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Abstract

Large language models (LLMs) often suffer001
from hallucinations, posing significant chal-002
lenges for real-world applications. Confidence003
calibration, as an effective indicator of halluci-004
nation, is thus essential to enhance the trustwor-005
thiness of LLMs. Prior work mainly focuses006
on short-form tasks using a single response-007
level score (macro calibration), which is insuf-008
ficient for long-form outputs that may contain009
both accurate and inaccurate claims. In this010
work, we systematically study atomic calibra-011
tion, which evaluates factuality calibration at012
a fine-grained level by decomposing long re-013
sponses into atomic claims. We further cate-014
gorize existing confidence elicitation methods015
into discriminative and generative types, and016
propose two new confidence fusion strategies to017
improve calibration. Our experiments demon-018
strate that LLMs exhibit poorer calibration at019
the atomic level during long-form generation.020
More importantly, atomic calibration uncovers021
insightful patterns regarding the alignment of022
confidence methods and the changes of confi-023
dence throughout generation. This sheds light024
on future research directions for confidence es-025
timation in long-form generation.026

1 Introduction027

While large language models (LLMs) (Touvron028

et al., 2023; Jiang et al., 2023; OpenAI, 2022) excel029

in various tasks, they still struggle with trustwor-030

thiness issues. LLMs often suffer from hallucina-031

tions, generating factually inaccurate content and032

misleading responses (Zhang et al., 2023b; Huang033

et al., 2023), which limits their application in high-034

risk real-world scenarios (Hu et al., 2023). To ad-035

dress this, confidence calibration aims to estimate036

the underlying uncertainty of model predictions037

and reflect the true likelihood of correctness (Guo038

et al., 2017). A calibrated model is crucial for real-039

world applications, as it allows us to determine the040

extent to which we can trust models’ predictions041

Pembroke College is one of the 31 colleges of the 
University of Cambridge, England. The college is 
the third-oldest college of the university, founded 
in 1447. … Its members are termed "Valencians".
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Figure 1: Comparison between traditional macro cal-
ibration in response-level and our atomic calibration.
The Fact. label is assigned by fact-checking module.
We only list three atomic claims for illustration.

(Zhu et al., 2023; Mahaut et al., 2024). Improved 042

calibration enables more reliable confidence esti- 043

mation, warning users when not to trust the model 044

and thus mitigating the impact of hallucinations. 045

Most existing work on LLM calibration focuses 046

on short-form QA tasks (Jiang et al., 2021; Tian 047

et al., 2023; Zhu et al., 2023; Ulmer et al., 2024), 048

using datasets like TriviaQA and Natural Questions 049

(Joshi et al., 2017), where answers are typically 050

under 10 words. In contrast, real-world queries 051

often elicit much longer responses (Zhang et al., 052

2024; Yang et al., 2024b), spanning hundreds or 053

thousands of words. In such cases, response quality 054

is not simply binary, as answers may mix accurate 055

and inaccurate statements. 056

Recent work has begun to address calibration in 057

long-form generation (Zhang et al., 2024; Huang 058

et al., 2024; Liu et al., 2023; Fadeeva et al., 2024; 059

Jiang et al., 2024). Several approaches estimate 060

a single confidence score for the entire response 061
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(macro calibration; upper, Figure 1), while others062

