
Published as a conference paper at ICLR 2023

TOWARDS ADDRESSING LABEL SKEWS IN ONE-SHOT
FEDERATED LEARNING

Yiqun Diao, Qinbin Li & Bingsheng He
National University of Singapore
{yiqun,qinbin,hebs}@comp.nus.edu.sg

ABSTRACT

Federated learning (FL) has been a popular research area, where multiple clients
collaboratively train a model without sharing their local raw data. Among existing
FL solutions, one-shot FL is a promising and challenging direction, where the
clients conduct FL training with a single communication round. However, while
label skew is a common real-world scenario where some clients may have few
or no data of some classes, existing one-shot FL approaches that conduct voting
on the local models are not able to produce effective global models. Due to the
limited number of classes in each party, the local models misclassify the data from
unseen classes into seen classes, which leads to very ineffective global models from
voting. To address the label skew issue in one-shot FL, we propose a novel approach
named FedOV which generates diverse outliers and introduces them as an additional
unknown class in local training to improve the voting performance. Specifically,
based on open-set recognition, we propose novel outlier generation approaches by
corrupting the original features and further develop adversarial learning to enhance
the outliers. Our extensive experiments show that FedOV can significantly improve
the test accuracy compared to state-of-the-art approaches in various label skew
settings. Code is available at https://github.com/Xtra-Computing/FedOV.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2016; Kairouz et al., 2019; Yang et al., 2019; Li et al., 2019)
allows multiple clients to collectively train a machine learning model while preserving individual
data privacy. Most FL algorithms like FedAvg (McMahan et al., 2016) require many communication
rounds to train an effective global model, which cause massive communication overhead, increasing
privacy concerns, and fault tolerance requirements among rounds. One-shot FL (Guha et al., 2019; Li
et al., 2021c), i.e., FL with only a single communication round, has been a promising and challenging
direction to address the above issues.

On the other hand, label skews are common in real-world applications, where different clients have
different label distributions (e.g., hospitals on different regions can face different diseases). As parties
may have few or no data of some classes, this leads even more challenges in one-shot FL. In this
paper, we study whether and how we can improve the effectiveness of one-shot FL algorithm for
applications with label skews.

A simple and common one-shot FL strategy (Guha et al., 2019; Li et al., 2021c) is to conduct local
training and collect the local models as an ensemble. The ensemble is either directly used as a final
model for predictions (Guha et al., 2019) or distilled as a single model (Li et al., 2021c) with voting.
However, those voting based approaches fail to produce high quality federated learning models.

Under the label skew setting, since each client has only a portion of classes, the local model predicts
everything to its seen classes and the final voting results are poor. For example, in an extreme case
where each client only has one label (e.g., face recognition), all clients predict the input as its own
label and the voting result is meaningless. To address this issue, we propose open-set voting for one-
shot FL that introduces an “unknown” class in the voting inspired by studies on open-set recognition
(OSR) (Neal et al., 2018; Zhou et al., 2021). In local training, the clients train local open-set classifiers
that are expected to predict its known classes correctly, while predicting “unknown” if it is unsure
about the input data. Then, during inference, the server conducts voting on the received open-set
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classifiers with the “unknown” option. In this way, open-set voting can filter the local models that do
not have the knowledge of an input to improve the voting accuracy.

Although there are existing OSR studies in the centralized setting, it is challenging to apply them in
the label-skewed federated setting to achieve good open-set classifiers during local training due to the
limited number of local classes. For example, the state-of-the-art OSR algorithm PROSER (Zhou
et al., 2021) considers linear interpolation between different seen classes as outliers. The outliers
and the original data are used to train the model, where the outliers are considered as the extra class
“unknown”. When the number of classes is very small in a client, PROSER generates very limited
types of outliers that are not sufficient for training. Moreover, the classifier has a loose boundary
as the distance between the training data and the generated outliers may be large. To improve the
quality of open-set classifiers, we propose a new open-set approach named FedOV with two novel
techniques including data destruction and adversarial outlier enhancement to generate diverse and
tight outliers. In data destruction, as opposed to data augmentation, we generate rich outliers by
transforming the key features from the original image using boosted data operations such as random
erasing and random resized crop. In adversarial outlier enhancement, we further optimize the outliers
to be close to the training data in an adversarial way such that the local model cannot distinguish it.

Experiments show that our proposed FedOV (Federated learning by Open-set Voting) significantly
improves the accuracy compared with existing one-shot FL approaches under various label skew cases.
To reduce the model size of FedOV ensemble, we also combine knowledge distillation to FedOV
like previous approaches (Lin et al., 2020; Li et al., 2021c). Distilled FedOV can also outperform
state-of-the-art one-shot FL algorithms with model distillation.

Our main contributions are summarized as follow:

• To the best of our knowledge, we are the first to propose open-set voting in FL by introducing
the “unknown” class, which significantly improves the accuracy compared to traditional
close-set voting in FL.

• We propose two novel techniques, including data destruction and adversarial outlier en-
hancement, to generate diverse “unknown” outliers without requirement on the number of
classes of the training data.

• We conduct extensive experiments to show the effectiveness of our open-set voting algo-
rithm. Our algorithm consistently outperforms baselines with a significant improvement on
accuracy on comprehensive label skew settings, including #C = 1 (each client has only
one class) where many FL algorithms fail.

2 BACKGROUND AND RELATED WORK

2.1 NON-IID DATA IN FL

Non-IID data is prevalent among real-world applications. For example, different areas have different
types of diseases. Another example is that there are different species in different places. For
classification tasks, suppose client i has dataset {xi, yi}, where xi are features and yi are labels. In
the label skew setting, p(yi) differs across clients.

Label skew is difficult because the local optima of different clients can be much far away (Li et al.,
2021b). There have been many studies (Li et al., 2020; 2021d; Wang et al., 2020a; Luo et al., 2021;
Mendieta et al., 2022) trying to alleviate this problem based on the model-averaging framework. For
example, FedProx (Li et al., 2020) and MOON (Li et al., 2021d) adjusts the local training procedure
to pull back local models from global model. FedNova (Wang et al., 2020a) normalizes local steps of
each client during aggregation. A recent work (Huang et al., 2022) proposes few-shot model agnostic
FL, which is able to train any models in a setting where each client has a very small sample size. It
applies domain adaptation in the latent space with the help of a large public dataset. However, these
algorithms need many rounds to converge, which may not be practical in real-world scenarios. For
example, different companies may not be willing to communicate with each other frequently due to
privacy and security concerns.
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2.2 ONE-SHOT FL ALGORITHMS

One-shot FL (i.e., FL with only one communication) is a promising research direction. It has a very
low communication cost. Moreover, it enables applications such as model market (Vartak, 2016),
where the clients only need to sell the models to the market and users conduct learning on the models.

The original one-shot FL study (Guha et al., 2019) collects local models as an ensemble for the
final prediction. It further proposes to use knowledge distillation on such ensemble with public data.
FedKT (Li et al., 2021c) proposes consistent voting to improve the ensemble. A recent work (Zhang
et al., 2021) proposes a data-free knowledge distillation scheme to perform one-shot FL. It uses the
same ensemble distillation method as FedDF (Lin et al., 2020). Its main contribution is the fake
data generation in the server side to replace the public dataset for distillation. Such a technique is
orthogonal to our FedOV, and can be combined with FedOV. All the above studies do not investigate
comprehensive label skew cases. For more related studies and a detailed comparison between FedOV
and these studies, please refer to Appendix A.1.

2.3 OPEN-SET RECOGNITION (OSR)

OSR is an emerging field with many important applications (Salehi et al., 2021). In OSR, an additional
class “unknown” is introduced besides the original classes. A good open-set classifier is expected to
predict its known classes correctly, while predicting “unknown” if it is unsure about the input data. A
popular approach in OSR is to generate outliers and label them as “unknown” in training.

One direction is to use GANs to generate outliers. For example, Neal et al. (2018) apply GANs to
generate outliers from latent space that (1) is close to real samples, and (2) with high probability
of outlier (low probability of any known class). However, the training of GANs is very expensive.
Moreover, it is challenging for GANs to generate clear high-dimension images.

PROSER (Zhou et al., 2021) is a state-of-the-art open-set recognition approach. It generate outliers
by linear interpolation of embedding space among different classes. Moreover, it introduces an
additional loss to increase the possibility of predicting a sample as “unknown” when discarding
its true class. Suppose the training set is D = {(xi, yi)}ni=1, where xi is a training sample and
yi ∈ {0, 1, ..., c − 1} is its label. The neural network from input space to embedding space is
denoted ϕpre(·), and ϕpost(·) is the neural network from embedding space to output space. The
whole model is f(·) = ϕpost(ϕpre(·)) The PROSER loss is shown in Equation 1, where l is the
cross entropy loss, c denotes class “unknown”, x̃pre is the outliers generated from the training data
(x̃pre = λϕpre(xi) + (1 − λ)ϕpre(xj)), λ ∈ [0, 1] is sampled from Beta distribution, β and γ are
two hyper-parameters.

LPROSER =
∑

(x,y)∈D

l(f(x), y) + βl(f(x)\y, c) + γ
∑

(xi,xj)∈D

l(ϕpost(x̃pre), c) (1)

Since PROSER achieves state-of-the-art results and easy to implement, we consider it as our base
method for training an open-set classifier.

3 FEDOV: ONE-SHOT FEDERATED OPEN-SET VOTING FRAMEWORK

3.1 PROBLEM STATEMENT

Suppose there are N clients P1, ..., PN with local datasets D1, ..., DN . Our goal is to train a good
machine learning model over D ≜

⋃
i∈[N ] D

i with the help of a server, while the raw data are not
exchanged. Moreover, each client is allowed to communicate with the server only once. In this paper,
we focus on image classification task due to its popularity.

