
3rd Symposium on Advances in Approximate Bayesian Inference, 2020 1–34

The Gaussian Neural Process

Wessel P. Bruinsma University of Cambridge and Invenia Labs wpb23@cam.ac.uk
James Requeima University of Cambridge and Invenia Labs jrr41@cam.ac.uk
Andrew Y. K. Foong University of Cambridge ykf21@cam.ac.uk
Jonathan Gordon University of Cambridge jg801@cam.ac.uk
Richard E. Turner University of Cambridge ret26@cam.ac.uk

Abstract
Neural Processes (NPs; Garnelo et al., 2018a,b) are a rich class of models for meta-learning
that map data sets directly to predictive stochastic processes. We provide a rigorous analy-
sis of the standard maximum-likelihood objective used to train conditional NPs. Moreover,
we propose a new member to the Neural Process family called the Gaussian Neural Pro-
cess (GNP), which models predictive correlations, incorporates translation equivariance,
provides universal approximation guarantees, and demonstrates encouraging performance.
Keywords: Meta-Learning, Neural Processes, Gaussian Processes

1. Introduction

Neural Processes (NPs; Garnelo et al., 2018a,b) use neural networks to directly parameterise
and learn a map from observed data to posterior predictive distributions of a stochastic
process. In this work, we provide two contributions to the NP framework.

Our first contribution is a rigorous analysis of the standard maximum-likelihood (ML)
objective used to train conditional NP models. In particular, we relate the objective to the
KL divergence between stochastic processes (d. G. Matthews et al., 2016), which we call
a functional KL. For a ground truth P and approximating process Q, learning procedures
that minimise a functional KL have previously been investigated (Sun et al., 2018; Shi et al.,
2019; Ma et al., 2018), but these works leave important questions about finiteness of the
objective and existence/uniqueness of its minimiser unanswered. In this work, we consider
the objective KL(P,Q). In a well-defined and rigorous setup, we demonstrate that the ML
objective can be interpreted as a well-behaved relaxation of this functional objective.

Our second contribution addresses the inability of conditional NPs (CNPs; Garnelo et al.,
2018a) to model correlations and produce coherent samples. Several authors propose to
overcome this limitation by introducing a latent variable (Garnelo et al., 2018b; Kim et al.,
2019; Foong et al., 2020). Unfortunately, this renders the likelihood intractable, complicat-
ing learning and evaluation. Building on the ConvCNP (Gordon et al., 2020), we introduce
the Gaussian NP (GNP), a novel member of the NP family that incorporates translation
equivariance and models the predictive distributions directly with Gaussian processes (GPs;
Rasmussen and Williams, 2006). The GNP allows for correlations in the predictive distri-
bution whilst admitting a closed-form likelihood. Moreover, like the ConvCNP, the GNP
provides universal approximation guarantees, which we showcase by providing empirical ev-
idence that the GNP can recover the prediction map of a ground-truth Gaussian process in
terms of likelihood and prior covariance function.

© W. P. Bruinsma, J. Requeima, A. Y. K. Foong, J. Gordon & R. E. Turner.

The Gaussian Neural Process

2. A Practical Objective for Meta-Learning with Gaussian Processes

A detailed description of the notation and terminology used in this section can be found in
App A. The statements and proofs of all theorems are deferred to Apps B to D.

Problem setup: Let f be a ground-truth stochastic process. In the meta-learning
setup, we aim to make multiple predictions for f based on a collection of observed data sets
(Di)

N
i=1 drawn from f . With access to f , these predictions are given by the posteriors over f

given (Di)
N
i=1. We can view prediction as a map from observed data sets D to posteriors over

f . This map is called the posterior prediction map πf : D → P (Foong et al., 2020). Our
goal is to learn a Gaussian approximation π̃ : D → PG of πf (Def C.4) that approximates
the posteriors over f with Gaussian processes. Note that a Gaussian approximation of the
posterior prediction map is distinctly different from learning a Gaussian approximation of
the prior f : the only requirement on π̃ is that π̃(D) is a Gaussian process for all D ∈ D; in
particular, these GPs are not constrained to be posteriors obtained from a fixed prior, which
means that learning π̃ enjoys significantly more flexibility. In fact, this setup is strictly
more flexible than the originally proposed CNP (Garnelo et al., 2018a), as the CNP can be
viewed as a map D → PG that does not model correlations.

Functional objective: We directly define our approximation π̃ of πf : for every
D ∈ D, approximate πf (D) with a Gaussian process µ:

π̃(D) = arg minµ∈PG
KL(πf (D), µ). (1)

Under reasonable regularity conditions and the assumption that there exists some non-
degenerate Gaussian process µG ∈ PG such that KL(πf (D), µG) <∞, this minimiser exists
and is unique (Cor B.1). However, such a Gaussian process µG may not exist. Moreover,
even if the minimiser π̃(D) exists and is unique, meaning that (1) is finite at π̃(D), there
may not exist a ball of approximations around π̃(D) for which the objective (1) is finite;
in that case, the minimiser π̃(D) cannot be approximated by minimising (1). For example,
suppose that πf (D) = GP(0, k) where k(t, t′) = exp(−1

2(t − t′)2). Set µσ2 = GP(0, σ2k).
Then a quick computation shows that KL(πf (D), µσ2) = ∞ for all σ2 6= 1. Hence, we
cannot recover the true variance σ2 = 1 by initialising µσ2 with some reasonable σ2 > 0 and
minimising KL(πf (D), µσ2), because the objective is infinite for all but the true value of σ2.

Relaxation: To work around the potential absence of a minimiser, we take a prag-
matic stance and instead simply approximate the finite-dimensional distributions (f.d.d.s):

π̃x(D) = arg min
µx∈P|x|

G
KL(Pxπf (D), µx) for all finite index sets x, (2)

where Pxf = (f(x1), . . . , f(x|x|)) for f ∈ YX is the projection onto the index set x. Under
reasonable regularity conditions and the assumption that, for all finite index sets x, there ex-
ists an appropriate |x|-dimensional Gaussian distribution µxG such that KL(Pxπf (D), µxG) <
∞, these minimisers exist and are unique (Prop B.1). This condition is much milder than
that for (1): it is satisfied for any appropriate µxG if the differential entropy of Pxπf (D) is
finite. Crucially, it turns out that (2) gives rise to a consistent collection of f.d.d.s (Prop B.1)
and therefore uniquely defines an approximating process π̃(D) satisfying Pxπ̃(D) = π̃x(D)
for all finite index sets x. Moreover, if a solution to (1) exists, then it will be equal to π̃(D)
(Prop B.1 and Cor B.1). Therefore, (2) defines a relaxation of (1) that can be used in many

2

The Gaussian Neural Process

cases where a solution to (1) does not exist. The solution to (1) and (2), if it exists, is
given by the moment-matched Gaussian process: the Gaussian process obtained by taking
the mean function and covariance function of πf (D); see also Ma et al. (2018).

Approximable objective: The workaround (2) solves the problem of existence.
However, there is still the problem of approximability : (1) cannot always be minimised to
approximate the minimiser, if one exists. We therefore define another objective, one that is
always finite and consequently can always be minimised to approximate the solution to (2).
This objective is obtained by averaging (2) over index sets of a fixed size:

π̃(D) = arg minµ∈PG
Ep(x)[KL(Pxπf (D), Pxµ)] (3)

where p(x) is a Borel distribution with full support over all index sets of a fixed size n ≥ 2.
(See Def C.1 for the definition of PG.) This objective is well defined (Prop D.1). If (i)
the mean and covariances functions of πf (D) and µ exist and are uniformly bounded by
M > 0 and (ii) the processes πf (D) and µ are noisy (Def C.1), then Prop D.3 shows that
the objective is finite and consequently suitable for optimisation; Prop D.4 shows that the
minimisers of (2) and (3) are equal. A useful feature of (3) is that it averages over index
sets of a fixed size n ≥ 2, unlike previous objectives, e.g. Prop 1 by Foong et al. (2020),
which requires an average over index sets of all sizes.

Practical objective: We further average (3) over an appropriate selection of data
sets, which formulates a single objective that captures the total approximation error of π̃:

π̃ = arg min
π∈Mf.d.d.

G
Ep(D)p(x)[KL(Pxπf (D), Pxπ(D))] (4)

where p(D) is a Borel distribution with full support over a collection of data sets D̃ ⊆ D that
is open and bounded (Def C.5). (See Def C.6 for the definition ofMf.d.d.

G .) This objective is
also well defined (Prop D.2). Under conditions similar to the conditions for (3), (4) is finite
and the minimisers of (2) and (4) are equal (Props D.5 and D.6). We therefore propose
to learn π̃ though minimising (4). In practice, we optimise a Monte Carlo approximation
of (4). Let (Di)

N
i=1 ⊆ D be a collection of data sets, all sampled from f and split up

Di = (D
(c)
i , D

(t)
i) into context sets D(c)

i and target sets D(t)
i = (x

(t)
i ,y

(t)
i) (Vinyals et al.,

2016; Ravi and Larochelle, 2017). We then maximise

π̃ ≈ arg max
π∈Mf.d.d.

G

1
N

∑N
i=1 logN (y

(t)
i |mi,Ki) with P

x
(t)
i

π(D
(c)
i) = N (mi,Ki), (5)

where we ignore irrelevant additive constants that do not depend on π. This objective is
exactly the standard maximum likelihood objective that is used to train conditional NP
models (Garnelo et al., 2018a; Gordon et al., 2020). Analysis of the minimising procedure is
difficult and depends on the details of the particular algorithm. What we can say, however,
is that a minimising sequence either diverges or converges to the right limit; and, under
certain conditions, a minimising sequence always has a convergent subsequence (Prop D.7).

3. The Gaussian Neural Process

Having defined a suitable objective, to learn the approximation π̃ in practice, we proceed to
generally parametrise π̃. In this paper, we confine ourselves to stationary ground truths f .

Translation equivariance: Foong et al. (2020) show that stationarity of f is
equivalent to translation equivariance (TE) of the posterior prediction map πf of f : for

3

The Gaussian Neural Process

all D ∈ D, Tτπf (D) = πf (D + τ) for all τ ∈ X where Tτf = f(• − τ) is the shifting
operator, Tτπf (D) is the measure πf (D) pushed through Tτ , and D + τ = (x,y) + τ =
((x1 + τ, . . . , x|x| + τ),y). If πf is TE, then it is reasonable to restrict our approxi-
mation π̃ to also be TE. Incorporating translation equivariance directly into the model
has been shown to yield large improvements in generalisation capability, parameter ef-
ficiency, and predictive performance (Gordon et al., 2020; Foong et al., 2020). Denote
π̃(D) = GP(m(D), k(D)) where m : D → C(X ,Y) is the TE mean map of our approxima-
tion π̃ and k : D → Cp.s.d.(X 2,Y) is the TE kernel map; see App E for more details.