assess confidence at the level of atomic claims (Liu063

et al., 2023; Fadeeva et al., 2024; Jiang et al., 2024)064

(atomic calibration; lower, Figure 1). However,065

previous work leaves several key research ques-066

tions unanswered: Why is it important to evaluate067

calibration at the atomic-claim level? What factors068

influence calibration results at this level? What069

patterns can be observed by analyzing calibration070

at the atomic-claim level?071

In this work, we systematically examine atomic072

calibration: A long response is decomposed into073

atomic claims, each containing a single factual074

statement, and confidence scores are assigned using075

various elicitation methods. To analyze different076

confidence elicitation methods, we categorize them077

into discriminative (intrinsic confidence estima-078

tion) and generative (external confidence assess-079

ment). Our experiments on three long-form QA080

datasets with seven LLMs reveal that: (1) Models081

that appear well-calibrated at the response level082

perform poorly at the atomic level (Figure 2, Ta-083

ble 1); (2) Leveraging atomic calibration enhances084

macro calibration (Table 2). These two reasons085

highlight the need for research on atomic-level cal-086

ibration to develop better-calibrated models.087

We further investigate the characteristics of dis-088

criminative and generative confidence. Our analy-089

sis yields two main findings: (1) Discriminative and090

generative methods are complementary; combin-091

ing them improves calibration, while combinations092

within the same category offer limited gains. (2)093

Generative methods maintain consistent calibration094

across different model sizes, whereas discrimina-095

tive methods benefit from increased model sizes.096

Motivated by finding (1), we propose two novel097

fusion strategies based on confidence agreement to098

integrate generative and discriminative confidence.099

Our strategies outperform existing fusion methods.100

Our atomic-level analysis (Section 6) offers101

deeper insights into confidence method alignment102

and confidence changes during generation. Con-103

fidence methods within the same category align bet-104

ter, explaining why cross-category fusion is more105

effective. Interestingly, with discriminative meth-106

ods, model confidence in atomic facts tends to de-107

crease as generation progresses. In contrast, gener-108

ative methods show the lowest average confidence109

in the middle of the generation process. These110

results highlight the necessity of fine-grained cali-111

bration evaluation for long-form generation, given112

us insights on model trustworthiness and usability.113

2 Related Work 114

Atomic Claims Generation and Verification. 115

Long-form responses often contain both correct 116

and incorrect statements, which impact the overall 117

factuality assessments. Min et al. (2023) propose 118

breaking long responses into atomic facts and cal- 119

culating the precision of these fact pieces to deter- 120

mine the overall factuality score. Wei et al. (2024) 121

and Zhao et al. (2024) extend this paradigm by 122

expanding the dataset to include more domains 123

beyond biographies. Song et al. (2024) design 124

VERISCORE for diverse long-form generation tasks 125

that feature both verifiable and unverifiable content. 126

Chiang and Lee (2024) introduce D-FACTSCORE, 127

specifically designed for content with ambiguous 128

entities. Decomposing long-form responses into 129

atomic claims and fact-checking them individually 130

has become a widely adopted pipeline. 131

Uncertainty and Calibration in Long-form Gen- 132

erations. Existing research on uncertainty estima- 133

tion and calibration primarily focuses on multiple- 134

choice or short-form questions (Zhu et al., 2023; 135

Kuhn et al., 2022; Lin et al., 2023; Tian et al., 2023; 136

Ulmer et al., 2024). There is an increasing interest 137

on calibration for long-form generations. Huang 138

et al. (2024) proposed a unified calibration frame- 139

work for all text generation tasks, comparing dis- 140

tributions of both correctness and the associated 141

confidence of responses. Band et al. (2024) in- 142

troduced linguistic calibration, where models ex- 143

plicitly express their uncertainty during long-form 144

generation. Zhang et al. (2024) proposed LUQ, 145

an uncertainty estimation method tailored to long- 146

form generation, demonstrating its effectiveness 147

in ensembling different LLMs. Another line of 148

work (Liu et al., 2023; Fadeeva et al., 2024; Jiang 149

et al., 2024; Yuan et al., 2024) decomposes sen- 150

tences into atomic claims and assigns confidence 151

scores to each claim. However, a unified defini- 152

tion of atomic-level calibration remains lacking. 153

Clarifying this concept and identifying key influ- 154

encing factors are essential steps toward improving 155

calibration in long-form generation. 156

3 Atomic Calibration 157

For a language model M, let x ∼ M(x | q) denote 158

the response generated by M for a query q, x ∈ X . 159

Let y ∈ Yt be the corresponding label, representing 160

a quality score ranging from 0 to 1 for a specific 161

task t ∈ T . Unlike multiple-choice or short-form 162
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questions, which mainly assess correctness, tasks163