3.2 MOTIVATION

Observation 1 Voting is a popular method in existing one-shot FL approaches (Guha et al., 2019;
Li et al., 2021c). However, these approaches suffer under extreme label skews. For example, when
we divide MNIST dataset into 10 clients where each client has only one class, both close-set voting
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(Guha et al., 2019) and FedKT (Li et al., 2021c) only have lower than 20% test accuracy. When each
client has two classes, the test accuracy of both methods are lower than 50%. The problem is that the
predictions of close-set classification models are biased towards their seen classes as shown in Figure
1a. When a test sample of class one comes, in traditional close-set voting, the first and third client
make wrong predictions. Therefore, the voting result cannot predict correctly.

Implication 1 In the label skew setting of FL, close-set classifiers are weak for one-shot FL and
predict every input among its known classes. For voting, it would be better if models can be modest
and admit unknown for its unseen classes as shown in Figure 1b. This motivates us to apply OSR in
FL to introduce an unknown class to improve the voting.

0 1 2 0 1 2 0 1 2

[1.0, 0.0, 0.0] [0.0, 1.0, 0.0] [0.0, 0.0, 1.0]

[1.0, 1.0, 1.0]

+ +

?

Input

Local Data

Distribution

Training

Prediction

Probability

sum
output

(a) Traditional close-set voting
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(b) Open-set voting framework (‘u’ denotes un-
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Figure 1: Comparison between traditional close-set voting and our open-set voting framework. We
allocate the data of classes 0, 1, and 2 into three clients by Dirichlet distribution Dir3(0.02).

Observation 2 Directly applying PROSER (Zhou et al., 2021) in the local training of FL cannot
achieve good local open-set classifiers. We visualize the representation learned by the local model
of a client using PROSER in the local training in Figure 2a. The model is trained on a client which
only has class 0 and 6 samples of MNIST. The generated outliers are quite limited and far from the
training data when simply applying PROSER. The representations from the data of the seen and
unseen classes are mixed and cannot be distinguished.

Implication 2 To better suit OSR algorithms for label skews in FL, we need new techniques to
generate outliers which should 1) be diverse and 2) be close to the seen classes. We will introduce
them in Section 3.4 and Section 3.5 and explain Figure 2b and Figure 2c in Section 3.6.

(a) PROSER (b) PROSER+DD (c) FedOV

Figure 2: T-SNE visualisation of the features extracted by local models trained with different methods.
During training, the client only has data from classes 0 and 6. In each sub-figure, we plot the
representations of the data from the seen classes 0 and 6, unseen classes, and generated outliers
during training. The black lines are possible classification boundaries.
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3.3 THE OVERALL ALGORITHM

Based on the above observations and implications, we develop a new approach named FedOV to
address label skews in federated learning. FedOV addresses the challenges in directly applying OSR
to FL in the following two aspects. First, in order to generate diverse outliers, we propose data
destruction (DD) to directly generate outliers from true samples. Second, in order to generate outliers
that are even closer to true samples, we propose adversarial outlier enhancement (AOE) to learn a
tighter boundary to surround the inliers.

The overall framework of open-set voting is described as follows. For the training stage, each client
trains an open-set classifier locally and submits it to the server. For the prediction stage, the server
sums up the prediction probability of all submitted models on the input sample while discarding their
“unknown” channel. The class with maximum prediction probability is outputted as the prediction
label. An example of open-set voting is shown in Figure 1b. With the help of the unknown class,
local models can admit its uncertainty when encountering unseen classes. The first and third model
with little knowledge of class 1 assign very high probability to “unknown”, and the second model
outputs class 1 with 100% certainty due to its expertise in class 1. In this way, the input image can be
correctly classified.

The whole procedure is shown in Algorithm 1. Suppose there are c classes and classes 0 to (c−1) are
the classes from the original training data. We use class c to denote the unknown class. In each client,
it first initializes the local model fi (Line 2). Then, in each round, for each batch of training data, it
generate outliers by data destruction and adversarial outlier enhancement (Lines 5-6, see Section 3.4
and 3.5 for more details). Next, considering the outliers as the unknown class, cross-entropy loss is
computed on the outliers. By summing the PROSER loss (computed according to Equation 1) and
the cross-entropy loss as the total loss, the local model is updated using the Adam optimizer (Lines
7-8). The local models are sent to server after reaching the number of training rounds (Lines 9).

In the server, it aggregates all the local models as an ensemble as the final model (Line 11). When a
new sample comes for prediction, it sums the prediction probability of each model (Lines 13-15).
Then, the known class with the highest probability score is considered as the output label (Line 16).

Since FedOV only requires a single communication round, its communication cost is O(NM), where
M is the size of local model. The communication cost is low compared with iterative federated
learning algorithms, which need many rounds to communicate the models.

Algorithm 1: The FedOV algorithm. Lce is the cross entropy loss and σ is the softmax function.
Input: number of clients N , number of classes c, training rounds T

1 Each client executes:
2 Initialize local model fi
3 for t = 1, ..., T do
4 for each batch of local data (x, y) do
5 x′ = DataDestruction(x)
6 x′′ = FGSM(fi, x

′, c)
7 L = LPROSER + Lce(fi({x′, x′′}), c)
8 Update fi with loss L

9 Upload fi to the server.

10 Server executes:
11 Collects f1, ...fN as an ensemble.
12 Prediction(x):
13 scores = 0
14 for i = 1, ..., N do
15 scores = scores+ σ(fi(x))

16 yp = argmaxj∈{0,1,2,...,c−1} scoresj
17 return yp

3.4 DATA DESTRUCTION

From our observation in Section 3.2, generating diverse outliers from limited training data is chal-
lenging. While PROSER generates outliers by mixing data from different classes, can we generate
outliers from each individual sample? Inspired by data augmentation (Shorten & Khoshgoftaar, 2019)
which has been a very popular approach to enhance the features before training, we propose the novel
Data Destruction (DD) methods to use data operations to transform the data to generate outliers.
As opposed to applying to enhance the features, our DD applies intense data operations to corrupt
the original key features, which is effective and efficient. Specifically, DD has two components:
candidate data destruction operations and boosting outliers with a set of such operations.
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(a) Outliers generated by DD. (b) Outliers after AOE.

Figure 3: Generated outlier examples on MNIST, Fashion-MNIST and CIFAR-10 dataset. In Figure
3a, the first column contains the real samples and the other columns are generated outliers of that
sample. In Figure 3b, all figures are generated outliers by adversarial outlier enhancement.

Candidate Data Destruction Operations With the goal to corrupt the original features, we try a
comprehensive list of data operations and summarize the following useful candidate operations for
data destruction: (1) RandomCopyPaste: randomly select a rectangle region and copy it to another
randomly selected region in an image; (2) RandomSwap: swap two randomly selected rectangle
regions; (3) RandomRotation: randomly rotate a square region of an image; (4) RandomErasing:
randomly erasing a large rectangle region in an image; (5) GaussianBlur: blur an image by a Gaussian
function with a large variance; (6) RandomResizedCrop: randomly crop a small portion of an image
and resize it to the original size. Here (1)-(3) are our proposed operations and (4)-(6) are existing
data augmentation operations where we use them with abnormal hyper-parameters. Examples of the
generated outliers are shown in Figure 3a. More details about these are elaborated in Appendix B.1.

Boosting Outliers with Data Destruction Set To boost the diversity of outliers, we introduce
randomness during the outlier generation. We do not use a fixed operation on each image to generate
outliers. In each time, considering the above candidate operations as a set, we randomly sample one
operation to generate an outlier each time. Then, in each batch of data during training, there exists
diverse types of outliers generated by different operations. We show that such boosting method can
significantly improve the accuracy in Appendix B.3.

In summary, the intuition behind DD is to corrupt part of the key features such that 1) the generated
data are not similar to the training data and 2) the generated data is diverse so that the model does not
simply consider certain patterns as outliers.

3.5 ADVERSARIAL OUTLIER ENHANCEMENT

Adversarial training (Goodfellow et al., 2015; Kurakin et al., 2016) has been a popular approach
to protect machine learning models from malicious attacks. For example, Goodfellow et al. (2015)
utilizes fast gradient sign method (FGSM) to generate adversarial samples such that the model outputs
a wrong answer with a high confidence. Then, the adversarial samples are used as a part of the
training data to regularize the training.

Inspired by adversarial training, instead of using FGSM to generate adversarial samples for robust
training, we apply it to optimize the generated outliers. Specifically, suppose the client is training the
model f with the generated outliers x′ by our data destruction method. We utilize FGSM to generate
x′′ such that the model wrongly outputs x′′ as a seen sample with a high confidence. Then, the
enhanced outliers x′′ are used together with the generated outliers x′ as the unknown class to update
the model. We call this method Adversarial Outlier Enhancement (AOE). Examples of the enhanced
outliers are shown in Figure 3b. Compared Figure 3b with Figure 3a, the outliers are more normal
and look like different classes from the training data after AOE (e.g., in the third row of Figure 3b,
the third and eight outliers look like digit “3” although they are generated from digit “2”.).
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3.6 DISCUSSION

T-SNE Visualization As shown in Figure 2b and Figure 2c, DD can generate diverse outliers to
help distinguish data from seen and unseen classes and AOE can further decrease the margin between
the outliers and training data (i.e., class 0 and 6) to learn a better classifier.