Universal parametrisation of mean and kernel: For the mean mapm, we
use a ConvDeepSet architecture (used in the ConvCNP, Gordon et al., 2020), which can
approximate any translation-equivariant map from data sets to continuous mean functions
(Thm 1 by Gordon et al., 2020). Unfortunately, as we explain in App E.1, the Con-
vDeepSet architecture is not directly applicable to the kernel map k. In App E, we modify
the ConvDeepSet architecture to make it suitable for the kernel. This architecture has
universal approximation guarantees similar to the ConvDeepSet (Thm E.1) and thus
completes a general approximate parametrisation of π̃. Intuitively, the architecture works
as follows. A covariance function is a function X ×X → R and can therefore be interpreted
as an image (e.g., imagine that X = {1, . . . , n}). Whereas the ConvCNP generates the
mean by embedding the data in a 1D array and passing it through 1D convolutions, the
architecture for the kernel similarly embeds the data in a 2D image and passes it through 2D
convolutions. Let D(c) be a context set and x(t) inputs of a target set. Then the covariance
matrix K(t) at the target points x(t) is generated as follows:

1 H = enc(D(c),Z), 2 K = Πp.s.d. CNN(H), 3 K(t) = dec(K,x(t)) : (6)

1 H = enc(D(c),Z) maps the target set D(c) to an encoding H ∈ RM×M×3 at a prespec-
ified grid Z ∈ RM×M for some M ∈ N (c.f. the discretisation in the ConvCNP (Gor-
don et al., 2020)), comprising a data channel H::1 (c.f. the data channel in the Con-
vDeepSet), density channel H::2 (c.f. the density channel in the ConvDeepSet),
and source channel H::3 = I (not present in the ConvDeepSet; see App E.2);

2 K = Πp.s.d. CNN(H) passes the encoding H through a CNN, producing an M ×M
matrix, and projects this matrix with Πp.s.d. onto the nearest positive semi-definite
(PSD) matrix with respect to the Frobenius norm (Higham, 1988); and

3 K(t) = dec(K,x(t)) finally interpolates the obtained PSD matrix K to the desired
covariances K(t) for the target inputs x(t).

The architecture and the precise definitions of enc and dec are described in more detail in
App E.2. In our experiments, contrary to the description above and App E.2, we substitute
2 with the simpler operation K = CNN(H) CNN(H)T, which also guarantees positive semi-
definiteness. It is unclear whether this substitution limits the expressivity of the resulting
architecture or interferes with translation equivariance. We leave an investigation of the
implementation of 2 with Πp.s.d. for future work.

Source channel: A novel aspect of the architecture (6) is the source channel H::3 =
I, which is simply the identity matrix and not present in the ConvDeepSet architecture.

4

The Gaussian Neural Process

EQ Matérn– 5
2 Weakly Per. Sawtooth Mixture

GP (truth) 0.70± 4.8e –3 0.31± 4.8e –3 –0.32± 4.3e –3 n/a n/a
GNP 0.70± 5.0e –3 0.30± 5.0e –3 –0.47± 5.0e –3 0.42± 0.01 0.10± 0.02

ConvNP –0.46± 0.01 –0.67± 9.0e –3 –1.02± 6.0e –3 1.20± 7.0e –3 –0.50± 0.02

ANP –0.61± 0.01 –0.75± 0.01 –1.19± 5.0e –3 0.34± 7.0e –3 –0.69± 0.02

GP (truth, no corr.) –0.81± 0.01 –0.93± 0.01 –1.18± 7.0e –3 n/a n/a
ConvCNP –0.80± 0.01 –0.95± 0.01 –1.20± 7.0e –3 0.55± 0.02 –0.93± 0.02

Table 1: Likelihoods for the 1D regression experiments for interpolation inside the training range.
Highlights best performance. Only the ConvCNP does not model correlations. The errors
are 95%-confidence intervals. See App F.

EQ Matern– 5
2 Weakly Per. Sawtooth Mixture

0.0 0.5 1.0
0.0

0.5

1.0 True
Estimate

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.5 1.0

0.0

0.1

0.0 0.5 1.0
0.0

0.5

1.0

Figure 1: Learned and true stationary prior covariance functions in the 1D experiments. The prior
covariance function can be extracted from the model by taking D(c) = ∅.

Intuitively, the source channel allows the architecture to “start out” with a stationary prior
with covariance I, corresponding to white noise, and then pass it through a CNN to modulate
this prior to introduce correlations inferred from the context set. C.f., any Gaussian process
can be sampled from by first sampling white noise and then convolving with an appropriate
filter; the kernel architecture is a nonlinear generalisation of this procedure.

The Gaussian Neural Process: The ConvDeepSet for the mean mapping m
and the above architecture for the kernel mapping k form a model that we call the Gaussian
Neural Process (GNP). The GNP depends on some parameters θ, e.g. weights and biases
for the CNNs. To train these parameters θ, we maximise (5). See App E.3 for more details.

4. Experiments

We evaluate the Gaussian Neural Process on synthetic 1D regression experiments. We follow
the experimental setup from Foong et al. (2020); see App F for more details. In line with
the theoretical analysis from Sec 2, but unlike Foong et al. (2020), we contaminate all
data samples with N (0, 0.052)-noise. Code that implements the GNP and reproduces all
experiments can be found at https//github.com/wesselb/NeuralProcesses.jl.

Tab 1 shows the performance of the ground-truth GP (where applicable), the ground-
truth GP without correlations, the GNP, the ConvCNP (Gordon et al., 2020), the Con-
vNP (Foong et al., 2020), and the ANP (Kim et al., 2019) in an interpolation setup; Fig 2
shows samples of the learned models. The GNP significantly outperforms all other models
on all tasks except Sawtooth. On EQ, and Matérn–5

2 , the GNP even achieves parity
with the ground-truth GP. Moreover, the GNP is the best performing model on Mixture,
which is highly non-Gaussian, demonstrating that the GNP can successfully approximate
non-Gaussian processes. Fig 1 shows the stationary prior covariance functions learned by

5

https//github.com/wesselb/NeuralProcesses.jl

The Gaussian Neural Process

G
N

P
C

o
n
v
N

P

M
at
er

n
–

5 2

A
N

P
G

N
P

C
o
n
v
N

P

W
ea

k
ly

P
er

.

A
N

P
G

N
P

C
o
n
v
N

P

S
aw

t
o
o
th

A
N

P

Figure 2: Sample predictions of models trained in the 1D experiments. Grey regions indicate where
the models were trained; dashed purple lines show optimal predictions by the ground
truth.

the GNP, which are close to the ground-truth on the GP tasks; this, together with the likeli-
hood numbers, empirically validates the ability of the GNP to recover the prediction map of
a ground-truth GP. Note that the learned covariance functions also match the truth for the
non-Gaussian tasks Sawtooth and Mixture. For Sawtooth, the likelihood of the GNP
is worse than the ConvCNP and only improves over the ANP, which demonstrates that,
on certain non-Gaussian tasks, non-Gaussian approximations, like the ConvNP, can offer
substantially better performance. On the most expensive tasks (Sawtooth andMixture),
an epoch for the GNP took roughly six times longer than any other model; see Tab F.2.
More results are in App F, including results for setups that test generalisation and extrap-
olation performance; like the ConvCNP and ConvNP, due to translation equivariance,
these results shows that the GNP demonstrates excellent ability to generalise.

5. Conclusion and Future Work

We have provided a rigorous analysis of the standard ML objective used to train NPs. More-
over, we propose a new member to the Neural Process family called the Gaussian Neural
Process (GNP), which incorporates translation equivariance, provides universal approxima-
tion guarantees, and demonstrates encouraging performance in preliminary experiments. In
future work, we aim to investigate incorporating Πp.s.d. (Sec 3) directly into the architecture.

6

The Gaussian Neural Process

Acknowledgments

The authors thank Piet Lammers for insightful discussions about stochastic processes and
David Burt and Cozmin Ududec for helpful comments on a draft.

References

A. G. d. G. Matthews, J. Hensman, R. E. Turner, and Z. Ghahramani. On sparse variational
methods and the Kullback-Leibler divergence between stochastic processes. In Aarti Singh
and Jerry Zhu, editors, International Conference on Artificial Intelligence and Statistics
22, volume 54 of Proceedings of Machine Learning Research. Proceedings of Machine
Learning Research, Apr 2016.

James Dugundji. An extension of Tietze’s theorem. Pacific Journal of Mathematics, 1(3):
353–367, 1951.

Aasa Feragen. Characterization of equivariant ANEs, 2006. Licentiate thesis.

Andrew Y. K. Foong, Wessel P. Bruinsma, Jonathan Gordon, Yann Dubois, James Re-
queima, and Richard E. Turner. Meta-learning stationary stochastic process prediction
with convolutional neural processes. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin, editors, Advances in Neural Information Processing Systems 33. Curran
Associates, Inc., Jul 2020.

M. Garnelo, D. Rosenbaum, C. J. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y. Whye
Teh, D. J. Rezende, and S. M. A. Eslami. Conditional neural processes. In Jennifer Dy and
Andreas Krause, editors, International Conference on Machine Learning 35, volume 80
of Proceedings of Machine Learning Research. Proceedings of Machine Learning Research,
Jul 2018a.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende, S. M. A. Eslami, and
Y. Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, Jul 2018b.

Jonathan Gordon, Wessel P. Bruinsma, Andrew Y. K. Foong, James Requeima, Yann
Dubois, and Richard E. Turner. Convolutional conditional neural processes. Interna-
tional Conference on Learning Representations (ICLR), 8th, Oct 2020. URL https:
//openreview.net/forum?id=Skey4eBYPS.

Nicholas J. Higham. Computing a nearest symmetric positive semidefinite matrix. Linear
Algebra and Its Applications, 103:103–118, 1988.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and
Y. Whye Teh. Attentive neural processes. In International Conference on Learning Rep-
resentations 7, Jan 2019.

D. P. Kingma and J. Ba. ADAM: A method for stochastic optimization. In International
Conference on Learning Representations 3, Dec 2015.

7

https://openreview.net/forum?id=Skey4eBYPS
https://openreview.net/forum?id=Skey4eBYPS

The Gaussian Neural Process

Chao Ma, Yingzhen Li, and José Miguel Hernández-Lobato. Variational implicit pro-
cesses. In Yarin Gal, José Miguel Hernández-Lobato, Christos Louizos, Andrew G. Wilson,
Zoubin Ghahramani, Kevin Murphy, and Max Welling, editors, Advances in Neural In-
formation Processing Systems 31, Dec 2018.

Edward C. Posner. Random coding strategies for minimum entropy. IEEE Transactions on
Information Theory, 21(4), Jul 1975. ISSN 0018-9448. doi: 10.1109/TIT.1975.1055416.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Inter-
national Conference on Learning Representations 5, Apr 2017.

J. Shi, M. Emtiyaz Khan, and J. Zhu. Scalable training of inference networks for Gaussian-
process models. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, International
Conference on Machine Learning 36, volume 97 of Proceedings of Machine Learning Re-
search. Proceedings of Machine Learning Research, May 2019.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational
Bayesian neural networks. In Yarin Gal, José Miguel Hernández-Lobato, Christos Louizos,
Andrew G. Wilson, Zoubin Ghahramani, Kevin Murphy, and Max Welling, editors, Ad-
vances in Neural Information Processing Systems 31, Dec 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra.
Matching networks for one shot learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems
29. Curran Associates, Inc., Jun 2016.

D. Yarotsky. Universal approximations of invariant maps by neural networks. arXiv preprint
arXiv:1804.10306, Apr 2018.

8

The Gaussian Neural Process

Appendix A. Notation and Terminology

Vectors and matrices: Denote vectors x with boldface lowercase letters and
matrices A with boldface uppercase letters. For a vector x, let |x| be its length. For two
matrices A and B, the notation A � B means that A−B is strictly positive definite.