in T cover diverse dimensions such as factuality,164

coherence, and creativity.165

We define a probability prediction function166

f : X → ∆|Yt|, where ∆|Yt| denotes the |Yt|-167

dimensional probability simplex. Here, f(x)y rep-168

resents the probability assigned to label y for a169

generated output x. In this work, we focus on170

calibrating factuality, as hallucinations are a well-171

known issue in LLMs (Zhang et al., 2023b; Huang172

et al., 2023), and the factuality of atomic claims can173

be assessed objectively. In this setting, Y denotes174

Yt for the factuality task t, where Y ⊆ [0, 1] re-175

flects the factuality level of a response. Following176

Guo et al. (2017), we define the calibration of each177

response as follows:178

Definition 1 (Macro Calibration on Factuality)179

A language model M that produces generations180

x ∼ M(x | q) is said to be response-level (macro)181

calibrated if182

P(y | f(x)y = β) = β, ∀β ∈ [0, 1].183
184

In the context of long-form generation, a sin-185

gle response x may encompass multiple atomic186

claims. Macro calibration at the response level can-187

not fully present the fine-grained uncertainty at the188

atomic level. To address this, we decompose the189

response x into N atomic claims ci, represented as190

x =
∐N

i=1 ci. Each atomic claim ci is assigned a191

binary label yi ∈ Yi, where Yi = {0, 1}, indicating192

its truthfulness. The overall factuality score for the193

response y is computed as y = 1
N

∑N
i=1 yi. Sim-194

ilarly, we define f(ci)yi as the probability of the195

label yi given the atomic claim ci. Building on this196

decomposition, we propose a fine-grained measure197

of calibration at the atomic level as follows:198

Definition 2 (Atomic Calibration on Factuality)199

A language model M, which generates a long-200

form response x conditioned on the query q,201

x ∼ M(x | q), is considered atomic-level202

calibrated if, for each atomic claim ci with its203

corresponding label yi, the following condition204

holds:205

P (yi | f(ci)yi = βi) = βi, ∀βi ∈ [0, 1].206207

Remarks: (1) Unlike traditional classification208

problems where f(x)y is usually represented as209

a single log probability of the predicted answer, it210

is much more challenging to measure model confi-211

dence in text generation tasks. Different confidence212

elicitation methods may yield different predictions 213

of the f(x)y; therefore, how to design proper elic- 214

itation methods is a key problem. (2) Macro cali- 215

bration is not equivalent to the sum of atomic cali- 216

brations, as illustrated by: 217

P(y | f(x)y = β) = β

̸⇒ 1

N

N∑
i=1

P (yi | f(ci)yi = βi) = β

̸⇒ P (yi | f(ci)yi = βi) = β, ∀i ∈ {1, ...., N}.

218

219

4 Confidence Elicitation Methods 220

In this section, we define two types of confidence 221

elicitation methods: generative and discrimina- 222

tive. We then introduce two novel confidence fu- 223

sion strategies that considers confidence agreement 224

when combining confidence scores. For the re- 225

sponse x to a query q, x is broken into atomic 226

claims C. Following previous work (Min et al., 227

2023; Wei et al., 2024; Zhao et al., 2024), each 228

atomic claim contains a single piece of information 229

and must be self-contained. For generative meth- 230

ods, we sample an additional set of responses K, 231

and compare them against the original response x. 232

For each atomic claim in C, we assign it a confi- 233

dence score. 234

4.1 Generative Methods 235

Generative methods assume that the consistency 236

between different generation samples provides a 237

reliable estimation of model uncertainty (Zhang 238

et al., 2024; Jiang et al., 2024). Generally, an ad- 239

ditional natural language inference (NLI) model is 240

used to calculate the consistency. In particular, we 241

have the following two variations: 242

GEN-BINARY. The basic assumption is that if a 243

fact is frequently conveyed when sampled multiple 244

times, the model is considered “confident” about 245

that fact. For an atomic claim ci in C, we utilize 246

a NLI model MNLI to examine whether ci is sup- 247

ported or not supported by each of the additional 248

samples. Let Ks be the set of samples supporting 249

ci. Then, the confidence in ci is calculated as 250

Conf(ci,K) =
|Ks|
|K|

. 251

GEN-MULTI. GEN-MULTI assumes that the 252

model is more confident in facts that are consis- 253

tently expressed. Unlike GEN-BINARY, it further 254

divides the “not supported” (Kns) into “conflict” 255
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(Kc) if the fact is presented differently in the sam-256