Extension of FedOV with Knowledge Distillation One shortage of FedOV is that the final model
is an ensemble of local models, therefore its prediction and storage costs may be large especially
when the number of clients is large (e.g., cross-device setting). Some existing approaches (Lin et al.,
2020; Li et al., 2021c) utilize knowledge distillation to distill the knowledge from multiple local
models to a global model with the help of a public or synthetic dataset. Our approach is compatible
with the above methods. With knowledge distillation, we can transform the ensemble of local models
into a single global model. Then, it can significantly reduce the storage and prediction costs of the
final model. Moreover, considering the final model as the initialized model for iterative federated
learning algorithms like FedAvg (McMahan et al., 2016), we can conduct multi-round federated
learning to further improve the model. As shown in Section 4.4, FedOV can be effectively combined
with the existing approaches to increase their accuracy and communication efficiency.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets We conduct experiments on MNIST, Fashion-MNIST, CIFAR-10 and SVHN datasets. We
use the data partitioning methods in Li et al. (2021b) to simulate different label skews. Specifically,
we try two different kinds of partition: 1) #C = k: each client only has data from k classes. We first
assign k random class IDs for each client. Next, we randomly and equally divide samples of each
class to their assigned clients; 2) pk ∼ Dir(β): for each class, we sample from Dirichlet distribution
pk ∼ DirN (β) and distribute pk,j portion of class k samples to client j.

Baselines We include one-shot FL algorithms as baselines including close-set voting (Guha et al.,
2019) and FedKT (Li et al., 2021c). We also compare FedOV with the iterative FL algorithms
including FedAvg (McMahan et al., 2016), FedProx (Li et al., 2020), FedNova (Wang et al., 2020a),
and FedDF (Lin et al., 2020). We run them in a single round for a fair comparison. Note that FedKT
and FedDF require a public dataset (or synthetic dataset) for distillation. In each task, we use a half
of the test dataset as the public dataset for distillation for FedKT and FedDF and the remaining for
testing. Since the source code of FedSyn (Zhang et al., 2021) is not publicly available and we have
included FedDF (which has the same distillation approach as FedSyn) in our experiments, we do not
compare it with FedOV.

Default setups By default, we follow FedAvg (McMahan et al., 2016) and other existing studies
(Li et al., 2021c;b; Wang et al., 2020b) to use a simple CNN with 5 layers in our experiments. There
are 10 clients. For local training, we run 200 local epochs for each client. We set batch size to 64 and
learning rate to 0.001. For results with error bars, we run three experiments with different random
seeds.

Due to the page limit, we only present some representative results in the main paper. For more
experimental details and results, please refer to Appendix B.

4.2 AN OVERALL COMPARISON

We compare the accuracy between FedOV and the other baselines as shown in Table 1. Our algorithm
can significantly outperform baseline algorithms with only one communication. In many settings,
FedOV achieves more than 10% accuracy than close-set voting. In the extreme cases such as #C = 1,
FedOV can outperform close-set voting by at lease 30%. The iterative FL algorithms cannot achieve
satisfactory accuracy when running for a single round.
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Table 1: Comparison with close-set voting and various FL algorithms in one round.
Dataset Partition FedOV Close-set FedAvg FedProx FedNova SCAFFOLD FedDF FedKTvoting

CIFAR-10

#C = 1 40.0%±1.7% 10.2%±0.2% 10.5%±1.0% 10.6%±1.3% 10.5%±1.0% 10.5%±1.0% 10.2%±0.5% 9.8%±0.2%
#C = 2 42.0%±2.4% 37.2%±2.5% 11.1%±1.9% 10.9%±1.6% 10.5%±0.7% 11.1%±1.8% 18.8%±1.1% 25.7%±2.9%
#C = 3 55.6%±6.3% 43.2%±2.7% 15.7%±5.1% 15.9%±5.3% 14.5%±3.9% 16.1%±5.0% 27.5%±4.0% 31.8%±2.5%

pk ∼ Dir(0.5) 65.7%±0.7% 65.0%±0.1% 18.4%±7.2% 18.7%±5.3% 19.8%±7.2% 18.6%±5.1% 35.3%±0.9% 42.1%±2.5%
pk ∼ Dir(0.1) 61.7%±1.1% 55.9%±1.3% 10.4%±0.4% 11.1%±0.9% 13.1%±3.3% 13.0%±4.6% 26.3%±3.0% 35.0%±1.7%

SVHN

#C = 1 64.5%±1.9% 7.3%±0.1% 19.1%±0.9% 18.3%±2.2% 10.4%±2.5% 18.9%±1.2% 7.0%±0.7% 6.6%±0.1%
#C = 2 74.0%±1.1% 35.7%±7.6% 19.0%±4.1% 17.0%±6.7% 14.4%±4.9% 16.2%±9.0% 54.3%±2.8% 30.9%±4.3%
#C = 3 81.0%±1.2% 60.1%±9.5% 24.9%±6.2% 24.1%±4.9% 17.3%±1.2% 19.3%±4.2% 62.1%±4.3% 59.7%±2.5%

pk ∼ Dir(0.5) 85.7%±0.3% 85.1%±0.4% 32.4%±9.5% 33.5%±10.4% 33.6%±9.7% 29.3%±4.0% 80.7%±1.6% 75.7%±1.6%
pk ∼ Dir(0.1) 78.7%±0.6% 64.9%±0.4% 20.1%±0.4% 21.4%±2.1% 22.3%±2.8% 20.7%±1.1% 68.0%±0.8% 54.6%±1.9%

FMNIST

#C = 1 73.3%±1.6% 10.1%±0.5% 13.1%±5.4% 13.2%±5.5% 13.1%±5.4 % 13.1%±5.4% 12.1%±1.6% 9.8%±0.1%
#C = 2 61.7%±11.0% 36.3%±5.5% 23.1%±5.4% 23.2%±3.9% 17.7%±2.7% 22.1%±6.6% 37.0%±11.3% 28.8%±6.0%
#C = 3 73.8%±1.7% 57.0%±7.0% 26.1%±2.0% 26.8%±0.3% 24.9%±4.3% 26.0%±1.4% 46.7%±11.2% 51.2%±7.4%

pk ∼ Dir(0.5) 88.9%±0.3% 88.5%±0.2% 55.1%±12.6% 54.2%±13.4% 54.1%±7.9% 52.6%±10.0% 83.0%±2.2% 80.9%±2.4%
pk ∼ Dir(0.1) 76.2%±1.2% 73.6%±0.4% 22.6%±14.5% 24.2%±17.6% 24.8%±15.2% 19.0%±7.7% 66.4%±6.8% 54.2%±8.5%

MNIST

#C = 1 79.3%±1.8% 15.5%±2.8% 10.1%±1.2% 10.1%±1.2% 10.1%±1.2% 10.1%±1.2% 11.4%±0.3% 9.9%±0.4%
#C = 2 64.2%±1.6% 44.3%±6.4% 16.7%±6.7% 12.7%±3.9% 20.9%±12.0% 12.0%±2.8% 53.1%±4.0% 33.8%±8.1%
#C = 3 83.7%±5.3% 59.6%±7.0% 29.8%±19.0% 29.9%±19.0% 24.2%±13.5% 26.5%±18.3% 71.4%±6.0% 55.0%±12.2%

pk ∼ Dir(0.5) 98.6%±0.0% 98.3%±0.1% 67.5%±2.8% 71.6%±9.3% 74.3%±6.9% 67.7%±2.2% 97.9%±0.3% 94.9%±0.5%
pk ∼ Dir(0.1) 96.2%±0.4% 93.3%±0.4% 40.2%±5.6% 39.7%±6.5% 40.1%±4.7% 35.3%±7.3% 82.8%±7.4% 68.0%±13.1%

Table 2: Experimental results of different FL voting strategies with simple CNN model.

Dataset Partition Close-set Open-set Open-set FedOV(PROSER) (PROSER + DD)

CIFAR-10

#C = 1 10.2%±0.2% 10.6%±0.2% 33.5%±2.3% 40.0%±1.7%
#C = 2 37.2%±2.5% 34.8%±4.5% 41.3%±7.7% 42.0%±2.4%
#C = 3 43.2%±2.7% 50.2%±4.7% 54.3%±2.1% 55.6%±6.3%

pk ∼ Dir(0.5) 65.0%±0.1% 66.6%±0.1% 67.6%±0.3% 65.7%±0.7%
pk ∼ Dir(0.1) 55.9%±1.3% 58.0%±0.9% 61.3%±1.0% 61.7%±1.1%

SVHN

#C = 1 7.3%±0.1% 6.7%±0.1% 47.3%±1.3% 64.5%±1.9%
#C = 2 35.7%±7.6% 42.6%±10.9% 60.9%±1.7% 74.0%±1.1%
#C = 3 60.1%±9.5% 64.9%±8.4% 72.7%±1.3% 81.0%±1.2%

pk ∼ Dir(0.5) 85.1%±0.4% 85.2%±0.3% 84.9%±0.3% 85.7%±0.3%
pk ∼ Dir(0.1) 64.9%±0.4% 65.9%±0.8% 74.6%±0.8% 78.7%±0.6%

FMNIST

#C = 1 10.1%±0.5% 15.1%±1.1% 71.0%±2.1% 73.3%±1.6%
#C = 2 36.3%±5.5% 33.0%±1.7% 64.1%±6.7% 61.7%±11.0%
#C = 3 57.0%±7.0% 51.9%±0.9% 66.1%±2.4% 73.8%±1.7%

pk ∼ Dir(0.5) 88.5%±0.2% 88.7%±0.2% 89.1%±0.1% 88.9%±0.3%
pk ∼ Dir(0.1) 73.6%±0.4% 73.2%±0.9% 76.0%±0.8% 76.2%±1.2%

MNIST

#C = 1 15.5%±2.8% 16.5%±0.2% 76.5%±8.3% 79.3%±1.8%
#C = 2 44.3%±6.4% 48.7%±4.2% 61.5%±9.3% 64.2%±1.6%
#C = 3 59.6%±7.0% 55.9%±1.2% 73.3%±2.6% 83.7%±5.3%

pk ∼ Dir(0.5) 98.3%±0.1% 98.3%±0.1% 98.5%±0.1% 98.6%±0.0%
pk ∼ Dir(0.1) 93.3%±0.4% 93.8%±0.5% 95.8%±0.2% 96.2%±0.4%

4.3 ABLATION STUDY

We show the effect of each component of FedOV including open-set voting (PROSER), data destruc-
tion (DD), and adversarial outlier enhancement (AOE). Specifically, we add one component each
time and the results are shown in Table 2. From the table, we can observe that FedOV with all the
three components can achieve the highest accuracy in most settings. Simply applying PROSER in
FL may not increase the accuracy compared with close-set voting (e.g., CIFAR-10 with #C = 2).
Our proposed outlier generation techniques can effectively boost the accuracy of open-set voting.
Moreover, the adversarial outlier enhancement can significantly increase the accuracy in some settings
(e.g., SVHN with #C = 1). We compare with open-set voting (PROSER + AOE), i.e., using AOE
loss without DD loss in Appendix B.2.