Observations and data sets: Let X = R be the space of inputs and Y = R be
the space of outputs. Call a tuple (x, y) ∈ X × Y an observation. Let Dn = (X × Y)n

be the space of all collections of n observations, and let D =
⋃∞
n=0Dn be the space of all

finite collections of observations. Call an element D ∈ D a data set. Note that ∅ ∈ D. If
D = {(xi, yi)}ni=1 ∈ Dn, then denoteD = (x,y) where x = (x1, . . . , xn) and y = (y1, . . . , yn).
Endow D with the metric

dD(D1, D2) =

{
‖x1 − x2‖2 + ‖y1 − y2‖2 if |x1| = |x2|,
∞ otherwise

(A.1)

where D1 = (x1,y1) and D2 = (x2,y2).
Probability distributions: For all n ∈ N, let Pn be the collection of all distri-

butions on Rn, and let PnG be the collection of all such Gaussian distributions. Let C(X ,Y)
be the collection of continuous functions X → Y endowed with the metric

dC(f, g) =
∞∑
n=1

2−n sup
x∈[−n,n]

(|f(x)− g(x)| ∧ 1), (A.2)

which makes it a complete and separable metric space. This metric metricises the topology
of compact convergence. Let P be the space of all probability measures on (YX ,BX) where B
is the usual Borel σ-algebra on Y and BX is the cylindrical σ-algebra on C(X ,Y). Similarly,
let PG be the collection of all such Gaussian measures. Say that a distribution has full
support if every open set has positive measure. Let I =

⋃∞
n=1X n be the collection of all

finite index sets or equivalently all finite sets of inputs. For x ∈ I, let Px be the projection
on the coordinates x: Pxf = (f(x1), . . . , f(x|x|)). For (µi)i≥1 ⊆ P and µ ∈ P, say that
(µi)i≥1 converges weakly to µ, denoted µi ⇀ µ, if µi(L) → µ(L) for all L : C(X ,Y) → R
continuous and bounded. (Recall that µ(L) denotes Eµ[L].)

Lebesgue class: For all n ∈ N, let Pnλ ⊆ Pn be the collection of all distributions on
Rn that admit a density with respect to the Lebesgue measure. Let Pλ ⊆ P be the collection
of processes where every finite-dimensional distribution admits a density with respect to the
Lebesgue measure.

Degeneracy: Call a distribution µ ∈ Pn non-degenerate if it has a covariance matrix
and the covariance matrix is strictly positive definite. Similarly, call a measure µ ∈ P
non-degenerate if every finite-dimensional distribution has a covariance matrix and all those
covariance matrices are strictly positive definite.

Gaussianisation: For a distribution µ ∈ Pn, let N (µ) ∈ PnG be the n-dimensional
Gaussian distribution with mean equal to the mean of µ and covariance matrix equal to the
covariance matrix of µ, assuming that the latter exists. Similarly, for a measure µ ∈ P, let
GP(µ) ∈ PG be the Gaussian process with mean function equal to the mean function of
µ and covariance function equal to the covariance function of µ, assuming that the latter
exists.

9

The Gaussian Neural Process

Appendix B. The Gaussian Divergence

For two measures µ ∈ P and ν ∈ P, their Kullback–Leibler divergence enjoys positive
definiteness: KL(µ, ν) ≥ 0 with equality if and only if µ = ν. However, when restricting to
only Gaussian measures ν ∈ PG, this property cannot be used anymore, because even the
best Gaussian approximation ν may not achieve KL(µ, ν) = 0. To get around this, we define
a divergence induced by the Kullback–Leibler divergence called the Gaussian divergence.

For an arbitrary probability distribution µ on Rn and a Gaussian distribution ν on Rn,
define their Gaussian divergence G(µ, ν) by

G(µ, ν) =

{
KL(µ, ν)− infξ∈Pn

G
KL(µ, ξ) if KL(µ, ξ) <∞ for some ξ ∈ PnG,

∞ otherwise.
(B.1)

Let m1 and m2 be the means of µ and ν respectively and let K1 and K2 be their covariances.
Assume that µ has a density with respect to the Lebesgue measure and that K1 � 0 and
K2 � 0. Then a quick computation shows that

G(µ, ν) =
1

2
dK(K1,K2) +

1

2
dm(m1,m2;K2) = KL(N (µ), ν) (B.2)

where N (µ) = N (m1,K1) and

dm(m1,m2;K2) = (m1 −m2)
TK−12 (m1 −m2) ≥ 0, (B.3)

dK(K1,K2) = log
|K2|
|K1|

+ tr(K−12 K1)− n ≥ 0. (B.4)

Since the right-hand side of (B.2) is a Kullback–Leibler divergence, the Gaussian divergence
inherits positive definiteness: if µ ∈ Pnλ and ν ∈ PnG are non-degenerate, then G(µ, ν) ≥ 0
with equality if and only if ν = N (µ). The Gaussian divergence inherits more properties
from the Kullback–Leibler divergence. An important inherited property that we will make
use of is monotonicity. Let S : Rn → Rm where m ≤ n be a projection onto a subset of the
coordinates. Then it is true that G(S(µ), S(ν)) ≤ G(µ, ν).

Thm B.1 (Sun et al. (2018)): Let µ ∈ P and ν ∈ P. Then

KL(µ, ν) = sup
x∈I

KL(Pxµ, Pxν). (B.5)

We take inspiration from the above characterisation of the Kullback–Leibler divergence
between stochastic processes by Sun et al. (2018) to extend the definition of the Gaussian
divergence over distributions on Rn to arbitrary probability measures in P by taking the
supremum over index sets:

G(µ, ν) = sup
x∈I

G(Pxµ, Pxν). (B.6)

Suppose that µ and ν are non-degenerate and that every finite-dimensional distribution of
µ has a density with respect to the Lebesgue measure. Then (B.2) shows the equality

G(Pxµ, Pxν) = KL(N (Pxµ), Pxν) = KL(Px GP(µ), Pxν). (B.7)

10

The Gaussian Neural Process

Therefore, taking the supremum over x ∈ I, we find that G(µ, ν) = KL(GP(µ), ν), c.f. (B.2).
The right-hand side is a Kullback–Leibler divergence. This means that the Gaussian diver-
gence between processes also inherits positive definiteness: if µ ∈ Pλ and ν ∈ PG are
non-degenerate, then G(µ, ν) ≥ 0 with equality if and only if ν = GP(µ).

Let µ ∈ Pnλ and ν ∈ PnG be non-degenerate. Then (B.2) and the definition (B.1) show
that

KL(µ,N (µ)) = inf
ξ∈Pn

G

KL(µ, ξ). (B.8)

Therefore, if µ ∈ Pnλ and ν ∈ PnG are non-degenerate, then we can also write

G(µ, ν) = KL(µ, ν)−KL(µ,N (µ)). (B.9)

Since KL(µ,N (µ)) is a constant that does not depend on ν, we have the following result.

Prop B.1: Let µ ∈ Pnλ be non-degenerate and assume that, for every x ∈ I, there exists
some non-degenerate µxG ∈ P

|x|
G such that KL(Pxµ, µ

x
G) <∞. Then

arg min
ν∈P|x|

G

KL(Pxµ, ν) = arg min
ν∈P|x|

G

G(Pxµ, ν) = N (Pxµ) = Px GP(µ) for all x ∈ I. (B.10)

Proof: Follows from (B.9) if KL(Pxµ,N (Pxµ)) <∞ for all x ∈ I, which, in turn, follows
from (B.8) and the assumption.

Equality (B.9) was key in the proof of Prop B.1. We proceed to develop a similar
expression for the Gaussian divergence between processes: Thm B.2. We first address the
issue that KL(µ,GP(µ)) may be infinite.

Prop B.2: Let µ ∈ Pλ and ν ∈ PG be non-degenerate. Then KL(µ,GP(µ)) ≤ KL(µ, ν).

Proof: Let x ∈ I. Using that G(Pxµ, Px GP(µ)) = 0,

KL(Pxµ, Px GP(µ)) = inf
ξ∈Pn

G

KL(Pxµ, ξ). (B.11)

Therefore,
KL(Pxµ, Px GP(µ)) ≤ KL(Pxµ, Pxν), (B.12)

and take the supremum over x ∈ I to conclude.

As as consequence, KL(µ,GP(µ)) < ∞ if and only if there exits some non-degenerate
µG ∈ PG such that KL(µ, µG) <∞.

Thm B.2: Let µ ∈ Pλ be non-degenerate and assume that there exits some non-degenerate
µG ∈ PG such that KL(µ, µG) < ∞. Let ν ∈ PG be non-degenerate. Then KL(µ, ν) and
G(µ, ν) differ by a finite constant that only depends on µ:

KL(µ, ν)−KL(µ,GP(µ)) = G(µ, ν). (B.13)

11

The Gaussian Neural Process

Proof: By the assumptions and Prop B.2, KL(µ,GP(µ)) <∞. Let x ∈ I. Note that

KL(Pxµ, Pxν)−KL(µ,GP(µ)) ≤ G(Pxµ, Pxν). (B.14)

Take the supremum over x ∈ I to find “≤”.
For the reverse inequality, write

inf
x∈I

(KL(µ, ν)−KL(Pxµ, Px GP(µ)) = KL(µ, ν)−KL(µ,GP(µ)). (B.15)

Let x ∈ I. For every ε > 0, can find a x′ ∈ I such that

KL(µ, ν)−KL(Px′µ, Px′GP(µ)) < KL(µ, ν)−KL(µ,GP(µ)) + ε. (B.16)

Then, by monotonicity of the Kullback–Leibler divergence,

KL(µ, ν)−KL(Px∪x′µ, Px∪x′GP(µ)) < KL(µ, ν)−KL(µ,GP(µ)) + ε. (B.17)

Therefore, bounding KL(Px∪x′µ, Px∪x′ν) ≤ KL(µ, ν),

G(Px∪x′µ, Px∪x′ν) < KL(µ, ν)−KL(µ,GP(µ)) + ε. (B.18)

Hence, by monotonicity of the Gaussian divergence,

G(Pxµ, Pxν) < KL(µ, ν)−KL(µ,GP(µ)) + ε. (B.19)

Let ε ↓ 0 and take the supremum over x ∈ I to conclude.

Cor B.1: Let µ ∈ Pλ be non-degenerate and assume that there exits some non-degenerate
µG ∈ PG such that KL(µ, µG) <∞. Then

arg min
ν∈PG

KL(µ, ν) = arg min
ν∈PG

G(µ, ν) = GP(µ). (B.20)

12

The Gaussian Neural Process

Appendix C. Noisy Processes and Prediction Maps

C.1. Noisy Processes

Def C.1 (Noisy Process): Call a stochastic process f noisy with noise variance σ2 >
0 if it a sum f = f s + fn of two independent processes f s and fn where f s is a continuous
process called the smooth part and fn is such that Pxf

n ∼ N (0, σ2I) for all x ∈ I and called
the noisy part. We indicate that a collection of processes is noisy by adding a bar : P and
PG.

Before anything else, we check that the definition is well posed.

Prop C.1 (Noisy Processes are Well Defined): Consider two noisy processes
f1 = f s1 + fn1 and f2 = f s2 + fn2 . If f1

d
= f2, then f s1

d
= f s2 and fn1

d
= fn2 .