ple, and “not mentioned” (Knm) if the fact is not257

mentioned in the sample. We then calculate the258

confidence by only considering supporting and con-259

flicting samples:260

Conf(ci,K) =
|Ks|

|Ks|+ |Kc|
.261

4.2 Discriminative Methods262

Discriminative methods assess uncertainties by ask-263

ing the model itself (Tian et al., 2023; Xiong et al.,264

2023). This is motivated by the findings that mod-265

els tend to perform better on discriminative tasks266

(Saunders et al., 2022), and thus they may already267

possess the capability to estimate the confidence of268

their own outputs in a discriminative manner.269

DIS-SINGLE. Following Kadavath et al. (2022);270

Tian et al. (2023), we directly ask the model271

whether one single atomic claim is true or false.272

The probability the model assigns to token “True”273

(P (true)) in its generation is viewed as the confi-274

dence. As each atomic claim is judged individually,275

one advantage of this method is that there is no276

cross-claim influences when the model makes con-277

fidence judgments.278

DIS-CONTEXT. In addition to the method where279

each claim is judged in a self-contained way, we280

also consider a setting where additional context is281

provided. Here, the context denotes the passage282

where the atomic claim is extracted, or the prompt283

that generates the response. The context helps the284

model to more accurately locate the atomic claim,285

and thus potentially leads to better confidence elic-286

itation. P (true), given the context, is then used as287

the confidence score, just as in DIS-SINGLE.288

DIS-RATING. Instead of using P (true), in DIS-289

RATING, we directly prompt the model to assign a290

numerical value representing its confidence in the291

atomic claim ci. A score of 0 indicates no confi-292

dence, while 10 represents maximum confidence.293

An alternative approach is to use semantic expres-294

sions ranging from “Very Uncertain” to “Very Con-295

fident”. However, Tian et al. (2023) demonstrate296

LLMs achieve comparable or even better results297

using numerical values.298

4.3 Confidence Fusion Strategies299

Combining confidence scores has proven effective300

for calibration (Huang et al., 2024; Rivera et al.,301

2024), but existing methods typically only use302

a single fixed weight, α, to combine the scores,303

ignoring the confidence disagreement. For in- 304

stance, Rivera et al. (2024) computes the weighted 305

average (WAvg) for confidence scores A and B: 306

C = A · α+B · (1− α). This approach does not 307

account for the agreement between the two scores. 308

For example, when α = 0.5, confidences of 0 and 309

1 are treated the same as confidences of 0.4 and 310

0.6, although the former may indicate higher uncer- 311

tainty due to a larger disagreement. To address this, 312

we propose two simple but effective methods that 313

consider confidence disagreement d = B −A. 314

AdjustedAlpha adjusts the weight α based on the 315

confidence difference: 316

α′ = α+ γa · d, 317

where γa is a small constant (e.g., 0.1), followed by 318

C ′ = A · α′ +B · (1− α′). 319

DampedFusion applies a damping factor based on 320

the agreement: 321

γ(d) = 1− k · |d|, 322

where k is a small constant (e.g., 0.02) that controls 323

the damping sensitivity, followed by C ′ = C ·γ(d). 324

For baselines, we also include: MinConf, which 325

selects the minimum confidence; HMean, which cal- 326

culates the harmonic mean; and ProdConf, which 327

multiplies the confidences. 328

5 Experiments and Results 329

5.1 Experiment Setup 330

Models. We utilize seven LLMs from three model 331

families with varying sizes: Llama3 Instruct (8B 332

and 70B) (Meta, 2024), Mistral Instruct (7B and 333

8x7B) (Jiang et al., 2023), and Qwen2 Instruct (7B, 334

52B-A14B, and 72B) (Yang et al., 2024a). 335

Datasets. We use three datasets for long-form QA: 336

Bios (Min et al., 2023), which contains 500 individ- 337

uals from Wikipedia with varying levels of popu- 338

larity, for which models are tasked to generate bi- 339

ographies; LongFact (Wei et al., 2024) extends Bios 340

and includes 1,140 questions covering 38 manually- 341

selected topics; WildHallu (Zhao et al., 2024) in- 342

cludes 7,917 entities derived from one million user- 343

chatbot interactions in real-world settings. 344

Atomic Facts Generation and Verification. For 345

all three datasets, we apply a FACTSCORE-based 346

(Min et al., 2023) factuality assessment approach. 347

We first use GPT-4o to decompose the entire re- 348

sponse into atomic facts. These atomic facts are 349

then verified using GPT-4o, cross-referenced with 350
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Bios LongFact WildHallu
ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

Llama3-8B-Instruct
DIS-CONTEXT 35.5 35.8 74.5 11.9 13.6 74.4 12.5 16.5 83.5
DIS-RATING 26.8 29.0 71.1 3.5 12.0 66.9 5.3 15.2 79.8
DIS-SINGLE 32.6 33.9 74.5 14.3 15.2 69.8 19.2 20.9 79.3
GEN-BINARY 10.0 17.8 83.1 8.5 11.4 77.3 11.1 15.2 82.0
GEN-MULTI 37.4 37.3 64.2 12.6 13.1 58.5 21.9 22.1 65.4

Mistral-7B-Instruct
DIS-CONTEXT 24.8 26.0 77.5 15.7 16.1 75.3 20.6 21.7 79.8
DIS-RATING 44.5 42.5 65.0 10.0 14.2 67.9 19.7 23.9 68.1
DIS-SINGLE 30.2 30.7 75.2 20.4 20.5 66.6 24.0 24.6 75.1
GEN-BINARY 13.7 19.0 81.9 8.4 11.5 80.1 12.7 17.0 81.3
GEN-MULTI 42.2 41.8 65.0 13.4 13.9 61.7 26.6 26.4 64.2