4.4 COMBINING WITH KNOWLEDGE DISTILLATION

Assuming that there exist unlabeled public data on the server, FedOV can also be combined with
knowledge distillation like FedDF (Lin et al., 2020) and FedKT (Li et al., 2021c). We call it Distilled
FedOV. We compare Distilled FedOV with the other baselines. According to FedKT experimental
settings, we train 100 epochs for each client. For distillation, we run 100 epochs for the final student
model. According to our default settings, we use the simple CNN model and use SVHN without
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Table 3: Comparing distilled FedOV with the other baselines. The partition is pk ∼ Dir(0.5).
Dataset Distilled FedKT FedDF SOLO FedAvg FedProx FedNova SCAFFOLDFedOV
MNIST 97.7%±0.3% 95.4%±0.8% 97.1%±0.3% 78.4%±2.7% 67.3%±4.0% 67.2%±3.9% 69.6%±2.5% 67.9%±4.2%
SVHN 81.8%±1.4% 75.7%±1.0% 80.6%±3.2% 46.1%±4.2% 28.1%±5.6% 27.7%±4.9% 27.2%±6.2% 29.2%±5.0%

FMNIST 85.0%±0.1% 82.5%±0.4% 80.6%±3.3% 62.3%±1.3% 49.5%±12.9% 48.7%±13.4% 49.4%±11.3% 48.9%±13.5%
CIFAR-10 51.6%±1.4% 41.5%±2.3% 34.1%±1.9% 28.4%±1.5% 15.7%±4.3% 15.6%±4.0% 16.9%±4.1% 16.5%±5.1%

extended dataset. Note that the settings are different from FedKT paper (Li et al., 2021c), therefore
our reported accuracy differs from FedKT paper. Further details are elaborated in Appendix B.1.

We run distilled FedOV for three times and results are shown in Table 3. We can observe that Distilled
FedOV can achieve a higher accuracy than FedKT and the other iterative FL baselines with the same
size of final model, which further verifies the effectiveness of our open-set voting framework.
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Figure 4: Extension to multiple
rounds on MNIST.

Extension to Multiple Rounds After knowledge distillation,
we can further train the distilled model by FL averaging algo-
rithms (e.g., FedAvg, FedProx, etc). We conduct experiments
on MNIST with 10 clients and data partitioning pk ∼ Dir(0.5).
The results are shown in Figure 4. For FedOV_FedProx and
FedKT_FedProx, we run Distilled FedOV and FedKT for the
first round and using the global model as the initialized model
for the later rounds using FedProx. From the figure, with the
help of FedOV, the accuracy after first round is high. Then,
FedOV_FedProx can converge much faster than the other algo-
rithms.

4.5 SCALABILITY

We test the scalability of FedOV by varying the number of clients. Due to page limit, we only show
results on CIFAR-10 in Table 4. For the results on the other datasets, please refer to Appendix B.8.
From the table, we can observe that FedOV still achieves the best accuracy when increasing the
number of clients. Moreover, with the help of knowledge distillation, Distilled FedOV can outperform
distilled close-set and other iterative FL algorithms with the same storage and inference cost.

Table 4: Experimental results of different number of clients on CIFAR-10 with simple CNN model.
Client Partition FedOV Distilled Close-set Distilled FedAvg FedProx FedNova SCAFFOLD FedDF FedKTNumber FedOV close-set

20

#C = 1 41.9% 30.4% 7.9% 7.9% 10.0% 10.0% 10.0% 10.0% 9.9% 10.0%
#C = 2 45.6% 34.9% 33.0% 26.6% 10.7% 15.0% 10.0% 15.4% 26.4% 31.5%
#C = 3 57.2% 40.2% 54.1% 37.6% 10.2% 11.5% 10.1% 16.0% 13.8% 36.8%

pk ∼ Dir(0.5) 62.5% 46.4% 59.8% 43.5% 14.3% 23.4% 14.1% 16.9% 32.7% 39.7%
pk ∼ Dir(0.1) 52.4% 40.1% 48.2% 35.1% 10.1% 13.1% 13.9% 14.2% 27.5% 26.2%

40

#C = 1 45.3% 34.3% 10.1% 9.6% 10.0% 10.0% 10.0% 10.0% 8.5% 10.0%
#C = 2 56.0% 40.4% 42.1% 32.3% 10.0% 10.5% 10.0% 11.1% 27.2% 26.3%
#C = 3 60.8% 45.2% 52.1% 41.9% 10.0% 10.3% 10.0% 12.7% 29.8% 35.8%

pk ∼ Dir(0.5) 59.2% 46.7% 58.2% 46.7% 11.6% 18.7% 14.2% 18.4% 32.3% 37.2%
pk ∼ Dir(0.1) 55.0% 41.7% 48.3% 40.4% 10.3% 16.5% 10.4% 14.9% 26.4% 26.2%

80

#C = 1 43.8% 33.2% 10.0% 10.2% 9.7% 9.5% 9.8% 8.7% 9.8% 10.1%
#C = 2 56.6% 43.1% 44.2% 34.4% 10.6% 10.1% 10.0% 10.3% 22.7% 27.5%
#C = 3 54.1% 44.8% 53.4% 44.4% 14.7% 16.6% 17.7% 12.7% 33.4% 33.2%

pk ∼ Dir(0.5) 53.4% 42.6% 52.5% 44.5% 21.1% 23.9% 23.3% 11.4% 31.3% 30.4%
pk ∼ Dir(0.1) 48.5% 39.0% 44.2% 37.0% 10.9% 23.0% 22.4% 11.3% 24.2% 25.7%

5 CONCLUSION

In this work, we design a novel one-shot FL algorithm FedOV to address label skews in one-shot
federated learning. We propose open-set voting by introducing the “unknown” class in voting. We
observe that directly applying state-of-the-art open-set recognition algorithm PROSER to one-shot
learning has the problem of limited outliers due to limited number of classes. To address those issues,
we develop two techniques, data destruction and adversarial outlier enhancement, to improve the
performance of open-set voting. Our extensive experiments show that FedOV can achieve significant
accuracy improvement compared with the other baselines under diverse label skew settings.
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A DISCUSSIONS

A.1 MORE RELATED WORKS ON ONE-SHOT FL

From the perspective of data sharing, Zhou et al. (2020) proposes to perform dataset distillation
and upload the distilled data to server for centralized training. Kasturi et al. (2020) proposes to
fit the features in each client by some distribution. Then the server generates fake data with these
distributions. Both approaches raise additional privacy concerns due to the uploaded fake data or
feature distributions. Besides, we cannot find source code for both methods, so we do not compare
FedOV with them.

XorMixFL (Shin et al., 2020) proposes to use exclusive OR operation (XOR) to encode and decode
samples for data sharing. However, it assumes that all clients and the server have labelled samples
of a global class, which is impractical in real-world applications. In our experiments, we adopt the
setting like many existing studies (Li et al., 2020; Karimireddy et al., 2020; Wang et al., 2020a; Hsu
et al., 2019; Li et al., 2021b), which cannot guarantee the above assumption. Therefore, we do not
compare FedOV with XorMixFL in our experiments.

We compare these one-shot FL algorithms in Table 5. None of the previous one-shot FL algorithms
conduct experiments on both distribution-based and quantity-based label skews.

Table 5: Comparison among existing one-shot FL algorithms.
Perspective Algorithm Distribution-based Quantity-based Only model Free of

label skews label skews uploaded public data

Model ensemble

Close-set voting (Guha et al., 2019) ✗ ✗ ✓ ✓
Distilled Close-set (Guha et al., 2019) ✗ ✗ ✓ ✗

FedKT (Li et al., 2021c) ✓ ✗ ✓ ✗
FedSyn (Zhang et al., 2021) ✓ ✗ ✓ ✓

FedOV (ours) ✓ ✓ ✓ ✓
Distilled FedOV (ours) ✓ ✓ ✓ ✗

Sharing fake data
DOSFL (Zhou et al., 2020) ✗ ✓ ✗ ✓

Fusion learning (Kasturi et al., 2020) ✗ ✗ ✗ ✓
XorMixFL (Shin et al., 2020) ✗ ✓ ✗ ✗

A.2 IMPLICATIONS FOR THE DIFFICULTY OF GENERATING OUTLIERS BY GANS

While we propose data destruction to generate outliers, another method is to generate outliers by
GANs. We apply the methods in Neal et al. (2018) to generate counterfactual images in MNIST
dataset. However, it is very difficult to tune the hyper-parameters to generate outliers. We encounter
two problems: (1) generated images are so good that the classifier goes on strike because it cannot tell
the difference between original images and counterfactual images; (2) generated images are so bad
that the classifier can easily tell the difference by some simple features. The loss quickly converges to
zero. For example, since the generated counterfactual images are all blurry, the classifier may classify
clear images as inlier and blurry images as outlier. When it encounters clear images of other digits
during testing, it can classify these samples into its known class.