Proof: Let x ∈ I have all distinct elements. We show that f s1(x)
d
= f s2(x) and fn1 (x)

d
=

fn2 (x). For i = 1, 2, set

y(i,n) =
1

n

n∑
i=1

 fi(x1 − 2−n)
...

fi(x|x| − 2−n)

 =
1

n

n∑
i=1

 f
s
i (x1 − 2−n)

...
f si (x|x| − 2−n)

+
1

n

n∑
i=1

 f
n
i (x1 − 2−n)

...
fni (x|x| − 2−n)

 . (C.1)
By continuity of f s and the Strong Law of Large Numbers, for i = 1, 2,

(y(i,n), fi(x))→ (f si (x), fi(x)) as n→∞ (C.2)

almost surely and hence weakly. But we assumed that f1
d
= f2, so

(y(1,n), f1(x))
d
= (y(2,n), f2(x)) for all n ≥ 1. (C.3)

Therefore, since weak limits are unique,

(f s1(x), f1(x))
d
= (f s2(x), f2(x)). (C.4)

Finally, using that (y1,y2) 7→ (y1,y2 − y1) is continuous, hence measurable, we have

(f s1(x), fn1 (x))
d
= (f s2(x), fn2 (x)). (C.5)

In particular, this means that f s1(x)
d
= f s2(x) and fn1 (x)

d
= fn2 (x).

Note that noise variance σ2 = 0 is not allowed. Moreover, note that noisy process do
not have measurable sample paths in general. They are very irregular objects that can
only be worked with at a countable collection of indices. From a theoretical perspective,
this is undesirable and raises concerns. However, from a practical perspective, we will
only ever work at a finite collection of indices; and at every finite collection indices, noisy
processes do provide the right model, because in most practical applications observations
are contaminated with a little bit of noise.

13

The Gaussian Neural Process

Prop C.2 (Noisy Processes are Lebesgue Class): Let f ∼ µ ∈ P be a noisy
process with noise variance σ2 > 0. Let x ∈ I be an index set. Then Pxµ has the following
density with respect to the Lebesgue measure:

pxf (y) = Ef s [N (y | f s(x), σ2I)]. (C.6)

Consequently, P ⊆ Pλ.

Proof: Let B ⊆ Y |x| be a Borel set. Then∫
B
pxf (y) dy

(i)
= Ef s [Pfn(fn(x) ∈ B − f s(x))] (C.7)
= Ef s [Efn [1B(f s(x) + fn(x))]] (C.8)
= P(f s(x) + fn(x) ∈ B), (C.9)

using in (i) that fn(x) ∼ N (0, σ2I).

Prop C.3 (Equality of Noisy Processes): Let µ ∈ P and ν ∈ P be two noisy
processes with noise variances σ2µ > 0 and σ2ν > 0. Let Ĩ ⊆ I be dense in I. If Pxµ = Pxν

for all x ∈ Ĩ, then µ = ν. Moreover, if µ and ν are Gaussian, then it suffices to consider
Ĩ ⊆ X n dense in X n for any fixed n ≥ 2.

Proof: Let x ∈ I. Use density of Ĩ to extract a sequence (xi)i≥1 ⊆ Ĩ convergent to x.
Consider B ⊆ Y |x| open. Let nµ ∼ N (0, σ2µI) and nν ∼ N (0, σ2νI). Then

Pxµ(B) = Eµ[1B(f(x) + nµ)] (C.10)

= lim
i→∞

Eµ[1B(f(xi) + nµ)] (C.11)

= lim
i→∞

Eν [1B(f(xi) + nν)] (C.12)

= Eν [1B(f(x) + nν)] (C.13)

= Pxν(B). (C.14)

Since B was an arbitrary open set, we conclude that Pxµ = Pxν.
If µ and ν are Gaussian, then all finite-dimensional distributions are equal if and only if

all means and covariances are equal. And all means and covariances are equal if all finite-
dimensional distributions of any fixed size n ≥ 2 are equal, so it suffices to consider Ĩ ⊆ X n
dense in X n for any fixed n ≥ 2.

Since noisy processes do not produce measurable sample paths, we need to define what
weak convergence means.

Def C.2 (Weak Convergence of Noisy Processes): Say that a sequence
(fi)i≥1 of noisy processes with noise variances (σ2i)i≥1 weakly converges to a noisy process
f with noise variance σ2 if f si ⇀ f s and σ2i → σ2.

14

The Gaussian Neural Process

Note that there is no problem with weak convergence of finite-dimensional distributions
of noisy processes. With the above definition, it is easy to check that fi ⇀ f implies that
Pxfi ⇀ Pxf for all x ∈ I where the latter weak convergence is in the usual sense.

In the posterior of a noisy process, the noisy part is renewed.

Def C.3 (Posterior of Noisy Process): The posterior of a noisy process f given
some data D = (x,y) ∈ D is defined by the sum f sD + f̂n where f sD is the posterior of f s

given that f(x) = y and f̂n is an independent copy of fn.

If f s ∼ µs ∈ P and f sD ∼ µsD ∈ P, then one can show that

dµsD
dµs

(f s) =
N (y; f s(x), σ2I)

Ef s [N (y; f s(x), σ2I)]
. (C.15)

Note that Ef s [N (y; f s(x), σ2I)] > 0, for otherwise |f s(x)| = ∞ almost surely for some
x ∈ X . Denote

πf (D) = µsD and π′f (D) =
dµsD
dµs

. (C.16)

The map πf : D → P is called the posterior prediction map of f .

C.2. Prediction Maps

Def C.4 (Prediction Map): A map π : D → P is called a prediction map. Call a
prediction map Gaussian if it maps to Gaussian processes and noisy if it maps to noisy
processes.

Prop C.4 (Continuity in the Data): With probability one, the map D 7→
π′f (D)(f s) is continuous. We call this property continuity in the data.

Proof: Follows from continuity of f s and

N (y; f s(x), σ2I) ≤ (2πσ2)−
1
2
|x| (C.17)

in combination with bounded convergence.

Prop C.5 (Local Boundedness): For any compact collection of data sets D̃ ⊆ D,

0 < sup
D∈D̃

sup
f s∈YX

π′f (D)(f s) <∞. (C.18)

We call this property local boundedness.

Proof: Note that

MD := sup
f s∈YX

π′f (D)(f s) =
(2πσ2)−

1
2
|x|

Ef s [N (y; f s(x), σ2I)]
, (C.19)

which by an argument similar to the proof of Prop C.4 is continuous in D. Moreover, we
have that 0 < MD < ∞ for all D ∈ D̃. Therefore, 0 < supD∈D̃MD < ∞ by continuity of
D 7→MD and compactness of D̃.

15

The Gaussian Neural Process

Def C.5 (Bounded Collection of Data Sets): For D̃ ⊆ D, define

‖D̃‖∞ = sup
(x,y)∈D̃

|x|∑
i=1

(|yi| ∨ 1).

In particular, if (x,y) ∈ D̃, then |x| ≤ ‖D̃‖∞ and ‖y‖∞ ≤ ‖D̃‖∞. Call a collection of data
sets D̃ ⊆ D bounded if ‖D̃‖∞ <∞.

Using this definition of boundedness, we can refine Prop C.5 to obtain a quantitative
bound.

Prop C.6 (Local Boundedness (Cont’d)): Assume that

V = sup
x∈X

E[(f s(x))2] <∞. (C.20)

Then, for any bounded collection of data sets D̃ ⊆ D,

1 ≤ sup
D∈D̃

sup
f s∈YX

π′f (D)(f s) ≤ 2 exp

(
2‖D̃‖2∞V

σ2
+
‖D̃‖3∞
σ2

)
. (C.21)

Proof: Start out from (C.19):

1

MD
= Ef s

[
exp

(
−‖y − f

s(x)‖2

2σ2

)]
≥ exp

(
−‖y‖

2

σ2

)
Ef s

[
exp

(
−‖f

s(x)‖2

σ2

)]
(C.22)

Therefore,

1 ≤MD ≤ Ef s

[
exp

(
−‖f

s(x)‖2

σ2

)]−1
exp

(
‖y‖2

σ2

)
. (C.23)

Now estimate

Ef s

[
exp

(
−‖f

s(x)‖2

σ2

)]
≥ P(‖f s(x)‖∞ ≤ R) exp

(
−nR

2

σ2

)
. (C.24)

Choose R =
√

2nV to obtain

P(‖f s(x)‖∞ ≤ R) ≥ 1− n sup
x∈X

P(|f s(x)| > R) ≥ 1− nV

R2
=

1

2
. (C.25)

With this choice for R, we find

1 ≤MD ≤ 2 exp

(
nR2

σ2
+
n‖y‖2∞
σ2

)
= 2 exp

(
2n2V

σ2
+
n‖y‖2∞
σ2

)
. (C.26)

The result then follows from the observations that n ≤ ‖D̃‖∞ and ‖y‖∞ ≤ ‖D̃‖∞.

16

The Gaussian Neural Process

Def C.6 (Continuous Prediction Map): Call a prediction map π : D → P con-
tinuous if Di → D implies that π(Di) ⇀ π(D). Denote the collection of all continuous
prediction maps by M. Write a subscript G if the prediction maps are also Gaussian:
MG. Write a bar if the prediction maps are also noisy: M. Call a prediction map
π : D → P continuous along its finite-dimensional distributions if Di → D implies that
Pxπ(Di) ⇀ Pxπ(D) for all x ∈ I. Write a superscript f.d.d. if the prediction maps are
only continuous along their finite-dimensional distributions: Mf.d.d.. Note the following
inclusions:

M⊆Mf.d.d., MG ⊆Mf.d.d.
G , M⊆Mf.d.d.

, MG ⊆M
f.d.d.
G . (C.27)

Prop C.7 (Equality of Continuous Prediction Maps): Let π1 ∈ Mf.d.d.

and π2 ∈ Mf.d.d.. Let D̃ ⊆ D. If π1 = π2 are equal on a dense subset of D̃, then π1 = π2
are equal on all of D̃.

Proof: Let D ∈ D. Extract (Di)i≥1 ⊆ D̃ convergent to D. Let x ∈ I. By the assumed
continuity, Pxπ1(Di) ⇀ Pxπ1(D) and Pxπ2(Di) ⇀ Pxπ2(D). Let L : R|x| → R be continuous
and bounded. Then

Pxπ1(D)(L) = lim
i→∞

Pxπ1(Di)(L) = lim
i→∞

Pxπ2(Di)(L) = Pxπ2(D)(L). (C.28)

Since x and L were arbitrary, π1(D) = π2(D).

Prop C.8 (Noisy Posterior Prediction Map is Continuous): Let f be a
noisy process and πf the associated posterior prediction map. Then πf ∈M.

Proof: For all D ∈ D, the noisy part of πf (D) is equal in distribution. Hence, it suffices
to show that Di → D implies that f sDi

⇀ f sD. Let L : C(X ,Y) → R be continuous and
bounded. Then

E[L(f sDi
)] = E[π′(Di)(f

s)L(f s)]→ E[π′(D)(f s)L(f s)] = E[L(f sD)] (C.29)

by continuity in the data (Prop C.4) and bounded convergence using local boundedness
(Prop C.5).

Prop C.9 (Noisy Posterior Prediction Map is Bounded): Let f be a
noisy process and let D̃ ⊆ D be a bounded collection of data sets. Suppose that
supx∈X E[(f s(x))2] <∞. Then supx∈X , D∈D̃ E[(f sD(x))2] <∞.

Proof: Follows from

E[(f sD(x))2] ≤
(

sup
D∈D̃

sup
f s∈YX

π′f (D)(f s)

)(
sup
x∈X

E[(f s(x))2]

)
(C.30)

in combination with (C.21).