Qwen2-7B-Instruct
DIS-CONTEXT 26.5 28.3 75.5 13.9 14.8 77.9 17.2 19.4 81.2
DIS-RATING 41.5 39.7 64.2 3.5 11.7 62.6 8.2 18.1 70.4
DIS-SINGLE 29.3 30.4 75.5 16.1 16.8 74.7 18.7 20.3 80.1
GEN-BINARY 10.9 16.7 83.8 6.3 9.9 81.9 9.5 14.0 82.5
GEN-MULTI 41.7 41.1 65.6 11.6 12.1 62.8 21.0 21.0 64.4

Table 1: Atomic Calibration Results. All the numbers are in percentages.

evidence from Wikipedia and Google Search. The351

detailed prompts for generating atomic facts are352

provided in Appendix I.353

Confidence Elicitation. We use P(true) (Kada-354

vath et al., 2022), Self-Rating (Tian et al., 2023),355

Semantic Entropy (SE) (Kuhn et al., 2022), and356

Sum of Eigenvalues (EigV) (Lin et al., 2023) as the357

baseline confidence elicitation methods. They are358

all calculated in response-level. For GEN-BINARY,359

we apply the Llama-3-8B-Instruct for better NLI360

performance. For WAvg, AdjustedAlpha, and361

DampedConf, we use a separate validation set for362

hyper-parameter tuning.363

Metrics. We use Expected Calibration Error (ECE)364

(Naeini et al., 2015) and Brier Score (BS) (Brier,365

1950) as the primary metrics. These metrics are ap-366

plicable to both atomic and macro calibration (see367

details in Appendix A), enabling a direct compari-368

son between them. Additionally, we include AU-369

ROC to evaluate atomic calibration and Spearman370

Correlation for a more instance-specific assessment371

in macro calibration.372

5.2 Results373

Overall, the tested LLMs are not well-calibrated374

at the atomic fact level. Table 1 lists our main375

atomic calibration results. Although there is no376

universally accepted threshold for low ECE, a well-377

calibrated model typically achieves an ECE close to378

1%, as shown in (Guo et al., 2017) and (Zhu et al.,379

2023). However, even with the most robust method,380

GEN-BINARY, the ECE scores remain around 10%,381

indicating a significant calibration gap. Among the382

models, Qwen2-7B-Instruct demonstrates slightly383
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Figure 2: Comparison of atomic level and response-
level calibration for ECE and Brier Score. Atomic-
level performance is generally worse than response-
level performance, with data points consistently lying
above the identity line.

better calibration compared to the other two. 384

Models that appear well-calibrated at the re- 385

sponse level still perform poorly at the atomic 386

level Figure 2 compares atomic and response- 387

level scores for ECE and Brier Score across differ- 388

ent datasets and confidence types. The data points 389

consistently lie above the identity line, indicating 390

that atomic-level errors are higher than response- 391

level errors. This suggests that atomic calibration 392

is crucial for fine-grained evaluation. 393

Atomic calibration can enhance macro calibra- 394

tion. Table 2 shows the main results of response- 395

level calibration. For the five atomic-level methods, 396

we calculate the average confidence of the facts in 397

a response to obtain the response-level confidence. 398

The results indicate that atomic calibration leads 399

to better overall results compared to the baseline 400

methods, highlighting the helpfulness of more fine- 401

grained calibration analysis. 402
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Bios LongFact WildHallu
ECE ↓ BS ↓ SC ↑ ECE ↓ BS ↓ SC ↑ ECE ↓ BS ↓ SC ↑

Llama3-8B-Instruct
P(true) 45.1 25.9 30.2 16.3 4.8 18.9 25.7 13.5 40.5
Self-Rating 38.7 23.4 40.5 14.1 4.2 21.5 18.6 12.9 50.2
SE 37.4 21.8 42.1 13.5 3.4 23.0 17.8 11.7 52.0
EigV 36.8 21.2 43.0 13.0 3.2 23.8 17.2 11.3 53.0
DIS-CONTEXT 34.0 17.3 55.4 5.6 1.9 29.7 9.5 4.8 65.9
DIS-RATING 25.7 11.7 73.8 2.9 1.6 34.1 3.6 3.5 71.7
DIS-SINGLE 27.2 13.7 58.0 8.7 2.6 20.9 14.4 7.3 55.9
GEN-BINARY 5.6 3.3 79.8 3.0 1.1 52.7 7.8 4.6 70.0
GEN-MULTI 35.8 18.1 71.4 11.6 2.7 37.5 22.0 10.5 62.6