By trials and errors, we summarize two criteria of good outliers for future researchers’ reference.
Good outlier needs to (1) be clearly different from inliers; and (2) not carry certain types of simple
feature that can be easily told difference.

A.3 CHALLENGES OF APPLYING OSR TO FL AND POSSIBLE DIRECTIONS

One possible future direction of FedOV is to set a threshold to normalize each client’s outlier
probability. Take a simple example, if a client only sees dogs, another client only sees cats. The first
model predicts 0.001% outlier for dogs and 0.01% outlier for cats. The second model predicts 5%
outlier for cats and 50% outlier for dogs. For ROC-AUC metric, both models get 100% ROC-AUC
for outlier detection among dogs and cats. However for FL open-set voting framework, the voting
result is always dog. This is due to the unreasonable outlier probability scale of first model.

Another promising direction is to come up with more systematic and diverse data destruction methods.
Although our current approach can outperform cutpaste, the outlier types are still limited. For future
research, one can adapt more computer vision algorithms to further improve diversity.
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Finally, our current data destruction framework only works for vision tasks. For tabular dataset or
language dataset, it deserves further research how to augment diverse outliers.

A.4 A BETTER BENCHMARK FOR OSR ALGORITHMS

From the perspective of open-set recognition, we find that FL voting can serve as a more realistic,
comprehensive and challenging benchmark to test open-set recognition algorithms. Previous open-
set recognition experiments mainly divide the classes into totally known and totally unknown, i.e.
the training set has either full data of a class or no data of a class. However, in reality, grey area
exists where a model sees only a few training samples of some class. Moreover, previous open-set
recognition or outlier detection experiments use ROC-AUC as the metric, which avoids transforming
the outlier score to some probability. Instead, ROC-AUC only cares the relative score between known
and unknown class. However, it is essential to output a reasonable unknown probability in real-world
application. Our FL open-set voting benchmark includes these challenges. Its data partitioning
strategies are based on Li et al. (2021b), which can be easily adjusted to various settings.

B ADDITIONAL EXPERIMENTS

In this Appendix, we first explain further experimental details in Appendix B.1. Then we conduct
more ablation studies about data destruction in Appendix B.2 and operations of data destruction
in Appendix B.3. Next we experiment with top-k confidence voting in Appendix B.4. This is a
generalization of FedOV where we just count k most confident votes. For heavier models and more
complicated datasets, we experiment with VGG-9 in Appendix B.5 and ResNet-50 on CIFAR-100 in
Appendix B.6. In Appendix B.7, we thoroughly compare our data destruction with a similar method
Cutpaste Li et al. (2021a). We justify that data destruction can generate more diverse outliers and
achieve higher accuracy. More experiments on scalability are conducted in Appendix B.8. FedOV is
further compared with FedDF under different label skews (Appendix B.9), and with FedAwS under
#C=1 partition (Appendix B.10). We also evaluate the effectiveness of DD and AOE on centralized
OSR settings in Appendix B.11. Finally, we compare FedOV with baselines under multiple rounds in
Appendix B.12.

B.1 FURTHER DETAILS

We summarize the datasets in our experiments in Table 6.

Table 6: Basic information of datasets we use.
Datasets Training sample size Test sample size Input dimension # of classes

CIFAR-10 50,000 10,000 3,072 10
SVHN 73,257 26,032 3,072 10

FMNIST 60,000 10,000 784 10
MNIST 60,000 10,000 784 10

CIFAR-100 50,000 10,000 3,072 100

For PROSER, we choose β = 0.01, γ = 1, according to the default trade-off parameter setting in the
official code1. For ease of implementation, we omit the extension to multiple dummy classifiers.

For data destruction, details of our current transformations are as follow. The core idea is to destroy
the key features of the original image while keeping some scrappy features.

• Random resized crop: with scale range (0.1, 0.33). We choose a small portion in order not
to contain the key features and enlarge that portion to original size.

• Gaussian blur: with random kernel ranging from 1*3 to 5*9, and random σ ∈ (10, 100).
We choose a large σ to blur out key features.

• Random erasing: with scale range (0.33, 0.5). We choose a large portion to erase in order to
spoil key features.

1https://github.com/zhoudw-zdw/CVPR21-Proser
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• Random paste: We random paste half of the image to another place.

• Random swap: We swap left-side and right-side, or upper-side and down-side.

• Random rotation: We random rotate two square portions of the image.

For adversarial learning, we set 5 local steps and each step size 0.002.

For Distilled FedOV, the local training step is the same as FedOV. After the server collects all local
models, it performs knowledge distillation based on the open-set voting results. Formally, denote
the local models f1, ..., fN , and each model outputs c+ 1 scores where the last score is for the class
“unknown”. The student model fs outputs c scores for the c known classes.

For an input x, we add the output probability of each local model scores(x) =
∑N

i=1 σ(fi(x))
where σ is the softmax function. The voting result is the first c scores for the c known classes, i.e.
v(x) = scores(x)0,1,...,c−1. The normalized probability vn(x) = v(x)

|v(x)|1 is used as the target to
distill the student model. Therefore, we have distillation loss Ldis = KL(σ(fs(x)), vn(x)), where
KL is Kullback–Leibler divergence.

By default, we use the first half of the test set as the public unlabelled dataset for knowledge
distillation in the server and then test the distilled model on the second half of the test set. We use
Adam optimizer with learning rate 0.001, and train 100 epochs on the public unlabelled dataset for
the distillation process.

For FedProx, we tune the hyper-parameter µ ∈ {0.001, 0.01, 0.1, 1}. For methods requiring knowl-
edge distillation, we use first half of test set as public unlabelled dataset. The other half are used to
compute accuracy.

Our simple CNN contains two 5*5 convolution layers with 2*2 max pooling layer. The first has 6
channels and the second has 16 channels. Then it has two fully-connected layers with 120 and 84
neurons separately. We use ReLu as the activation function between layers.

All experiments are conducted on a single 3090 GPU. We compare computing time of different
algorithms in Table 7.

Table 7: Running time of different algorithms with simple CNN on CIFAR-10 dataset. There are 10
clients and each client runs 200 local epochs with only one communication. Our device is a single
3090 GPU.

FedOV Close-set FedAvg FedProx FedNovavoting
∼3.0 h ∼1.5 h ∼1.5 h ∼2.0 h ∼1.5 h

For the additional time cost of using data destruction (DD) and adversarial outlier enhancement
(AOE), it costs about 2 times computation during local training in our experiments, depending on
different datasets. The experiments shown in Table 8 are with partition pk ∼ Dir(0.5) into 10 clients.

Table 8: Time for the first client to finish local training of 200 epochs. Our device is a single 3090
GPU.

Dataset FedOV Open-set voting w/o DD & AOE
CIFAR-10 ∼ 17 min ∼ 9 min
FMNIST ∼ 12 min ∼ 6 min

For more implementation details, please refer to our source code.

B.2 USING ADVERSARIAL LEARNING WITHOUT DATA DESTRUCTION

In this section, we test on the effect of adversarial learning. Adversarial samples are based on outliers
generated by data destruction. Here we also use data destruction outliers to generate adversarial
samples, but we omit the loss of data destruction (DD). Results are shown in Table 9. Generally,
omitting the loss of DD is not a good choice.
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Table 9: Experimental results of different FL voting strategies with simple CNN model. We repeat all
experiments for three times.

Dataset Partition Open-set FedOV(PROSER + AOE)

CIFAR-10

#C = 1 39.2%±3.1% 40.0%±1.7%
#C = 2 35.8%±3.0% 42.0%±2.4%
#C = 3 57.6±0.3% 55.6%±6.3%

pk ∼ Dir(0.5) 65.7%±0.7% 65.7%±0.7%
pk ∼ Dir(0.1) 61.3%±0.4% 61.7%±1.1%

B.3 COMPARING WITH USING SINGLE TRANSFORMATION

In this section, we verify the effectiveness of random data destruction from a pool of transformations.
We compare with using single transformation. We experiment on CIFAR-10 dataset, and all algorithms
are open-set voting containing the same PROSER loss. The differences are their data destruction
strategies. Results are shown in Table 10. None of single transformation can reach the accuracy of
random transformation from data destruction set.

Table 10: Experimental results of using random data destruction from a pool of transformations,
compared with using single transformation.

Partition Data Random Gaussian Random Random Random Random
destruction resized crop blur erasing paste swap rotation

#C = 1 33.5%±2.3% 15.2%±0.8% 16.1%±0.7% 11.6%±1.6% 23.9%±1.5% 32.3%±0.3% 25.6%±0.8%
#C = 2 41.3%±7.7% 37.7%±0.5% 38.6%±2.0% 36.4%±1.6% 42.4%±5.0% 37.3%±5.6% 35.5%±7.1%
#C = 3 54.3%±2.1% 50.5%±3.6% 52.3%±5.3% 48.7%±6.0% 52.3%±4.0% 53.8%±2.8% 51.2%±4.0%

pk ∼ Dir(0.5) 67.6%±0.3% 66.0%±1.1% 66.4%±1.2% 66.5%±0.8% 66.6%±0.7% 67.8%±0.8% 68.0%±0.9%
pk ∼ Dir(0.1) 61.3%±1.0% 56.9%±3.6% 56.1%±2.7% 54.9%±2.3% 56.4%±2.6% 58.2%±2.9% 57.9%±2.0%

B.4 TOP-K CONFIDENCE VOTING

A possible alteration to our framework is to select the top k confident models for voting. Specifically,
after getting predictions of all models, the server sorts all predictions by the probability of “unknown”
channel. Then we sum up predictions of the lowest k “unknown” (i.e. the top k confident) while
discarding all other predictions. Hyper-parameter k can be tuned for different tasks.