17

The Gaussian Neural Process

C.3. Gaussianised Prediction Maps

Def C.7 (Gaussianised Prediction Map): Given a prediction map π : D → P,
the Gaussianised prediction map GP(π) is defined by GP(π)(D) = GP(π(D)).

The Gaussianisation of a noisy process f ∼ µ ∈ P is equal to f sG + fn where f sG ∼
GP(µs). This is perfectly well defined. However, a subtle technical issue is that f sG may
not be a continuous process, which means that the Gaussianisation of a noisy process is not
necessarily a noisy process. To prevent this from happening, we impose regularity conditions
on f s.

Prop C.10: Let f be a noisy process and let πf the associated posterior prediction map.
Suppose that there exist p ≥ 2, β ∈ (12 , 1], a constant c > 0 and a radius r > 0 such that

‖f s(x)− f s(y)‖Lp ≤ c|x− y|β whenever |x− y| < r. (C.31)

Then, for all D ∈ D, if GP(πf (D)) exists, it is a noisy process.

Proof: Let D ∈ D. As explained above, assuming that GP(πf (D)) exists, i.e. that πf (D)
has a mean function and covariance function, it remains to show that the smooth part of
GP(πf (D)) is a continuous process. Let f sD be the smooth part of πf (D) and let gsD be the
smooth part of GP(πf (D)). Since, by construction of GP(πf (D)), the mean functions and
covariance functions of f sD and gsD are equal,

E[|gsD(x)− gsD(y)|2] = E[|f sD(x)− f sD(y)|2]. (C.32)

Therefore, using Jensen’s Inequality and concavity of x 7→ x2/p (p ≥ 2),

E[|gsD(x)− gsD(y)|2] ≤ E[|f sD(x)− f sD(y)|p]2/p (C.33)

= E[π′f (D)(f s)|f s(x)− f s(y)|p]2/p (C.34)

≤MDE[|f s(x)− f s(y)|p]2/p (C.35)

with MD = supf s∈YX π′f (D)(f s). By (C.19), 0 < MD < ∞. We can thus continue our
sequence of inequalities:

E[|gsD(x)− gsD(y)|2] ≤MD‖f s(x)− f s(y)‖2Lp ≤MDc
2|x− y|2β (C.36)

whenever |x− y| < r. Hence,

‖gs(x)− gs(y)‖L2 ≤
√
MDc|x− y|β whenever |x− y| < r. (C.37)

This shows that gs satisfies Kolmogorov’s Continuity Criterion and thus admits a continuous
version.

Throughout, we assume that the condition from Prop C.10 always satisfied. Conse-
quently, the Gaussianisation of any noisy process is always also a noisy process.

18

The Gaussian Neural Process

Prop C.11 (Gaussianised Noisy Posterior Prediction Map is Cont.):
Let f be a noisy process and let πf the associated posterior prediction map. Suppose that
f s(x) ∈ L2 for all x ∈ X . Then GP(πf) ∈Mf.d.d.

G .

Proof: Let Di → D. By the assumptions, E[f s(x)] exists. Hence, using continuity in
the data (Prop C.4) and dominated convergence in combination with local boundedness
(Prop C.5),

E[f sDi
(x)] = E[π′(Di)(f

s)f s(x)]→ E[π′(D)(f s)f s(x)] = E[f sD(x)]. (C.38)

Similarly, cov(f sDi
(x), f sDi

(y)) → cov(f sD(x), f sD(y)). Therefore, for all x ∈ I,
Px GP(πf)(Di) ⇀ Px GP(πf)(D).

19

The Gaussian Neural Process

Appendix D. The Objective

We before discussing the objective, we first get all issues of measurability out of the way.

Prop D.1: Let µ1, µ2 ∈ P and µG ∈ PG. Fix n ≥ 1 and consider all x ∈ X n. Then

(i) x 7→ KL(Pxµ1, PxµG) is lower semi-continuous, hence measurable;

(ii) x 7→ KL(Px GP(µ1), PxµG) is lower semi-continuous, hence measurable;

(iii) x 7→ KL(Pxµ1, Px GP(µ2)) is lower semi-continuous, hence measurable.

Proof: Props D.1.(ii) and D.1.(iii) follow from Prop D.1.(i) by the observations that
GP(µ1) ∈ PG ⊆ P and GP(µ2) ∈ PG. To prove Prop D.1.(i), let (xi)i≥1 ⊆ X n be convergent
to x ∈ X n. Then Pxiµ1 ⇀ Pxµ1 and PxiµG ⇀ PxµG because the smooth parts of µ1 and
µG are continuous processes. Using that (µ, ν) 7→ KL(µ, ν) is weakly lower semi-continuous
(Posner, 1975), we thus find

lim inf
i→∞

KL(Pxiµ, Pxiν) ≥ KL(Pxµ, Pxν), (D.1)

which shows that x 7→ KL(Pxµ, Pxν) is lower semi-continuous.

Prop D.2: Let π1, π2 ∈M
f.d.d. and πG ∈M

f.d.d.
G . Suppose that, for all D ∈ D, the mean

functions and covariance functions π1(D) of π2(D) exist. Fix n ≥ 1 and let p(x) be a Borel
distribution on X n. Then

(i) D 7→ Ep(x)[KL(Pxπ1(D), PxπG(D))] is lower semi-continuous, hence measurable;

(ii) D 7→ Ep(x)[KL(Px GP(π1)(D), PxπG(D))] is lower semi-continuous, hence measurable;

(iii) D 7→ Ep(x)[KL(Px GP(π1)(D), Px GP(π2)(D))] is lower semi-continuous, hence mea-
surable.

Proof: By Prop D.1, these expectations are all well defined. Props D.2.(ii) and D.2.(iii)
follow from Prop D.2.(i) by the observations that GP(π1) ∈M

f.d.d.
G ⊆Mf.d.d. and GP(π2) ∈

Mf.d.d. (Prop C.11). To prove Prop D.2.(i), let (Di)i≥1 ⊆ D be convergent to D ∈ D. Since
π1 ∈ M

f.d.d. is continuous, Pxπf (Di) ⇀ Pxπ(D) for all x ∈ X n, and the same statement
holds for πG. Therefore, using Fatou’s Lemma and that (µ, ν) 7→ KL(µ, ν) is weakly lower
semi-continuous (Posner, 1975), we thus find

lim inf
i→∞

Ep(x)[KL(Pxπ1(Di), PxπG(Di))] ≥ Ep(x)[lim inf
i→∞

KL(Pxπ1(Di), PxπG(Di))] (D.2)

≥ Ep(x)[KL(Pxπ1(D), PxπG(D))], (D.3)

which shows that D 7→ Ep(x)[KL(Pxπf (D), Pxπ(D))] is lower semi-continuous.

Prop D.3: Let µ ∈ P and ν ∈ PG. Fix n ≥ 2. Assume the following:

20

The Gaussian Neural Process

(1) The mean functions and covariance functions of µ and ν exist and are uniformly
bounded by M > 0.

(2) The processes µ and ν are noisy with noise variance greater than σ2 > 0.

Then

KL(Pxµ, Pxν) ≤ 4n2(M ∨ 1)2

σ2
. (D.4)

Proof: By the assumption that µ is noisy with noise variance σ2 > 0, for all x ∈ X n, the
finite-dimensional distribution Pxµ has the following density with respect to the Lebesgue
measure on Rn (Prop C.2):

pxµ(y) = Eµ[N (y; f s(x), σ2)] (D.5)

For all x ∈ In, denote

N (Pxµ) = N (mx
µ,K

x
µ) and Pxν = N (mx

ν ,K
x
ν). (D.6)

Start out by expanding the Kullback–Leibler divergence:

KL(Pxµ, Pxν)

=

∫
pxµ(y)

[
log pxµ(y) +

1

2
(log |2πKx

ν |+ (y −mx
ν)T(Kx

ν)−1(y −mx
ν))

]
dy. (D.7)

Bound
pxµ(y) ≤ sup

y′
N (y;y′, σ2) ≤ (2πσ2)−

1
2n. (D.8)

Therefore, computing the rest of the expectation in closed form,

KL(Pxµ, Pxν) ≤ 1

2

(
log
|Kx

ν |
σ2n

+ tr((Kx
ν)−1Kx

µ)

(i)

+ (mx
µ −mx

ν)T(Kx
ν)−1(mx

µ −mx
ν)

(ii)

)
. (D.9)

We separately bound (i) and (ii).
For (i), we use Von Neumann’s Trace Inequality: for any two n×n positive semi-definite

matrices A and B, it holds that

tr(AB) ≤
n∑
i=1

γi(A)γi(B). (D.10)

Using this inequality,

(i) ≤
n∑
i=1

(
log

γi(K
x
ν)

σ2
+
γi(K

x
µ)

γi(Kx
ν)

)
≤ n

(
log

γ1(K
x
ν)

σ2
+
γ1(K

x
µ)

γn(Kx
ν)

)
. (D.11)

Note that, by assumption, ‖mx
µ‖∞, ‖mx

ν‖∞ ≤ M and γn(Kx
µ), γn(Kx

ν) ≥ σ2. Moreover, it
is true that γ1(Kx

µ) ≤ ‖Kx
µ‖ for any matrix norm ‖ • ‖. Taking this norm to be the ∞-norm

21

The Gaussian Neural Process

‖Kx
µ‖∞ = maxi∈[n]

∑n
j=1|(Kx

µ)ij |, we see that γ1(Kx
µ) ≤ nM ; similarly, γ1(Kx

ν) ≤ nM .
Plugging in these estimates, we obtain

(i) ≤ n
(

log
nM

σ2
+
nM

σ2

)
≤ 2n2M

σ2
. (D.12)

The bound for (ii) is simpler:

(ii) ≤ n

γn(Kx
ν)
‖mx

µ −mx
ν‖2∞ ≤

4nM2

σ2
. (D.13)

Combining the bounds for (i) and (ii) gives the desired result.

In the following, we will repeatedly make use of the following fact. Let µ ∈ P have a
mean function and covariance function and let ν ∈ PG. Then, for all x ∈ I,

G(Pxµ, Pxν) = KL(Pxµ, Pxν)−KL(Pxµ, Px GP(µ)) = KL(Px GP(µ), Pxν) ≥ 0 (D.14)

with equality if and only if Px GP(µ) = Pxν. See App B for more details.

Prop D.4: Assume the assumptions of Prop D.3. Let p(x) be a Borel distribution over
X n with full support. Then

arg min
ν∈PG

Ep(x)[KL(Pxµ, Pxν)] = arg min
ν∈PG

Ep(x)[G(Pxµ, Pxν)] = GP(µ). (D.15)

Proof: By Prop D.3, x 7→ KL(Pxµ, Px GP(µ)) bounded. Therefore, we can decompose

Ep(x)[KL(Pxµ, Pxν)]

= Ep(x)[KL(Pxµ, Pxν)−KL(Pxµ, Px GP(µ)) + KL(Pxµ, Px GP(µ))] (D.16)

= Ep(x)[G(Pxµ, Pxν)]

(i)

+Ep(x)[KL(Pxµ, Px GP(µ))]

(ii)

, (D.17)

using (D.14). Here (i) measures how far Pxν is from the best Gaussian approximation of
Pxµ and (ii) measures the unavoidable approximation error due to the restriction to only
Gaussian Pxν. In particular, (i) is zero if and only if G(Pxµ, Pxν) = KL(Px GP(µ), Pxν) = 0
for almost all x ∈ X n. Since, GP(µ) ∈ PG and ν ∈ PG, this is true if and only if GP(µ) = ν
(Prop C.3), which proves the result.