Mistral-7B-Instruct
P(true) 44.5 27.1 32.8 16.7 7.4 22.0 24.3 19.8 41.2
Self-Rating 37.1 26.4 42.3 14.5 6.5 26.1 18.1 14.5 52.0
SE 36.5 23.9 44.1 13.8 3.7 28.0 17.4 14.3 53.4
EigV 35.9 23.3 45.3 13.3 3.5 36.5 16.9 13.9 54.4
DIS-CONTEXT 8.3 3.4 79.7 4.1 1.4 47.9 6.1 4.3 72.3
DIS-RATING 41.4 22.7 55.0 4.4 1.7 40.8 16.9 9.8 60.4
DIS-SINGLE 16.0 6.6 70.3 8.8 3.1 32.8 10.4 6.5 65.3
GEN-BINARY 8.5 3.8 74.9 2.5 1.0 64.1 10.3 5.0 73.9
GEN-MULTI 38.7 20.1 60.7 11.9 2.8 49.6 26.2 13.4 65.6

Qwen2-7B-Instruct
P(true) 45.0 27.9 33.5 11.2 5.6 28.3 12.7 15.6 35.4
Self-Rating 24.3 25.1 48.2 6.9 4.9 36.7 9.8 14.7 48.0
SE 22.9 23.1 49.8 6.5 3.7 38.9 8.9 13.9 49.2
EigV 22.4 22.5 50.7 6.2 3.5 39.8 8.5 13.5 50.2
DIS-CONTEXT 14.8 5.8 66.5 3.9 1.7 40.6 4.0 3.5 66.8
DIS-RATING 40.7 21.3 63.0 4.4 1.9 29.9 9.1 6.3 54.0
DIS-SINGLE 19.8 8.4 52.8 4.9 2.4 30.9 5.3 4.8 60.4
GEN-BINARY 5.4 3.2 72.4 2.0 0.9 67.6 6.5 3.2 72.2
GEN-MULTI 38.8 20.0 43.1 11.4 2.6 52.1 21.6 9.5 63.2

Table 2: Macro Calibration Results. All the numbers are in percentages.

The confidence fusion method considering con-403

fidence agreement outperforms other methods.404

Table 4 presents the results of various confidence405

fusion strategies at the atomic level (more results in406

Appendix F). The best performance is consistently407

achieved by AdjustedAlpha and DampedFusion.408

Notably, we observe that combining methods of409

the same confidence type (e.g., DIS-RATING with410

DIS-CONTEXT) does not lead to improved calibra-411

tion. A case study demonstrating the effectiveness412

of confidence fusion is shown in Figure 11.413

Larger model size does not necessarily result414

in better calibration. Table 3 compares the cali-415

bration levels of models with different sizes. Our416

two key findings are: (1) With generative meth-417

ods, there is little difference in calibration between418

larger and smaller models; (2) With discriminative419

methods, larger models generally provide better420

calibration. We hypothesize that this is because dis-421

criminative methods require models to self-assess422

the confidence of their own outputs, and larger423

models typically possess stronger discriminative424

abilities (Saunders et al., 2022).425

6 Discussion426

6.1 Confidence Methods Alignment427

To further explore the reasons behind the improve-428

ments provided by confidence fusion, we show the429

Figure 3: Heatmaps of Spearman Correlation between
different confidences in Llama3-8B-Instruct on Wild-
Hallu. Warmer colors indicate higher correlations.
Atomic level: left; response level: right.

correlation between different confidence elicitation 430

methods in Figure 3 (using WildHallu as the study 431

case and more results are in Appendix G). Our 432

findings are summarized as follows: 433

Confidence methods within the same type are 434

better aligned. In Figure 3, warmer colors in- 435

dicate higher Spearman Correlation scores. Con- 436

fidence elicitaton methods of the same type (top 437

left for generative and bottom right for discrim- 438

inative) show stronger correlations compared to 439

those across different types. This helps to explain 440

why cross-category fusion strategies are effective, 441

since these two types capture different aspects of 442
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Bios LongFact WildHallu

ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

GEN-BINARY

Llama3-8B-Instruct 10.0 17.8 83.1 8.5 11.4 77.3 11.1 15.2 82.0
Llama3-70B-Instruct 10.0 16.5 82.5 8.3 9.3 73.7 9.5 12.3 78.3

