi using some monotonically decreasing mapping g(·),

ri = g(egi ) , (5)

that converts small distances to large rewards. A common mapping is the exponential function
g(x) = e−x.

3 Method

In [4] the greedy coupling EMD (3) is used to compute the sample distance to the expert demon-
strations after each sample, and the computed distance is converted to a greedy reward rg by the
exponential mapping (5). Q-function updates are computed using the Mean Squared Bellman Error
(MSBE) loss (1). We denote this greedy EMD reward [4] loss as Lg. Next, we ropose tighter
bounds for the loss by introducing the greedy EMD reward upper bound (Section 3.1) and a general
Q-learning lower bound (Section 3.2). The new loss term is defined in Section 3.3
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Figure 1: (a) optimal vs. (b) greedy coupling vs. (c) lower bound (LB) greedy coupling EMD.
Optimal coupling moves dirt from the agent states sπi to the closest holes in the expert demonstration
states sej . Greedy coupling moves dirt sequentially and thus sometimes moves it further if the closest
hole is occupied. In this example, the vector sπ2 occurs temporally before sπ3 , and therefore the closest
position se2 is occupied and the dirt needs to be moved to sπ3 . In our greedy EMD lower bound sπ3 is
moved to the closest hole se2 even if it is already occupied.

3.1 Upper bound of the Greedy EMD reward

It turns out that the greedy reward rg has two undesirable properties, i) it is non-stationary, and ii) it
underestimates the reward by over-estimating the EMD distance (the proof is in our supplementary
material). To improve the reward computation to boost learning by a tighter estimate, we introduce
the lower bound egLB of the greedy EMD effort eg . The lower bound is constructed by removing the
second constraint in (3).

Lemma 1 By removing the constraint 2 in Eq. 3, the earth moving effort egLB for the dirt xt appearing
at time step t becomes

egLB,t = argmin
fLB
t,j

N∑
j=1

dt,jf
LB
t,j , s.t.

N∑
j=1

fLB
t,j =

1

M︸ ︷︷ ︸
constraint 1

. (6)

and this new effort egLB is a lower bound for the greedy coupling EMD effort eg in (3), i.e.,

∀t, egLB,t ≤ egt . (7)

By removing the second constraint, the lower bound greedy EMD is allowed to allocate new observa-
tions xt to the nearest expert hole even if the hole is already occupied by the previous observations.
This is not possible in the original greedy EMD formulation. The differences between the optimal
EMD, greedy EMD and Lower Bound greedy EMD couplings are visualized in Figure 1.

For Q-learning the main result is that the lower bound greedy EMD formulation produces an upper
bound estimate of the greedy EMD reward, i.e.

rgUB,t = g(egLB,t) ≥ rgt = g(egt ) . (8)

Using the upper bound greedy EMD reward we define a new loss term Lg,LB and combine it with
the original greedy loss term Lg to establish a tighter EMD loss for Q-function optimization

L = Lg + λLg,UB . (9)

3.2 Generic Q-learning Lower Bound

In off-policy Reinforcement Learning one of the main challenges is how to facilitate efficient learning
from off-policy samples that can be very noisy, especially in the beginning of learning. One of the
recently proposed approaches tries to benefit from a small number of particularly good episodes
stored in the learning memory (a replay buffer). This line of works is often called as Self-Imitation
Learning (SIL) [20, 30].

The main theoretical foundation of the recent SIL methods is in tightening the Q-learning bounds.
Intuitively, we learn only from samples that produce better Q-values than the current lower bound.
This is particularly important in our case as the previously defined greedy EMD Lower Bound (6)
forms an upper bound for the greedy EMD. Therefore, by identifying a similar lower bound, it is

4



possible to tighten the estimator from the both directions. It turns out that we can form the greedy
EMD lower bound by utilizing the generic Q-learning lower bound.

The lower bound Q-learning was studied in [30] where they introduced an n-step bootstrapped
Q-value as the general lower bound for the true Q-value under the optimal policy π∗

QLB(st, at) = rt +

n−1∑
i=t+1

γtrt+1 + γnQπ(sn, an) ≤ Qπ∗
(st, at) .

In [30] the Q-function Qθ(s, a) is updated only when Qθ(s, a) is greater than the lower bound
QLB(s, a), and in our case the rule is formulated inside the loss function,

LLB = E
[
||(Qθ(s, a)−QLB(s, a))+||2

]
, (10)

where || · ||+ is the max(·, 0) operator. As shown in [30], this n-step clipped loss brings positive bias
for value estimation, and thus makes it suitable for reducing underestimation.