Prop D.5: Let f be a noisy process and let πf be the associated posterior prediction
map. Let π ∈Mf.d.d.

G . Moreover, let p(x) be a Borel distribution with full support over X n
for a fixed size n ≥ 2, and let p(D) be a Borel distribution with full support over a collection
of data sets D̃ ⊆ D . Assume the following:

(1) The collection of data sets D̃ is bounded (Def C.5).

(2) The process f and prediction map π have uniformly bounded second moments:

sup
x∈X

E[f2(x)] <∞ and sup
D∈D̃

sup
x∈X

Eπ(D)[f
2(x)] <∞.

22

The Gaussian Neural Process

(3) The process f is noisy with noise variance σ2 > 0. Also, for all D ∈ D̃, the process
π(D) is noisy with noise variance σ2D > 0, and infD∈D̃ σ

2
D > 0.

Then
Ep(x)p(D)[KL(Pxπf (D), Pxπ(D))] <∞. (D.18)

Proof: To begin with, using Prop C.8, we confirm that πf ∈M ⊆M
f.d.d.. To show (D.18),

we show that the supremum over the bounds (D.4) is finite, which amounts to showing that
(i) the data sets sizes are bounded, (ii) the collection of mean functions are covariance
functions is uniformly bounded, and (iii) the collection of noise variances is bounded away
from zero. These follow directly from respectively assumptions (1), (2) in combination with
Prop C.9 and (1), and (3).

Prop D.6: Assume the assumptions of Prop D.5. Suppose that D̃ is open. Then

arg min
π∈Mf.d.d.

G

Ep(D)p(x)[KL(Pxπf (D), Pxπ(D))]

D̃
= arg min

π∈Mf.d.d.
G

Ep(D)p(x)[G(Pxπf (D), Pxπ(D))]
D̃
= GP(πf) (D.19)

where the equalities hold for all D ∈ D̃.

Proof: To begin with, using assumption (2) and Prop C.11, we confirm that GP(πf) ∈
Mf.d.d.

G . Then
Ep(D)p(x)[KL(Pxπf (D), Px GP(πf)(D))] <∞ (D.20)

by Prop D.5. Using this, decompose

Ep(D)p(x)[KL(Pxπf (D), Pxπ(D))]

= Ep(D)p(x)[G(Pxπf (D), Pxπ(D))]

(i)

+Ep(D)p(x)[KL(Pxπf (D), Px GP(πf)(D))]

(ii)

, (D.21)

using (D.14). Here (i) measures how far Pxπ(D) is from the best Gaussian approximatio of
Pxπf (D) and (ii) measures the unavoidable approximation error due to the restriction to only
Gaussian Pxπ(D). In particular, (i) is zero if and only if Ep(x)[G(Pxπf (D), Pxπ(D))] = 0 for
almost all D ∈ D̃. Consequently, by Prop D.4, (i) is zero if and only if GP(πf)(D) = π(D)
for almost all D ∈ D̃. Using that D̃ is open and that p(D) has full support, this set of
probability one is dense. Therefore, since GP(πf) ∈ Mf.d.d.

G and π ∈ Mf.d.d.
G , (i) is zero if

and only if GP(πf)(D) = π(D) for all D ∈ D̃ (Prop C.7), which proves the result.

Prop D.7: Assume the assumptions of Prop D.5. Let (πi)i≥1 ⊆M
f.d.d.
G be a minimising

sequence for the infimum

inf
π∈Mf.d.d.

G

Ep(D)p(x)[KL(Pxπf (D), Pxπ(D))]. (D.22)

23

The Gaussian Neural Process

(i) Suppose that, for almost all D ∈ D̃, πi(D) has a weak limit π∗(D) ∈ PG. Then
π∗(D) = GP(πf)(D) for almost all D ∈ D̃.

(ii) Suppose that, for almost allD ∈ D̃, πi(D) satisfies the following property: if there exist
some µ ∈ P and dense Ĩ ⊆ I such that Pxπi(D) ⇀ Pxµ for all x ∈ Ĩ, then πi(D) ⇀ µ.
Then there exists a subsequence (πni)i≥1 of (πi)i≥1 such that πni(D) ⇀ GP(πf)(D)
for almost all D ∈ D̃.

Proof: To begin with, by Prop D.5, Ep(D)p(x)[KL(Pxπf (D), Px GP(πf)(D))] <∞. There-
fore, decompose

Ep(D)p(x)[KL(Pxπf (D), Pxπi(D))]

= Ep(D)p(x)[G(Pxπf (D), Pxπi(D))] + Ep(D)p(x)[KL(Pxπf (D), Px GP(πf)(D))] (D.23)

using (D.14). This shows that

lim
i→∞

Ep(D)p(x)[G(Pxπf (D), Pxπi(D))] = 0 (D.24)

because Ep(D)p(x)[G(Pxπf (D), Px GP(πf)(D))] = 0 and GP(πf) ∈ Mf.d.d.
G ((D.14) and

Prop D.5).
Prop D.7.(i): By Fatou’s Lemma and the fact that (µ, ν) 7→ KL(µ, ν) is weakly lower

semi-continuous (Posner, 1975),

lim inf
i→∞

Ep(D)p(x)[KL(Pxπf (D), Pxπi(D))] ≥ Ep(D)p(x)[KL(Pxπf (D), Pxπ
∗(D))]. (D.25)

Therefore, by (D.23),

lim inf
i→∞

Ep(D)p(x)[G(Pxπf (D), Pxπi(D))] ≥ Ep(D)p(x)[G(Pxπf (D), Pxπ
∗(D))]. (D.26)

But the left-hand side is zero by (D.24), so the right-hand side is also zero:

Ep(D)p(x)[G(Pxπf (D), Pxπ
∗(D))] = 0, (D.27)

which yields that Ep(x)[G(Pxπf (D), Pxπ
∗(D))] = 0 for almost all D ∈ D̃. Consequently,

using that π∗(D) ∈ PG, it follows that π∗(D) = GP(πf)(D) for almost allD ∈ D̃ (Prop D.4).
Prop D.7.(ii): Note that

lim
i→∞

Ep(D)p(x)[G(Pxπf (D), Pxπi(D))] = 0. (D.28)

Therefore, there exists a collection of data sets A ⊆ D̃ of probability one such that, along a
subsequence,

lim
i→∞

Ep(x)[G(Pxπf (D), Pxπi(D))] = 0 for all D ∈ A. (D.29)

We show that πi(D) ⇀ GP(πf)(D) for all D ∈ A. Let D ∈ A. Pass to a further subsequence
of (πi(D))i≥1. It suffices to show that (πi(D))i≥1 contains a another further subsequence
weakly convergent to GP(πf)(D). Start with the observation that it still holds that

lim
i→∞

Ep(x)[G(Pxπf (D), Pxπi(D))] = 0. (D.30)

24

The Gaussian Neural Process

Hence, there exists a collection of index sets B ⊆ X n of probability one such that, along a
further subsequence,

lim
i→∞

G(Pxπf (D), Pxπi(D)) = 0 for all x ∈ B. (D.31)

Consequently, by Pinsker’s Inequality and (D.14), Pxπi(D) ⇀ N (Pxπf (D)) =
Px GP(πf)(D) for all x ∈ B. In particular, using that n ≥ 2, this means that almost
all means and covariances converge, which in turn means that Pxπi(D) ⇀ Px GP(πf)(D)
for all x ∈ Ĩ, for some dense Ĩ ⊆ I. Therefore, by the assumed property, we conclude that
πi(D) ⇀ GP(πf)(D).

25

The Gaussian Neural Process

Appendix E. The Gaussian Neural Process

We build on the development from Secs 2 and 3, where we defined a Gaussian approximation
π̃ : D → PG of the posterior prediction map πf : D → P corresponding some ground truth
stationary stochastic process f . Recall that stationarity of f is equivalent to translation
equivariance of πf (Foong et al., 2020): for all D ∈ D and τ ∈ X ,

Tτπf (D) = πf (D + τ) (E.1)

where Tτf = f(• −τ) is the shifting operator, Tτπf (D) is the measure πf (D) pushed through
Tτ , and D + τ = (x,y) + τ = ((x1 + τ, . . . , x|x| + τ),y).

Since the approximation π̃ is Gaussian, in a way that we now make precise, translation
equivariance of π̃ is characterised by translation equivariance of the mean functions and
kernel functions that π̃ maps to. For all D ∈ D, denote π̃(D) = GP(m(D)(•), k(D)(• , •)).
Then π̃ is translation equivariant if and only if, for all D ∈ D and τ ∈ X ,

m(D + τ)(•) = m(D)(• − τ) and k(D + τ)(• , •) = k(D)(• − τ, • − τ). (E.2)

We proceed to find general parametrisations of the mean mapping m and kernel mapping k
that then provide a general parametrisation of our approximation π̃.

Consider an arbitrary mean mapping m : D → C(X ,Y) and kernel mapping k : D →
Cp.s.d.(X 2,Y) where Cp.s.d.(X 2,Y) is the collection of continuous positive semi-definite func-
tions X 2 → Y. Suppose that these mappings satisfy (E.2), i.e. they are translation equiv-
ariant. Assume that m and k are continuous with respect to the metric on D (App A) and
compact convergence on C(X ,Y) and Cp.s.d.(X 2,Y).

The goal of this appendix is twofold: establish a universal representation for the kernel
mapping k (App E.1) and an implementable neural architecture that can approximate this
representation (App E.2). Moreover, in App E.3, we formulate an objective that can be
used to train the parameters of this architecture.

E.1. Universal Representation of the Kernel Map

Before we turn our attention to the kernel mapping k, we review how Thm 1 by Gordon
et al. (2020) can be used to establish a universal representation of the mean mapping m: for
a collection of data sets D̃ ⊆ D that is topologically closed, closed under permutations, and
closed under translations with finite maximum data set size and multiplicity K ∈ N (Def 2
by Gordon et al., 2020)—intuitively, the number of times an observation can occur at the
same input is at most K—there exists a Hilbert space H of functions on X , a continuous
stationary kernel ψ : X → R, a continuous φ : Y → RK+1, and a continuous and translation-
equivariant ρ : H′ → C(X ,Y) such that, for all D ∈ D̃,

m(D) = ρ(E(D)) with E(x,y) =

|x|∑
i=1

φ(yi)ψ(• − xi), (E.3)

where H′ = E(D̃) ⊆ H is a closed subset of H.

26

The Gaussian Neural Process

We find a similar representation for the kernel mapping k by reducing it to a case where
Thm 1 by Gordon et al. (2020) can be applied. Consider a data set D = (x,y) ∈ D. Embed
the data set in D2 :=

⋃∞
n=0(X 2 × Y)n by duplicating the inputs:

D′ = (((x1, x1), . . . , (x|x|, x|x|)),y) =: (duplicate(x),y). (E.4)

Then k satisfies

k(D′ + (τ, τ))(• , •) = k(D′)(• − τ, • − τ) for all (τ, τ) ∈ X 2. (E.5)

In other words, k can be viewed as a continuous function D2 → C(X 2,Y) that is equivariant
with respect to diagonal translations. If we can continuously extend k to be equivariant with
respect to all translations, then are in a position to apply Thm 1 by Gordon et al. (2020),
now for the input space X 2.