Mistral-7B-Instruct 13.7 19.0 81.9 8.4 11.5 80.1 12.7 17.0 81.3
Mistral-8x7B-Instruct 12.3 18.5 79.8 7.8 9.0 76.3 9.8 13.4 77.8

Qwen2-7B-Instruct 10.9 16.7 83.8 6.3 9.9 81.9 9.5 14.0 82.5
Qwen2-57B-Instruct 10.5 18.1 82.3 7.8 10.0 78.3 9.2 13.6 81.7
Qwen2-72B-Instruct 11.2 16.6 83.4 7.6 8.3 76.6 8.6 11.9 77.7

DIS-RATING

Llama3-8B-Instruct 26.8 29.0 71.1 3.5 12.0 66.9 5.3 15.2 79.8
Llama3-70B-Instruct 10.6 19.3 73.2 4.2 8.0 74.2 4.3 11.5 81.2

Mistral-7B-Instruct 44.5 42.5 65.0 10.0 14.2 67.9 19.7 23.9 68.1
Mistral-8x7B-Instruct 15.3 22.6 70.8 5.3 8.6 72.6 7.6 14.7 72.9

Qwen2-7B-Instruct 41.5 39.7 64.2 3.5 11.7 62.6 8.2 18.1 70.4
Qwen2-57B-Instruct 23.2 27.0 69.3 2.2 9.8 71.3 5.2 15.2 77.2
Qwen2-72B-Instruct 11.4 21.0 71.6 6.1 7.7 77.1 4.0 11.7 79.2

Table 3: Atomic calibration results with different model sizes. All the numbers are in percentages.

Bios LongFact WildHallu

ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

GEN-BINARY 10.0 17.8 83.1 8.5 11.4 77.3 11.1 15.2 82.0
DIS-RATING 26.8 29.0 71.1 3.5 12.0 66.9 5.3 15.2 79.8
DIS-CONTEXT 35.5 35.8 74.5 11.9 13.6 74.4 12.5 16.5 83.5

MinConf 6.2 17.1 83.2 10.7 12.2 77.4 9.0 13.9 85.8
HMean 9.8 17.4 84.0 4.1 11.0 79.6 5.6 13.3 87.0
ProdConf 7.4 16.7 84.1 13.4 12.8 79.6 11.5 14.1 87.0
WAvg 10.9 17.4 84.4 3.3 10.3 79.9 5.1 13.0 87.0

AdjustedAlpha 4.1 15.8 85.2 3.4 10.2 80.4 4.3 12.6 88.3
DampedFusion 5.0 15.6 84.7 3.5 9.8 80.0 4.8 12.4 87.9

Table 4: Atomic calibration results of different confidence fusion strategies for Llama3-8B-Instruct. The fusion
results are based on GEN-BINARY and DIS-RATING.

uncertainty and are complementary to each other.443

The alignment is stronger at the response level444

than at the atomic level. When comparing atomic445

and macro calibration, we observe that the align-446

ment is stronger for the latter. In atomic calibration,447

several methods display weak correlations (indi-448

cated in blue), while the correlations are generally449

higher at response level (indicated in red). Sim-450

ilarly, methods from different types show more451

disagreement than those of the same type. This452

highlights the need for future research on the dis-453

crepancies between generative and discriminative454

confidence elicitation methods, as well as how to455

better unify these approaches.456

6.2 Confidence Across Different Positions457

As each long-form response contains multiple458

atomic facts, we analyze how confidence and factu-459

ality scores evolve during the generation process.460

Specifically, we divide all atomic facts C into five461

equal parts along the generation process. Part 1462

represents the beginning of the generation, and part 463

5 corresponds to the end. We calculate the average 464

confidence score for each part of the responses and 465

present the results in Figure 4. 466

With discriminative methods, models exhibit de- 467

creasing confidence in atomic facts as the gener- 468

ation progresses. We observe similar trends across 469

all discriminative methods. This contrasts with pre- 470

vious findings, which used logits as a measure of 471

confidence and found that models tend to become 472

more confident during long generation sequences 473

(Zhang et al., 2023a). Our results show that dis- 474

criminative methods indicate lower confidence in 475

the model’s output toward the latter parts of the 476

generation. 477

With generative methods, the model shows the 478

lowest average confidence in the middle part 479

of the generation. We hypothesize that this is 480

because the tested models tend to provide gen- 481

eral introductions and conclusions at the beginning 482
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Figure 4: Average confidence scores across different parts of long-form responses. For discriminative methods,
confidence decreases as the generation progresses, while generative methods show the lowest confidence in the
middle sections.