3.3 Constrained EMD Loss

Imitation learning with the proposed constrained EMD (CEMD) Q-estimation uses a combination of
the three loss terms that represent the greedy EMD based reward, and its upper and lower bounds,

LCEMD = Lg + λ1Lg,UB + λ2LLB . (11)

Lg is the greedy EMD reward loss from [4], Lg,UB is the greedy EMD reward upper bound loss
defined in (9), and LLB is the greedy EMD reward lower bound loss in (10). The experiments in
the next section verify that the compound loss results to better overall performance, better sample
efficiency (faster convergence), and smaller variance, than the greedy EMD based reward loss without
the bounds. In addition, CEMD is superior to other competing IL methods.

4 Experiments

4.1 Tasks and settings

The RL baseline of our method is TD3 [7] which is a popular choice for off-policy RL. The imple-
mentation is based on [22]. Experiments were conducted using the continuous control environments
of PyBullet [5]. The task horizon is 1000 steps in all experiments. For each task, only five expert
demonstrations were recorded and each of them is sub-sampled to the horizon length of 50 steps. The
purpose of sub-sampling is to simulate the low data regime. The same setting was used in [4].

4.2 Method comparison

In the first experiment, variants of the proposed CEMD are compared to SotA RL and IL methods.
The tested CEMD variants are: 1) CEMD-1 using the greedy EMD loss as in [4], 2) CEMD-2 using
the greedy EMD and the upper bound loss (λ1 = 0.3), 3) CEMD-3 using the greedy EMD and the
generic lower bound loss (λ2 = 0.3), and 4) CEMD-4 using all three losses (λ1 = λ2 = 0.15). For
the generic lower bound loss, LLB , the bootstrapping step size of 6 was used. We trained all variants
with the limit of 1M environment interactions and 10 random seeds.

Imitation Learning research is divided to multiple lines of work, such as Behavior Cloning (BC) [24],
Inverse Reinforcement Learning (IRL) [12, 19, 11, 9, 6], adversarial IL [11, 9, 6], and expert support
estimation [26, 13, 3]. We chose the following off-policy methods as strong baselines to compare
with: Behavior Cloning (BC) [24], Discriminator-Actor-Critic (DAC) [14], soft-Q Imitation Learning
(SQIL) [23], and Adversarial Reward-Moment Imitation Learning [29]. DAC uses an off-policy RL
method (TD3) to learn the imitation policy. SQIL learns to recover expert behavior by balancing
the expert transitions with the agent transitions in the replay buffer. AdRIL was selected for the
comparison as it uses trajectory matching for reward computation, and at the moment it is largely
considered as the SotA IL method [29]. For BC, SQIL and AdRIL, we used the code provided by the
authors of [29, 28] who conducted similar experiments. All hyper-parameters remain the same as in
the experiments in [29]. The same five expert demonstrations were provided to all IL methods.
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Table 1: Off-policy imitation learning method comparison on PyBullet environments. CEMD results
include four variants of the different loss terms. CEMD-1 uses only the greedy EMD loss (Lg) and
thus corresponds to PWIL [4]. CEMD-2 in addition uses the greedy upper bound loss (Lg + Lg,UB)
and CEMD-3 uses the generic lower bound (Lg + LLB). Finally, CEMD-4 contains all three loss
terms (Lg + Lg,UB + LLB). Bold values denote the best and underlined values that outperform the
recent baseline [4] according to the t-test with p-value < 0.05.

Methods CEMD-1 aka [4] CEMD-2 CEMD-3 CEMD-4 DAC BC SQIL AdRIL

Humanoid 1649.5± 965 1931.9± 881 1921.6± 840 1982.1± 826 953.0± 609 49.4± 10 255.7± 301 −31.2± 28
Walker2D 1985.3± 50 2061.2 ± 104 2062.0 ± 21 2076.0± 106 2049.2 ± 44 1162.4± 334 536.3± 152 1552.8± 584
Hopper 2406.4± 91 2422.0 ± 43 2466.0 ± 74 2483.3± 35 2379.1± 292 1362.4± 603 746.0± 67 1650.7± 439
Ant 1644.4± 1058 2326.9 ± 769 2529.6 ± 284 2566.1 ± 33 2735.0± 51 318.9± 46 494.5± 39 781.8± 480

We first evaluated the performance by computing the cumulative test rewards in five environments
(see Table 1). Our CEMD outperformed the original greedy EMD [4] in all tasks. In HalfCheetah,
all variants had similar performance. Among the variants, the one with all three loss terms was the
best for Humanoid, Walker2D, and Hopper. For the most challenging tasks (Ant and Humanoid), the
greedy upper bound variants obtained the best results. Overall, the proposed CEMD variants achieve
performance gains 0.5%-41.0% depending on the task.

Table 2 shows the true EMD distances to the expert demonstrations. The results of Table 2 verify the
results in Table 1. 400 rollouts are collected for each task in this experiment. CEMD-4 that includes
all three loss terms has the smallest EMDs for all tasks. The importance of the greedy upper and
generic lower bound losses is particularly evident for the Humanoid and Ant tasks for which the
original greedy EMD loss in [4] remains substantially better than the others. Clearly, the proposed
tightening bounds improve Q-learning using the greedy EMD based loss.