We provide an explicit construction of this desired continuous extension. Set e‖ =

(1, 1)/
√

2 ∈ X 2 and e⊥ = (1,−1)/
√

2 ∈ X 2. Then e‖ and e⊥ form an orthogonal basis for
X 2. For τ ∈ X 2, let Tτf = f(• − τ) be the shifting operator operating on functions on X 2.
Lift k : D → C(X ,Y) to k : D2 \ {∅} → C(X 2,Y) by setting

k((x1, . . . ,xn),y) =

{
k((x11, . . . , xn1),y) if xi1 = xi2 for all i ∈ [n],
0 otherwise.

(E.6)

Note that D = ∅ is excluded; we will turn to this case after Lem E.1. Then

k((x1 − τ, . . . ,xn − τ),y) = Tτk((x1, . . . ,xn),y) for all τ = (τ, τ) ∈ X 2, (E.7)

which is the earlier established property that k is equivariant with respect to diagonal
translations. Finally, we construct the desired extension k̂ : D2 \ {∅} → C(X 2,Y):

k̂((x1, . . . ,xn),y) = T〈e⊥,xc〉e⊥k((〈e‖,x1〉e‖, . . . , 〈e‖,xn〉e‖),y) (E.8)

where xc = 1
n

∑n
i=1 xi.

Lem E.1: The extended kernel mapping k̂ : D2 \ {∅} → C(X 2,Y)

(i) extends k: it agrees with k on the embedding of D \ {∅} in D2;

(ii) is permutation invariant and translation equivariant; and

(iii) is continuous with respect to the metric on D (App A) and compact convergence on
C(X 2,Y).

Proof: Lem E.1.(i): If all inputs x = (x, x) ∈ X 2, then 〈e‖,x1〉e‖ = x and 〈e⊥,x1〉e⊥ = 0,
so it is clear that k̂ then agrees with k.

27

The Gaussian Neural Process

Lem E.1.(ii): That k̂ is permutation invariant is clear. We check translation equivariance.
Let τ ∈ X 2. Then τ = τ‖ + τ⊥ where τ‖ = 〈e‖, τ〉e‖ and τ⊥ = 〈e⊥, τ〉e⊥. Therefore,

k̂((x1 + τ, . . . ,xn + τ),y) (E.9)

= T〈e⊥,xc+τ〉e⊥k((〈e‖,x1 + τ〉e‖, . . . , 〈e‖,xn + τ〉e‖),y) (E.10)

= T〈e⊥,xc〉e⊥+τ⊥k((〈e‖,x1〉e‖ + τ‖, . . . , 〈e‖,xn〉e‖ + τ‖),y) (E.11)

= T〈e⊥,xc〉e⊥+τ⊥Tτ‖k((〈e‖,x1〉e‖, . . . , 〈e‖,xn〉e‖),y) (E.12)

= TτT〈e⊥,xc〉e⊥k((〈e‖,x1〉e‖, . . . , 〈e‖,xn〉e‖),y) (E.13)

= Tτk̂((x1, . . . ,xn),y). (E.14)

Since τ ∈ X 2 was arbitrary, this shows that k̂ is translation equivariant.
Lem E.1.(iii): For i ∈ [n], let (x

(`)
i)`≥1 ⊆ X 2 be convergent to xi ∈ X 2, and let (y`)`≥1 ⊆

Yn be convergent to y ∈ Yn. Set τ` = 〈e⊥,x
(`)
c 〉e⊥, τ = 〈e⊥,xc〉e⊥,

f` = k((〈e‖,x
(`)
1 〉e‖, . . . , 〈e‖,x

(`)
n 〉e‖),y`), f = k((〈e‖,x1〉e‖, . . . , 〈e‖,xn〉e‖),y). (E.15)

Then τ` → τ and, by continuity of k, f` → f compactly. Hence, it remains to show that
Tτ`f` → Tτf compactly. By convergence of (τ`)`≥1, assume that the sequence (τ`)`≥1 and
limit τ are contained in [−R,R]2 for some R > 0. Let M > 0 and consider x ∈ [−M,M]2.
Set K = [−(R+M), (M +R)]2. Estimate

|Tτ`f`(x)− Tτf(x)| ≤ |f`(x− τ`)− f(x− τ`)|+ |f(x− τ`)− f(x− τ)| (E.16)
≤ sup

z∈K
|f`(z)− f(z)|

(i)

+ sup
z,z′∈K2, ‖z−z′‖2≤‖τ−τ`‖2

|f(z)− f(z′)|

(ii)

. (E.17)

Here (i) → 0 because f` → f compactly and (ii) → 0 because f is continuous on K hence
uniformly continuous on K (K is compact). We conclude that Tτ`f` → Tτf compactly.

For D = ∅, we simply set k̂(∅) = k(∅). Note that there are no issues of continuity of k̂
at ∅, because ∅ is an isolated point of D̃ (App A).

Let D̃ ⊆ D be collection of data sets that is topologically closed, closed under permu-
tations, and closed under translations with finite maximum data set size and multiplicity
K ∈ N. Let D̃2 be D̃ embedded in D2 by duplicating the inputs and allowing for a transla-
tion:

D̃2 = {(duplicate(x),y) + τ, : (x,y) ∈ D̃, τ ∈ X 2}. (E.18)

Then also D̃2 is topologically closed, closed under permutations, and closed under trans-
lations, has finite maximum data set size, and has multiplicity K. Following Thm 1 by
Gordon et al. (2020), let the encoding of a data set in D2 be

E2 : D̃2 → E2(D̃2), E((x1, . . . ,xn),y) =
n∑
i=1

φ(yi)ψ(• − xi), (E.19)

where we abuse notation to immediately restrict E2 to its image. According to Lems 1
to 4 by Gordon et al. (2020), H′ = E(D̃2) ⊆ H is a closed subset of H, and E is a

28

The Gaussian Neural Process

translation-equivariant homeomorphism where the inverse recovers the input data set up to
a permutation. Set ρ = k̂ ◦ E−12 : H′ → C(X 2,Y). Then, by Lem E.1.(i),

ρ(E(duplicate(x),y)) = k(D) for all D = (x,y) ∈ D̃; (E.20)

and, by Lem E.1.(iii), ρ is continuous. Moreover, by Lem E.1.(ii), ρ is translation equivariant
on E2(D̃2 \ {∅}). The construction breaks down with translation equivariance of ρ at the
zero function E2(∅) = 0. We discuss this issue next.

Suppose that ρ were also translation equivariant at the zero function E2(∅) = 0. Then
ρ(0) = ρ(Tτ0) = Tτρ(0) for all τ ∈ X 2, which means that ρ(E2(∅)) must be a constant
function. This is an issue, because k(∅) is not a constant function. We fix the issue by
avoiding the zero function entirely. In particular, we increase the dimensionality of the
embedding E2 by one by concatenating some fixed continuous function h ∈ C(X 2,Y):

E2 : D̃2 → E2(D̃2), E((x1, . . . ,xn),y) =

n∑
i=1

φ(yi)ψ(• − xi)

Txch(•)

 (E.21)

where we again abuse notation to immediately restrict E2 to its image and set xc = 1
n

∑n
i=1 xi

if n > 0 and xc = 0 otherwise. Then clearly E2(D̃2) ⊆ H×C(X 2,Y) is still a closed subset
of H×C(X 2,Y) and clearly E2 is still a translation-equivariant homeomorphism. Again, set
ρ = k̂◦E−12 . Then again ρ is continuous and agrees with k. The key difference is that E2(∅)
is now not equal to the zero function, so ρ can be extended to also be translation equivariant
at E2(∅): set ρ(TτE2(∅)) := Tτρ(E(∅)) = Tτk(∅) for all τ ∈ X 2. We need to make sure
that this extension of ρ well defined. For a translation τ ∈ X 2, denote τ‖ = 〈e‖, τ〉e‖ and
τ⊥ = 〈e⊥, τ〉e⊥.

Def E.1: Let h ∈ C(X 2,Y). Call h e⊥-discriminating if, for all translations τ1 ∈ X 2 and
τ2 ∈ X 2, we have Tτ1h 6= Tτ2h whenever (τ1)⊥ 6= (τ2)⊥.

Lem E.2: Suppose that h is e⊥-discriminating. If τ1 ∈ X 2 and τ2 ∈ X 2 are two transla-
tions such that Tτ1E(∅) = Tτ2E(∅), then Tτ1ρ(E(∅)) = Tτ2ρ(E(∅)). In other words, the
extension of ρ is well defined.

Proof: Since Tτ1E(∅) = Tτ2E(∅), in particular Tτ1h = Tτ2h. Therefore, using that h is
e⊥-discriminating, (τ1)⊥ = (τ2)⊥. Then

Tτ1ρ(E(∅)) = Tτ1k(∅)
(i)
= T(τ1)⊥k(∅)

(ii)
= T(τ2)⊥k(∅)

(i)
= Tτ2k(∅) = Tτ2ρ(E(∅)), (E.22)

using in (i) that k(∅) is invariant to diagonal translations and in (ii) that (τ1)⊥ = (τ2)⊥.

We make one last simplifying assumption: let h be invariant to diagonal translations.
Then

E2(duplicate(x),y) =

n∑
i=1

φ(yi)ψ(• − (xi, xi))

h(•)

 (E.23)

where {E2(duplicate(x),y) : (x,y) ∈ D̃} = H′×{h} with H′ ⊆ H a closed subset of H. We
have proved the following theorem.

29

The Gaussian Neural Process

Thm E.1: Let k : D → Cp.s.d.(X 2,Y) be a continuous and translation-equivariant kernel
mapping. Let D̃ ⊆ D be collection of data sets that is topologically closed, closed under
permutations, and closed under translations with finite maximum data set size and multi-
plicity K ∈ N. Set φ : Y → RK+1, φ(y) = (y0, y1, . . . , yK). Choose any h ∈ C(X 2,Y) that
is e⊥-discriminating and invariant with respect to diagonal translations. Then there exists
a reproducing kernel Hilbert space H of functions on X 2, a continuous stationary kernel
ψ : X → R, and a continuous and translation-equivariant ρ : H′ → C(X 2,Y) such that, for
all D ∈ D̃,

k(D) = ρ(E(D)) with E(x,y) =

n∑
i=1

φ(yi)ψ(• − (xi, xi))

h(•)

 (E.24)

where H′ = E2(D̃2) ⊆ H× C(X 2,Y) is a closed subset of H× C(X 2,Y).

We point out is that ρ is only defined on the closed subset H′. Using a generalisation of
Tietze’s Extension Theorem by Dugundji (1951), ρ can perhaps be continuously extended to
the entirety of H and an appropriate space containing h, and it appears possible to perform
this extension whilst preserving translation equivariance, see e.g. the thesis by Feragen
(2006). We leave these investigations for future work.

E.2. Implementation of the Kernel Map Representation

In this section, we establish an implementable neural architecture that can approximate the
representation in Thm E.1. The key observation is that ρ is a translation-equivariant map
between two function spaces. Therefore, if we discretise the functions finely enough, then
it appears plausible that the resulting map between discretisations can be approximated by
a CNN. We will not make this statement precise; rather, we point the reader to Yarotsky
(2018) for the universal approximation properties of CNNs.