We visualize the voting accuracy curve versus k for experiments of VGG-9 on CIFAR-10 in Figure 5.
As we can see, the best k differs for different label skews. For extreme #C = 2, k = 1 seems the
best. For slight skew pk ∼ Dir(0.5), k = 10 is the best. Under #C = 2 cases, each model is trained
only on two classes, in such case we would better follow the most confident expert, since others are
more likely to make wrong prediction. Under pk ∼ Dir(0.5), models are trained on more classes
and are generally more clever, where considering all the models for prediction becomes better.
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Figure 5: Voting accuracy on different k of VGG-9 on CIFAR-10.
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By tuning k for different settings, results of best top-k confidence voting is shown in Table 11. For
close-set voting, we report the accuracy of counting votes from all 10 clients, since all clients are
equal. For open-set voting, we report the best accuracy among counting votes from top 1, 2, 3, ..., 10
confident clients. We can get similar conclusions as in Section 4.3.

Table 11: Experimental results of different FL voting strategies with simple CNN model. We report
the best top-k confidence voting accuracy. We repeat all experiments for three times.

Dataset Partition Close-set Open-set Open-set FedOV(PROSER) (PROSER + DD)

CIFAR-10

#C = 1 10.2%±0.2% 10.9%±0.6% 33.5%±2.3% 40.0%±1.7%
#C = 2 37.2%±2.5% 43.9%±0.3% 49.7%±0.5% 48.9%±1.2%
#C = 3 43.2%±2.7% 54.9%±2.0% 58.9%±0.6% 58.8%±1.6%

pk ∼ Dir(0.5) 65.0%±0.1% 66.7%±0.1% 67.6%±0.3% 65.7%±0.7%
pk ∼ Dir(0.1) 55.9%±1.3% 58.0%±0.8% 61.3%±1.0% 61.7%±1.1%

SVHN

#C = 1 7.3%±0.1% 6.8%±0.1% 47.3%±1.3% 64.5%±1.9%
#C = 2 35.7%±7.6% 60.2%±2.2% 62.3%±1.7% 74.7%±0.9%
#C = 3 60.1%±9.5% 73.1%±2.9% 73.6%±1.1% 81.4%±1.2%

pk ∼ Dir(0.5) 85.1%±0.4% 85.4%±0.3% 84.9%±0.3% 85.7%±0.3%
pk ∼ Dir(0.1) 64.9%±0.4% 69.2%±1.1% 74.6%±0.9% 78.7%±0.6%

FMNIST

#C = 1 10.1%±0.5% 18.8%±1.4% 71.0%±2.1% 73.3%±1.5%
#C = 2 36.3%±5.5% 46.2%±2.7% 70.5%±3.6% 74.9%±2.2%
#C = 3 57.0%±7.0% 64.4%±0.4% 76.0%±2.8% 77.4%±1.6%

pk ∼ Dir(0.5) 88.5%±0.2% 88.7%±0.2% 89.1%±0.1% 89.0%±0.3%
pk ∼ Dir(0.1) 73.6%±0.4% 73.2%±0.9% 77.9%±0.6% 78.5%±0.6%

MNIST

#C = 1 15.5%±2.8% 17.3%±0.6% 76.6%±8.3% 79.4%±1.7%
#C = 2 44.3%±6.4% 69.3%±2.4% 88.6%±1.4% 88.2%±4.8%
#C = 3 59.6%±7.0% 87.3%±3.9% 93.7%±2.4% 96.2%±1.1%

pk ∼ Dir(0.5) 98.3%±0.1% 98.3%±0.1% 98.5%±0.1% 98.6%±0.1%
pk ∼ Dir(0.1) 93.3%±0.4% 95.4%±0.2% 96.6%±0.1% 96.6%±0.1%

B.5 USING HEAVIER MODEL

In this section, we use heavier VGG-9 model for CIFAR-10, since CIFAR-10 underfits in a simple
CNN model. Results are shown in Table 12 and 13. For VGG-9 experiments, our method still works.

Table 12: Experimental results of different FL voting strategies with VGG-9 model. We repeat all
experiments for three times.

Dataset Partition Close-set Open-set Open-set FedOV(PROSER) (PROSER + DD)

CIFAR-10

#C = 1 10.2%±0.3% 13.2%±0.6% 32.7%±4.2% 46.4%±1.3%
#C = 2 36.2%±2.4% 35.1%±4.8% 38.6%±10.3% 42.0%±1.4%
#C = 3 50.8%±11.0% 51.1%±1.8% 62.4%±6.7% 63.0%±4.4%

pk ∼ Dir(0.5) 75.8%±4.7% 79.0%±0.5% 80.7%±0.4% 80.6%±0.5%
pk ∼ Dir(0.1) 60.9%±1.5% 63.7%±0.7% 68.3%±0.4% 70.6%±0.4%

Table 13: Experimental results of different FL voting strategies with VGG-9 model. We report the
best top-k confidence voting accuracy. We repeat all experiments for three times.

Dataset Partition Close-set Open-set Open-set FedOV(PROSER) (PROSER + DD)

CIFAR-10

#C = 1 10.2%±0.3% 13.2%±0.6% 33.1%±4.4% 47.1%±1.5%
#C = 2 36.2%±2.4% 42.7%±4.5% 56.0%±2.1% 59.0%±4.0%
#C = 3 50.8%±11.0% 64.2%±4.4% 66.3%±4.1% 71.9%±2.9%

pk ∼ Dir(0.5) 75.8%±4.7% 79.1%±0.6% 80.8%±0.4% 80.8%±0.4%
pk ∼ Dir(0.1) 60.9%±1.5% 67.8%±0.8% 71.0%±0.5% 72.3%±1.4%
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B.6 EXPERIMENTS ON CIFAR-100 WITH RESNET-50

Besides VGG-9, we also experiment on ResNet-50 to verify the effectiveness of FedOV. We use
CIFAR-100 to test on more complicated datasets. Results are shown in Table 14. For the baselines of
one-round FedAvg, FedProx, SCAFFOLD and FedNova, we omit them since their one-shot accuracy
are much lower (see Table 1, 4, 17). FedKT trains multiple models in each client and has huge
computation and storage cost when using ResNet-50, so we omit it. Actually in FedKT paper (Li
et al., 2021c), the authors do not experiment with heavy models like ResNet-50 either. Note that
ResNet-50 has batch normalization layers. Therefore in each training batch, we have to mix train data
and generated outliers. Previously we compute a batch of train data and another batch of generated
outliers separately. For ResNet-50, it can cause problem due to batch normalization. To speed up
computation, we only use data destruction strategy in our experiments for FedOV. Experimental
results show that FedOV is better than close-set voting and FedDF for CIFAR-100 with ResNet-50
model.

Table 14: Experimental results on ResNet-50. We run 100 local epochs each client, and train the
student model for 100 epochs during distillation.

Dataset Client Partition FedOV Distilled Close-set Distilled FedDFNumber FedOV close-set

CIFAR-100

10 pk ∼ Dir(0.5) 54.0% 31.7% 51.6% 30.7% 27.5%
pk ∼ Dir(0.1) 47.3% 26.6% 44.7% 25.6% 22.5%

100
#C = 1 3.6% 2.2% 1.0% 1.0% 0.6%
#C = 2 9.4% 5.9% 4.8% 4.9% 1.2%
#C = 3 13.4% 9.9% 10.0% 8.9% 1.6%

B.7 COMPARISON WITH CUTPASTE

We find that an existing study proposed CutPaste (Li et al., 2021a) for outlier detection task, which
generates outliers by applying operations on the training data. However, CutPaste contains limited
operations and these operations cannot effectively corrupt the original features.

In this section, we compare our data destruction with Cutpaste (Li et al., 2021a) and explains why we
do not include Cutpaste in our main experiments.

First, we show the outliers generated by Cutpaste in Figure 6. Cutpaste outliers are less diverse than
our data destruction in Figure 3a.

Figure 6: Outliers generated by Cutpaste. The first column is real samples and the other columns are
Cutpaste outliers.

Next, we show some experimental results. We experiment on simple CNN model under CIFAR-10
setting. Mixture means for each image, we augment using our method and Cutpaste each with
50% chance. Results are shown in Table 15. Even in some cases, Cutpaste or mixture can slightly
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outperform our method, in other cases our method can greatly outperform them. Therefore, adding
Cutpaste can hardly bring significant improvement.

Table 15: Experimental results of Cutpaste and our augmentation. We report the accuracy of counting
votes from all 10 clients.

Dataset Partition Open-set (PROSER + Open-set (PROSER + Open-set
Cutpaste) mixture) (PROSER + DD)

CIFAR-10

#C = 1 17.8%±2.2% 24.7%±1.7% 33.5%±2.3%
#C = 2 36.7%±2.0% 39.0%±3.8% 41.3%±7.7%
#C = 3 51.5%±3.2% 52.8%±2.4% 54.3%±2.1%

pk ∼ Dir(0.5) 67.7%±0.7% 68.5%±0.5% 67.6%±0.3%
pk ∼ Dir(0.1) 57.5%±2.2% 59.4%±1.7% 61.3%±1.0%

We also conduct similar experiments based on the metric of outlier detection. Our dataset includes
MNIST, Fashion-MNIST and CIFAR-10. We use one class when training and all classes of the same
dataset when testing. The metric is ROC-AUC of the outlier probability. We run 200 local epochs
with batch size 64, learning rate 0.001. For ROC-AUC, we report the average of last 10 epochs.
Results are shown in Table 16. Our augmentation method still outperforms Cutpaste and mixture.