4.3 Empirical verification of the greedy EMD upper bound

It is important to empirically verify that the greedy EMD lower bound estimate defined in (6) and its
corresponding reward upper bound rgUB in (8) indeed represent upper bounds for the greedy EMD.
Verification is important as the Q-learning is based on updates using the greedy reward rg. This
was made by running the CEMD method with the original greedy reward in [4] (CEMD-1). During
training, number of episodes were unrolled and the average differences between the greedy EMD
reward and its upper bound estimates were computed. At every 1k environment exploration steps, a
10-episode random seed roll-out was performed. It means that every evaluation stop generates ten
trajectories and each has 1000 steps horizon. Using these steps the greedy reward rg and its greedy
upper bound reward rg,UB were computed. The mean difference between the two, rg,UB − rg , were
recorded, and stored as a single evaluation value. These evaluation values over the increasing number
of training episodes should reveal the assymptotic behaviour between the two rewards, and whether
the upper bound holds for the greedy estimate.

Figure 2 shows the differences during training. In all tasks, the differences are negative, verifying
that rg,UB indeed is an upper bound estimate. Moreover, there are clear differences between the two
values, that confirms that the upper bound reward affects learning performance. When the policy
gradually improves, and starts to converge near the optimal solution, the difference asymptotically
approaches zero, and verifies negligible bias in the estimate.

Table 2: The mean and standard deviation of Earth Mover’s Distances to the expert demonstrations.
Bold denotes the best performance according to the t-test with p-value < 0.05.

Methods CEMD-1 CEMD-2 CEMD-3 CEMD-4

Humanoid 14.59± 11.46 10.60± 14.43 9.93± 11.44 8.82± 9.31
Walker2D 1.81± 0.13 1.71± 0.72 1.65± 0.04 1.60± 0.04
Hopper 1.12± 0.07 1.30± 0.04 1.07± 0.15 1.00± 0.04
Ant 15.41± 20.69 6.60± 12.87 3.13± 9.33 2.31± 0.12
HalfCheetah 1.62± 0.16 1.58± 0.16 1.57± 0.12 1.49± 0.06
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(a) Ant (b) Walker2D (c) Hopper (d) Halfcheetah

Figure 2: Difference of the greedy EMD reward and its upper bound reward, rg − rg,UB , during
training. The negative difference verifies that rg,UB indeed is an upper bound estimate and as the
policy converges close to the optimal, then the difference becomes zero.

(a) Imitation reward

(b) Behavior cloning (BC) error

Figure 3: Comparing the unbounded greedy EMD loss (red) and the bounded greedy EMD loss
proposed in this work (blue): (a) the training performance measured with imitation reward (the higher
the reward the smaller the Earth Mover’s Distance to expert demonstrations); (b) plots the BC error
during training.

4.4 Benefits of the bounded reward for Q-learning

To verify that the bounded reward converges faster than the unbounded greedy EMD reward the
two were compared. The comparison was made in a realistic case where the number of expert
demonstrations was low (five). We computed the overall task rewards and the behavior cloning errors
for the greedy EMD reward rg Q-learning (CEMD-1), and its bounded version.

The mean test rewards, variances, and behavior cloning errors are shown in Figure 3. The results
verify that Imitation Q-learning with bounded rewards converges faster (particularly evident in the
Ant task), and achieves better performance than the unbounded reward. This systematically holds for
all tested environments. Moreover, the variance is reduced (the standard deviations in Table 1).

5 Limitations

Similarly to other imitation learning methods, the reliance on expert demonstrations is a limitation
of our approach. In tasks where experts do not provide optimal demonstrations, or where the
demonstrations are performed in an environment which is not identical to the actual environment,
running RL in the actual environment may be needed. Nevertheless, imitation learning serves as
initialization of the policy.

Since we use RL to minimize the distance to expert demonstrations, the performance depends on the
selected RL. TD3 performed well in the experiments, but other methods should be considered in the
future work.
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Our approach builds on Earth Mover’s Distance (EMD) bounds. While the current bounds already
provide a performance boost, better bounds should be investigated.

6 Conclusion

In this work, we proposed an Imitation Q-learning method, CEMD, that learns to solve a control
task using expert demonstrations to guide its learning. The expert demonstrations make Imitation
Learning more sample efficient than plain Reinforcement Learning (RL), and therefore more suitable
for real robot cases. Our main contributions are the tighter bounds for Earth Mover’s Distance
(EMD) based reward computation. The bounds boost Q-learning to converge faster, to achieve higher
performance, and to reduced variance. The results were verified by multiple continuous control
tasks where the proposed method systematically outperforms its competitors. All code will be made
publicly available.
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