We formalise our approximating architecture. We start out by approximating ρ. Let
Z ∈ RM×M be a sufficiently fine grid on X 2. Then, assuming a universal approximation
capability of CNNs convenient for our purpose, let CNN be such that

‖ρ(e)(Z)− CNN(e(Z))‖F < ε for all e ∈ E(D̃), (E.25)

for some chosen level of approximation accuracy ε > 0. Although CNN(e(Z)) approximates
ρ(e)(Z) satisfactorily, it is not guaranteed that CNN(e(Z)) is a positive semi-definite or
even symmetric matrix, which is required for our applications. To fix this, let Πp.s.d. be the
operator that takes a matrix to the positive semi-definite matrix closest in Frobenius norm
(Higham, 1988). Let e ∈ E(D̃). Then

‖ρ(e)(Z)−Πp.s.d. CNN(e(Z))‖F (E.26)

≤ ‖ρ(e)(Z)− CNN(e(Z))‖F + ‖CNN(e(Z))−Πp.s.d. CNN(e(Z))‖F.

The first term is less than ε by choice of CNN, and it is readily seen that the second term
is also less than ε:

‖CNN(e(Z))−Πp.s.d. CNN(e(Z))‖F ≤ ‖CNN(e(Z))− ρ(e)(Z)‖F < ε (E.27)

30

The Gaussian Neural Process

where “≤” follows from the definition of Πp.s.d. and the observation that ρ(e)(Z) is positive
semi-definite. Therefore,

‖ρ(e)(Z)−Πp.s.d. CNN(e(Z))‖F < 2ε for all e ∈ E(D̃), (E.28)

which means that Πp.s.d. CNN is also a good approximation of ρ. Crucially, the output
Πp.s.d. CNN is always positive semi-definite, suited for our applications. To complete the
architecture, we assume that the discretisation Z is sufficiently fine and far-reaching so that
we can reasonably construct the covariance between any two points x1 ∈ X and x2 ∈ X of
interest simply through interpolation:

k(D)(x1, x2) ≈
M∑
i=1

M∑
j=1

ψ̂(x1 − z1)ψ̂(x2 − z2)[Πp.s.d. CNN(E(D)(Z))]ij (E.29)

= 〈ψ̂(x1),Π
p.s.d. CNN(E(D)(Z), h(Z))ψ̂(x2)〉 (E.30)

where Zij = (zi, zj), ψ̂ is some suitable interpolation kernel, and

ψ̂(x) = (ψ̂(x− z1), . . . , ψ̂(x− zM)) ∈ RM for all x ∈ X . (E.31)

From (E.30) it is clear that the approximation of k(D)(x1, x2) is indeed a positive semi-
definite function.

Assume that the multiplicity K of the collection of data sets is one: K = 1. Moreover,
let h ∈ H be such that that h(Z) = I; indeed, this choice for h ∈ H is e⊥-discriminating
and invariant with respect to diagonal translations. Let D(c) = (x(c),y(c)) ∈ D be a data
set and let x(t) ∈ X |x(t)| be some target inputs. We then summarise the architecture in the
following three-step procedure:

1 Run the encoder H = enc(D(c),Z), which is defined to produce the following three
channels:

H::1 =

|x|∑
i=1

y
(c)
i ψ(Z− (x

(c)
i , x

(c)
i)),

data channel

H::2 =

|x|∑
i=1

ψ(Z− (x
(c)
i , x

(c)
i)),

density channel

H::3 = I.

source channel

(E.32)

2 Pass the encoding through a CNN, which outputs a single channel, and map it to the
closest positive semi-definite matrix:

K = Πp.s.d. CNN(H). (E.33)

3 Run the decoder to interpolate the covariances to the target inputs:

k(D)(x(t),x(t)) ≈ dec(K,x(t)) := ψ′(x(t), zT)Kψ′(z,x(t)T). (E.34)

The three channels in 1 all serve a distinct but crucial service: The data channel com-
municates the values of the observed data to the model. However, as pointed out by Gordon

31

The Gaussian Neural Process

et al. (2020), the model will not be able to distinguish between a value yi = 0 and no ob-
servation. This is what the density channels fixes: it communicates to the model where the
data is present and where data is missing. Finally, the source channel allows the architecture
to “start out” with a stationary prior with covariance I, which corresponds to white noise,
and then pass it through a CNN to modulate this prior to introduce correlations inferred
from the context set. C.f., any Gaussian process can be sampled from by first sampling
white noise and then convolving this noise with an appropriate filter; the kernel architecture
is a nonlinear generalisation of this procedure.

E.3. Training Objective

The ConvDeepSet for the mean mapping m and the architecture described in App E.2
for the kernel mapping k form the model that we call the Gaussian Neural Process (GNP).
The GNP depends on some parameters θ, e.g. weights and biases for the CNNs. To train
these parameters θ, we maximise the objective (5) from Sec 2:

θ∗ = arg max
θ

1

N

N∑
i=1

logN (y
(t)
i |mθ(D

(c)
i ,x

(t)
i),Kθ(D

(c)
i ,x

(t)
i)), (E.35)

where mθ(D
(c)
i ,x

(t)
i) and Kθ(D

(c)
i ,x

(t)
i) implement the ConvDeepSet architecture and

kernel architecture from App E.2 respectively, producing, from the context set D(c)
i , a mean

and covariance matrix for the target inputs x(t)i . In practice, we use minibatching in combi-
nation with stochastic gradient descent and the adaptive step size method ADAM (Kingma
and Ba, 2015).

32

The Gaussian Neural Process

Appendix F. Experimental Setup

We follow the experimental setup of Foong et al. (2020), with the following exceptions:

(1) We include an additional task Mixture, which samples from EQ, Matern-52 , Noisy
Mixture, Weakly Per., or Sawtooth with equal probability and thus consistutes
a highly non-Gaussian mixture process.

(2) In line with the theoretical analysis in Apps C and D, we contaminate all data samples
with N (0, 0.052)-noise.

(3) The margin of the ConvCNP is reduced to 0.1.

The architecture forGNP is analogous to the architecture for ConvCNP, with the following
exceptions:

(1) To alleviate memory requirements, the receptive field size is limited to 8.

(2) To alleviate memory requirements, the points per unit is decreased to 20.

Since the tasks are contaminated with noise, we extend the last step 3 in the ker-
nel the architecture (see App E.2) to also include a term for homogeneous noise, K(t) =
dec(K,x(t)) + σ2I where σ2 > 0 is a learnable parameter, which comes with the added
benefit of stabilising the numerics during training.

Tab F.1 show the parameter count for all models in all tasks in the 1D experiments.
The models were trained for roughly five days on a Tesla V100 GPU; Tab F.2 shows the
timings of a single epoch for all models in all tasks. Note that, for the computationally more
expensive tasks Sawtooth and Mixture, the timing of an epoch for the GNP increases
drastically, which is likely due to excessive allocations on the GPU.

Tab 1 shows (where applicable) the performance of the ground-truth Gaussian process
(GP), the ground-truth Gaussian process without correlations (GP (diag.)), the GNP, the
ConvCNP (Gordon et al., 2020), the ConvNP (Foong et al., 2020), and the ANP (Kim
et al., 2019) on all five data sets in (1) an interpolation setup, (2) an interpolation setup
where the model was not trained, testing generalisation capability, and (3) and extrapolation
setup, also testing generalisation capability. Note that the translation equivariance built into
the ConvCNP, ConvNP, and GNP enables these models to to maintain their performance
when evaluated outside of the training range.

33

The Gaussian Neural Process

EQ Matérn– 5
2 Weakly Per. Sawtooth Mixture

GNP 101 961 101 961 147 017 360 009 360 009
ConvCNP 42 822 42 822 51 014 100 166 100 166
ConvNP 88 486 88 486 104 870 104 870 203 174

ANP 530 178 530 178 530 178 530 178 530 178

Table F.1: Parameter counts for the GNP, ConvCNP, ConvNP, and ANP in the 1D regression
tasks

EQ Matérn– 5
2 Weakly Per. Sawtooth Mixture

GNP 145 145 275 1000 1035
ConvCNP 30 30 40 25 60
ConvNP 85 85 110 160 190

ANP 40 40 50 50 75

Table F.2: Rough estimate of the numbers of seconds required for a single epoch of the GNP,
ConvCNP, ConvNP, and ANP on a Tesla V100 GPU in the 1D regression tasks

EQ Matérn– 5
2 Weakly Per. Sawtooth Mixture

Interpolation inside training range

GP 0.70± 4.8e –3 0.31± 4.8e –3 –0.32± 4.3e –3 n/a n/a
GP (diag.) –0.81± 0.01 –0.93± 0.01 –1.18± 7.0e –3 n/a n/a
GNP 0.70± 5.0e –3 0.30± 5.0e –3 –0.47± 5.0e –3 0.42± 0.01 0.10± 0.02

ConvCNP –0.80± 0.01 –0.95± 0.01 –1.20± 7.0e –3 0.55± 0.02 –0.93± 0.02

ConvNP –0.46± 0.01 –0.67± 9.0e –3 –1.02± 6.0e –3 1.20± 7.0e –3 –0.50± 0.02

ANP –0.61± 0.01 –0.75± 0.01 –1.19± 5.0e –3 0.34± 7.0e –3 –0.69± 0.02

Interpolation beyond training range

GP 0.70± 4.8e –3 0.31± 4.8e –3 –0.32± 4.3e –3 n/a n/a
GP (diag.) –0.81± 0.01 –0.93± 0.01 –1.18± 7.0e –3 n/a n/a
GNP 0.69± 5.0e –3 0.30± 5.0e –3 –0.47± 5.0e –3 0.42± 0.01 0.10± 0.02

ConvCNP –0.81± 0.01 –0.95± 0.01 –1.20± 7.0e –3 0.53± 0.02 –0.96± 0.02

ConvNP –0.46± 0.01 –0.67± 9.0e –3 –1.02± 6.0e –3 1.19± 7.0e –3 –0.53± 0.02

ANP –1.42± 6.0e –3 –1.34± 6.0e –3 –1.33± 4.0e –3 –0.17± 2.0e –3 –1.24± 0.01

Extrapolation beyond training range

GP 0.44± 2.9e –3 0.09± 3.1e –3 –0.52± 3.4e –3 n/a n/a
GP (diag.) –1.40± 6.7e –3 –1.41± 6.6e –3 –1.41± 5.6e –3 n/a n/a
GNP 0.44± 3.0e –3 0.08± 3.0e –3 –0.62± 4.0e –3 0.04± 9.0e –3 –0.07± 0.01

ConvCNP –1.41± 7.0e –3 –1.42± 6.0e –3 –1.41± 6.0e –3 0.06± 8.0e –3 –1.36± 0.02

ConvNP –1.11± 5.0e –3 –1.12± 5.0e –3 –1.23± 4.0e –3 0.88± 9.0e –3 –0.93± 0.01

ANP –1.31± 5.0e –3 –1.28± 5.0e –3 –1.32± 5.0e –3 –0.17± 1.0e –3 –1.11± 0.01

Table F.3: Full results for 1D regression experiments. The numbers are average target point like-
lihood under the predictive distribution conditioned on the context set. The errors are
95%-confidence intervals. See Foong et al. (2020) for more details.

34

	Introduction
	A Practical Objective for Meta-Learning with Gaussian Processes
	The Gaussian Neural Process
	Experiments
	Conclusion and Future Work
	Notation and Terminology
	The Gaussian Divergence
	Noisy Processes and Prediction Maps
	Noisy Processes
	Prediction Maps
	Gaussianised Prediction Maps

	The Objective
	The Gaussian Neural Process
	Universal Representation of the Kernel Map
	Implementation of the Kernel Map Representation
	Training Objective

	Experimental Setup