In conclusion, our approach can generate more diverse outliers and achieve better accuracy compared
with CutPaste.

Table 16: Experimental results of cutpaste and our augmentation under common outlier detection
metric

Dataset Known class Open-set (PROSER + Open-set (PROSER + Open-set
Cutpaste) mixture) (PROSER + DD)

FMNIST

0 84.7% 87.3% 93.7%
1 96.9% 98.1% 98.1%
2 82.9% 86.9% 89.4%
3 87.4% 85.7% 89.2%
4 81.7% 87.7% 93.1%
5 89.7% 90.1% 91.7%
6 73.4% 78.1% 80.7%
7 97.4% 97.6% 95.8%
8 84.8% 84.4% 91.3%
9 97.2% 97.8% 96.8%

Average 87.6% 89.4% 92.0%

MNIST

0 97.9% 98.6% 99.1%
1 96.4% 95.5% 89.0%
2 84.7% 83.2% 97.8%
3 82.3% 83.1% 94.1%
4 90.6% 92.8% 94.4%
5 88.2% 86.4% 95.7%
6 96.1% 98.6% 98.9%
7 86.8% 92.5% 92.8%
8 83.1% 90.0% 96.7%
9 93.2% 95.1% 98.1%

Average 89.9% 91.6% 95.7%

CIFAR-10

0 56.9% 60.8% 68.1%
1 48.7% 72.1% 81.8%
2 58.0% 58.9% 66.4%
3 59.2% 62.6% 61.2%
4 58.1% 59.0% 62.2%
5 69.1% 74.2% 72.2%
6 61.0% 66.0% 71.8%
7 62.2% 68.6% 76.3%
8 62.1% 63.6% 71.5%
9 54.7% 61.8% 73.8%

Average 59.0% 64.8% 70.5%
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B.8 MORE EXPERIMENTS ON SCALABILITY

In this section, we show results of scalability experiments on SVHN, Fashion-MNIST and MNIST.
Except for datasets, other experimental settings are the same as in main paper. Results are shown in
Table 17. FedOV still works well for scalability on SVHN, Fashion-MNIST and MNIST. Distilled
FedOV can also outperform distilled close-set voting, FedAvg, FedProx and FedNova with single
communication.

Both FedDF and distilled close-set voting can outperform FedAvg. Note that the ensemble of FedDF
is based on average logits, while distilled close-set voting uses average probability, i.e. the softmax
of logits. After softmax, the probability is limited in the range of [0,1]. However in FedDF, logits can
be arbitrary real number. If a stupid local model outputs some very bad logits, it can greatly influence
the ensemble of FedDF. This can probability explain why FedDF has different performance compared
with distilled close-set voting, although both approaches are similar. Especially when there are 80
clients where it is more likely to have some very stupid local models, FedDF has worse performance
than distilled close-set voting.

Table 17: Experimental results of different number of clients with simple CNN model.
Dataset Client Partition FedOV Distilled Close-set Distilled FedAvg FedProx FedNova SCAFFOLD FedDF FedKTNumber FedOV close-set

SVHN

20

#C = 1 71.0% 67.1% 16.1% 16.4% 11.1% 8.4% 6.1% 8.8% 19.7% 6.7%
#C = 2 80.0% 76.2% 33.4% 31.9% 25.3% 10.2% 10.3% 9.8% 45.9% 45.9%
#C = 3 84.3% 80.6% 56.1% 52.4% 24.1% 19.4% 20.1% 14.2% 60.3% 58.8%

pk ∼ Dir(0.5) 86.1% 81.7% 85.4% 81.8% 39.4% 36.1% 38.2% 30.2% 76.4% 72.0%
pk ∼ Dir(0.1) 82.7% 79.2% 74.0% 71.4% 22.6% 24.6% 23.6% 20.0% 66.3% 65.0%

40

#C = 1 77.6% 72.6% 6.4% 6.6% 19.6% 9.7% 6.4% 10.9% 6.5% 6.7%
#C = 2 81.6% 78.3% 51.5% 49.5% 19.6% 19.9% 8.7% 19.6% 69.3% 53.4%
#C = 3 85.4% 82.4% 76.8% 74.1% 19.6% 21.3% 23.2% 19.9% 67.9% 68.4%

pk ∼ Dir(0.5) 86.1% 83.0% 84.7% 81.2% 21.1% 21.4% 23.3% 19.6% 76.9% 67.3%
pk ∼ Dir(0.1) 81.2% 79.5% 72.0% 70.6% 19.6% 19.6% 16.4% 19.6% 65.5% 26.8%

80

#C = 1 80.2% 79.0% 7.3% 7.2% 19.6% 18.6% 6.4% 19.3% 6.6% 6.7%
#C = 2 84.6% 82.1% 77.8% 75.0% 22.9% 19.7% 6.4% 19.6% 69.6% 42.0%
#C = 3 84.9% 81.4% 81.0% 79.7% 21.7% 23.6% 20.7% 19.6% 62.8% 46.6%

pk ∼ Dir(0.5) 84.5% 81.9% 80.5% 78.3% 23.6% 26.2% 25.0% 19.6% 68.4% 45.8%
pk ∼ Dir(0.1) 81.4% 77.9% 68.5% 66.9% 19.6% 19.6% 23.9% 19.6% 55.8% 18.0%

FMNIST

20

#C = 1 77.2% 74.9% 10.7% 10.6% 10.0% 12.8% 10.0% 10.0% 10.0% 9.9%
#C = 2 72.4% 69.0% 41.9% 39.6% 10.0% 10.0% 10.0% 10.0% 35.9% 34.8%
#C = 3 76.1% 73.3% 58.2% 54.8% 37.2% 32.2% 36.0% 33.1% 47.9% 48.7%

pk ∼ Dir(0.5) 87.5% 84.0% 87.2% 83.6% 61.6% 63.3% 64.8% 58.9% 80.3% 80.5%
pk ∼ Dir(0.1) 72.7% 70.2% 66.7% 65.6% 40.1% 36.0% 35.8% 34.4% 72.3% 68.0%

40

#C = 1 75.7% 74.1% 5.8% 5.8% 14.1% 17.4% 13.7% 14.2% 10.4% 9.9%
#C = 2 77.6% 75.5% 55.3% 55.3% 22.4% 23.5% 18.8% 14.3% 48.4% 47.6%
#C = 3 68.7% 68.0% 49.4% 48.6% 39.0% 42.8% 46.4% 23.2% 56.1% 61.7%

pk ∼ Dir(0.5) 86.9% 82.6% 86.2% 83.9% 58.4% 60.4% 58.5% 42.0% 79.9% 77.0%
pk ∼ Dir(0.1) 81.3% 78.2% 74.4% 74.1% 25.1% 24.3% 27.9% 15.9% 64.2% 61.4%

80

#C = 1 77.8% 76.6% 10.0% 9.9% 10.0% 11.0% 10.0% 13.3% 10.2% 9.9%
#C = 2 78.8% 75.2% 54.4% 52.8% 35.6% 35.5% 35.7% 18.2% 47.4% 69.8%
#C = 3 84.6% 81.6% 66.2% 63.5% 51.5% 45.6% 47.7% 31.9% 59.0% 73.9%

pk ∼ Dir(0.5) 85.3% 83.5% 84.5% 82.2% 57.7% 57.0% 61.1% 44.7% 73.9% 72.6%
pk ∼ Dir(0.1) 78.9% 76.8% 71.7% 69.9% 32.4% 38.2% 35.9% 18.0% 63.7% 68.2%

MNIST

20

#C = 1 88.5% 91.6% 18.6% 19.5% 11.4% 11.4% 11.4% 11.4% 10.3% 10.3%
#C = 2 86.1% 84.5% 44.6% 45.6% 24.9% 21.1% 24.9% 28.5% 48.3% 29.8%
#C = 3 88.9% 86.4% 59.0% 57.1% 56.1% 55.9% 51.4% 41.6% 78.7% 58.4%

pk ∼ Dir(0.5) 98.2% 97.8% 97.3% 97.2% 77.9% 74.4% 78.4% 66.7% 97.5% 95.5%
pk ∼ Dir(0.1) 87.5% 88.2% 83.2% 84.9% 44.0% 32.6% 45.4% 36.5% 94.0% 80.2%

40

#C = 1 83.1% 84.7% 10.4% 11.5% 13.5% 15.3% 9.5% 10.5% 10.3% 10.3%
#C = 2 87.1% 87.6% 60.9% 62.0% 42.1% 33.3% 32.0% 20.2% 34.5% 33.0%
#C = 3 97.1% 97.5% 69.6% 68.7% 60.2% 54.9% 50.1% 44.5% 80.9% 64.1%

pk ∼ Dir(0.5) 97.6% 97.1% 96.4% 97.2% 72.6% 72.8% 73.2% 72.5% 87.4% 92.1%
pk ∼ Dir(0.1) 94.2% 93.6% 85.1% 86.1% 38.0% 49.9% 43.9% 42.6% 84.6% 79.5%

80

#C = 1 89.5% 91.4% 10.8% 10.3% 11.4% 11.8% 11.4% 11.3% 12.1% 10.3%
#C = 2 96.0% 95.4% 67.1% 65.9% 34.0% 30.9% 31.1% 14.9% 58.2% 56.8%
#C = 3 96.9% 97.4% 81.2% 82.2% 49.3% 49.4% 45.3% 29.6% 78.2% 74.3%

pk ∼ Dir(0.5) 96.5% 96.9% 94.4% 95.6% 69.7% 70.5% 71.2% 59.0% 81.6% 85.6%
pk ∼ Dir(0.1) 94.2% 94.4% 86.1% 89.0% 40.3% 42.6% 41.1% 36.0% 79.0% 86.7%

B.9 COMPARING DISTILLED FEDOV WITH FEDDF

We compare Distilled FedOV with FedDF under various label skews in Table 18. We have 10 clients
and each client trains 100 local epochs. The model is simple CNN and we repeat all experiments
three times with random seed 0,1,2 respectively. pk ∼ Dir(2) is the most IID partition, while
pk ∼ Dir(0.1) is the most non-IID partition. As we can see, Distilled FedOV outperforms FedDF
in all settings. In the more non-IID setting pk ∼ Dir(0.1), the improvement of Distilled FedOV is
significantly more than the other two settings.
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Table 18: Comparison between distilled FedOV and FedDF under different levels of label skews.
Partition Dataset Distilled FedOV FedDF Improvement

pk ∼ Dir(2)

MNIST 98.4%±0.3% 97.6%±0.5% 0.8%
SVHN 84.7%±0.4% 82.7%±2.2% 2.0%

FMNIST 85.6%±0.5% 81.8%±1.9% 3.8%
CIFAR-10 53.2%±0.6% 43.3%±1.6% 9.9%

pk ∼ Dir(0.5)

MNIST 97.7%±0.3% 97.1%±0.3% 0.6%
SVHN 81.8%±1.4% 80.6%±3.2% 1.2%

FMNIST 85.0%±0.1% 80.6%±3.3% 4.4%
CIFAR-10 51.6%±1.4% 34.1%±1.9% 17.5%

pk ∼ Dir(0.1)

MNIST 85.4%±1.7% 80.2%±6.7% 5.2%
SVHN 73.8%±1.0% 61.7%±7.3% 12.1%

FMNIST 73.4%±1.5% 60.3%±9.6% 13.1%
CIFAR-10 45.5%±0.9% 22.9%±4.3% 22.6%

B.10 COMPARING WITH FEDAWS ON #C=1

For the setting where each client only has one class, FedAwS (Yu et al., 2020) proposes spreadout
regularization to push the embeddings of each class apart from each other to avoid all inputs
collapsing to a single point. FedUV (Hosseini et al., 2021) argues that FedAwS leaks the sensitive
class embedding information to the server. The authors propose to use error-correcting codes to
protect the embeddings and achieve similar accuracy compared with FedAwS. In FedUV paper
(Hosseini et al., 2021), both FedUV and FedAwS are compared with FedAvg with regular softmax
cross-entropy loss function on user verification tasks. The authors conclude that FedAvg with regular
softmax cross-entropy loss achieves the best accuracy in most cases, however regular FedAvg leaks
class embeddings to the server and all other clients. FedUV focuses more on privacy protection
and has lower accuracy than FedAvg, while we focus on accuracy and our FedOV has significantly
outperformed FedAvg, therefore we do not compare with FedUV.

There are also works specifically for the real-world context of #C=1, such as federated face recognition
(Liu et al., 2022). However, it focuses on personalized FL, and each client can access a public dataset
to assist training, which is different from our settings. Therefore, we do not compare with it.

Next, we compare FedOV with FedAwS on #C=1 setting. We use the default k = 10 in FedAwS
paper. Since we only have 10 clients, it equals calculating the distance with all other class embeddings.
We tune the best λ ∈ {10, 100} according to the authors’ suggestions. We use the same squared
hinge loss with hyper-parameter 0.9 as the original paper. FedAwS paper does not state the number
of local epochs. From our experiments, one local epoch is enough for convergence under #C=1. For
successive epochs, the loss is almost zero and the accuracy does not improve. By default, for both
FedAwS and FedAvg, we train 1 local epoch with learning rate 0.001.

Results are shown in Table 19. As we can see, FedOV significantly outperforms FedAwS and FedAvg
in one round. After one round, FedAwS and FedAvg achieve similar accuracy.

Table 19: Comparison between FedOV, FedAwS, and FedAvg under #C=1 partition. The model is
simple CNN. We run three times for each setting.

Dataset FedOV FedAwS FedAvg
MNIST 79.3%±1.8% 11.6%±2.3% 10.1%±1.3%
SVHN 64.5%±1.9% 19.6%±0.0% 18.2%±1.5%

FMNIST 73.3%±1.6% 10.4%±0.7% 10.2%±0.3%
CIFAR-10 40.0%±1.7% 10.0%±0.4% 11.3%±1.4%

B.11 PERFORMANCE OF DD AND AOE ON CENTRALIZED OSR EXPERIMENTAL SETTINGS

Our two techniques DD and AOE can also be extended to centralized OSR training to augment the
outliers. In this section, we explore how they perform in centralized OSR experimental settings. It
clarifies why DD and AOE are more suitable and more important for FL label skew settings.
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We utilize the common setting of OSR algorithm evaluation. For MNIST, Fashion-MNIST, CIFAR-10
and SVHN datasets, we regard the first 2, 4, 6 and 8 classes as known during training. During testing,
all 10 classes in the test set appear.

We compare PROSER+DD+AOE with PROSER, and run 200 epochs each. The model is simple
CNN. We show the results in Table 20. As we can see, under the OSR settings, adding our DD and
AOE techniques can also bring improvement compared to the state-of-the-art PROSER algorithm in
most cases. When there are fewer known classes, the average improvement brought by our techniques
is larger. For the experimental settings of many OSR papers (Zhou et al., 2021; Neal et al., 2018;
Perera et al., 2020; Yoshihashi et al., 2019), the OSR model is trained on at least 4 known classes.
The scenario of a limited number of classes (such as 2 classes) is not studied.

For PROSER, we can see a clear trend that when the number of known classes decreases, the accuracy
decreases. Since PROSER generates outliers between classes, when the number of known classes
is limited, the generated outliers are not diverse enough to train a good OSR model. Therefore,
PROSER is inapplicable to scenarios with limited known classes. Under FL label skews, some parties
may have limited data for some labels due to privacy regulations and data distribution heterogeneity.
Therefore, some clients may have limited known classes, e.g. only 1 class or 2 classes. And since
there are multiple clients, it is unlikely to ensure that all clients have at least some number of classes.
Such scenarios are different from typical centralized OSR experimental settings and pose great
challenges for PROSER as we also show in Figure 2. Our two techniques DD and AOE can tackle
these challenges under the scenario of a limited number of classes. There is no clear relation between
the accuracy of adding our two techniques and the number of known classes. It is because the task
difficulty is not linear w.r.t the number of known classes. More known classes can be both a benefit
and a challenge. The benefit is that more examples of diverse classes help generate more diverse
outliers in-between for better outlier detection. The challenge is that the task is more complicated as
the model has to classify more seen classes.

In conclusion, although DD and AOE can be extended to centralized OSR settings, they can bring
more significant improvement to FL and are more essential for FL with label skews, compared with
PROSER when the number of classes is limited, such as in FL label skew scenarios.

Table 20: Test accuracy comparison between PROSER+DD+AOE with PROSER under centralized
OSR settings. “Unknown” is regarded as a new class besides the seen classes. We run three times for
each setting.

# of Dataset PROSER PROSER Improvement Average
known classes +DD+AOE Improvement

2

MNIST 84.2%±2.2% 51.1%±11.0% 33.1%

39.7%SVHN 75.9%±0.9% 30.7%±2.8% 45.2%
FMNIST 70.1%±0.5% 25.2%±1.0% 44.9%

CIFAR-10 60.2%±4.0% 24.6%±1.2% 35.6%

4

MNIST 65.3%±1.8% 52.1%±5.8% 13.2%

15.9%SVHN 68.4%±2.4% 56.4%±0.5% 12.0%
FMNIST 76.3%±0.4% 50.2%±1.5% 26.1%

CIFAR-10 57.6%±2.1% 45.5%±0.6% 12.1%

6

MNIST 70.9%±1.1% 65.9%±1.3% 5.0%

3.8%SVHN 69.6%±1.3% 70.2%±0.9% -0.6%
FMNIST 68.4%±2.2% 58.3%±0.6% 10.1%

CIFAR-10 54.4%±0.7% 53.7%±0.3% 0.7%

8

MNIST 85.0%±1.0% 82.3%±1.2% 2.7%

-2.0%SVHN 70.2%±1.2% 78.6%±0.6% -8.4%
FMNIST 77.5%±0.2% 71.3%±0.5% 6.2%

CIFAR-10 44.9%±2.3% 53.3%±1.1% -8.4%

B.12 COMPARING WITH BASELINES UNDER MULTIPLE ROUNDS

In this section, we run FedAvg, FedProx, SCAFFOLD, and FedNova for 200 communication rounds.
There are 10 clients and each client trains 10 local epochs in each round. We compare FedOV with
multi-round accuracy of baseline algorithms in Figure 7. As we can see, FedOV ensemble can achieve
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the accuracy of baseline algorithms at 50-75 communication rounds. In extreme label skew #C=1,
the four baseline FL algorithms cannot beat FedOV even after 200 communication rounds.
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(b) #C=2
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(c) #C=3
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(d) pk ∼ Dir(0.1)
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(e) pk ∼ Dir(0.5)
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Figure 7: Comparing FedOV (one-shot FL accuracy) with baseline algorithms running multiple
rounds. We experiment on six different partitions of CIFAR-10 dataset.
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