and the end of the generation. During consistency483

checking, these statements are frequently cross-484

referenced, leading to higher confidence. For ex-485

ample, in Bios, statements like “[a person] is486

famous” or “[a person] made a significant im-487

pact in his field” are often repeated across samples.488

On the contrary, in the middle parts where the mod-489

els address more specific facts about individuals’490

lives, careers and achievements, they tend to cover491

different aspects and details.492

6.3 The Utilities of Atomic Calibration493

While the primary goal of atomic calibration is494

to provide fine-grained calibration evaluation for495

models, we also explore its utilities in several down-496

stream tasks, including: (1) Selective Question497

Answering (Kamath et al., 2020; Cole et al., 2023;498

Yang et al., 2023), which involves setting a confi-499

dence threshold to selectively reject low-confidence500

answers, ensuring that only high-confidence re-501

sponses are retained; (2) LLM-Ensemble (Zhang502

et al., 2024), which leverages multiple models to503

generate responses to the same question, selecting504

the answer with the highest confidence, thereby505

combining the strengths of each model; and (3)506

Atomic Claims Reunion (Thirukovalluru et al.,507

2024; Jiang et al., 2024), which involves sam-508

pling multiple responses, breaking then into atomic509

claims, evaluating their confidence, and reassem-510

bling only high-confidence claims to produce a511

more reliable final answer. Among these appli-512

cations, we observe consistent improvements in513

factuality with atomic-level examination. Detailed514

experimental settings and results can be found in515

Appendix C.516

It is important to note that, unlike previous work517

on Selective Question Answering (Huang et al.,518

2024) and LLM-Ensemble (Zhang et al., 2024) for519

long-form generation, which mainly rely on atomic-520

level confidence estimation to enhance the overall 521

quality of responses (with responses either being 522

entirely accepted or rejected), Atomic Claims Re- 523

union does not require an overall response-level 524

score. Instead, it relies entirely on the confidence of 525

atomic claims to select and combine the most accu- 526

rate claims. This means the final answer may con- 527

tain claims from different sampled answers. More 528

importantly, we observe that models with better 529

atomic-level calibration (e.g., Qwen2 in Table 7, 530

Appendix C) exhibit greater improvements after 531

the reunion process, emphasizing the importance 532

of examining and refining atomic calibration. 533

7 Conclusion 534

Our main contributions are three-fold: (1) We sys- 535

tematically study atomic calibration, which evalu- 536

ates confidence calibration at the level of individual 537

atomic claims. Our experiments reveal that models 538

that appear well-calibrated at the response level 539

perform poorly at the atomic level. (2) To analyze 540

confidence elicitation methods, we categorize them 541

into discriminative and generative methods. We 542

also propose two novel fusion strategies to com- 543

bine the confidence scores based on confidence 544

agreement. (3) Our atomic-level analysis provides 545

further insights into confidence methods alignment 546

and confidence changes during generation. We 547

find with discriminative methods, models show de- 548

creasing confidence in atomic facts as generation 549

progresses. In contrast, generative methods show 550

the lowest average confidence in the middle of the 551

generation. Last but not least, we demonstrate the 552

utilities of atomic calibration and propose for fu- 553

ture research on more fine-grained confidence in 554

long-form generation. 555
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Limitation556

First, our work primarily focuses on the factuality557

aspect of LLMs. As mentioned in Section 3, the558

task t can be various aspects of the quality of a559

long-form response, such as coherence, creativity,560

writing style, and more. Unlike previous studies561

that use the overall quality of long-form responses562

to evaluate calibration (Huang et al., 2024), we con-563

centrate specifically on factuality in this paper. We564

argue that the hallucination problem is among the565

most significant challenges faced by LLMs (Zhang566

et al., 2023b; Huang et al., 2023).567

Second, we test the calibration only on open-568

source LLMs for two main reasons: (1) After as-569

sessing the atomic and macro calibration levels of570

LLMs, our next step is to adjust the model to better571

reflect its confidence (i.e., for better calibration).572

Closed-source models are not directly applicable573

to this calibration process. (2) Our discrimination574

methods typically require logit access, which is575

generally unavailable in closed-source models. If576

logits are accessible, our methods can be directly577

applied to closed-source models without affecting578

the atomic calibration process.579

Third, in this work, we mainly focus on explor-580

ing different confidence elicitation methods and581

therefore do not apply post-hoc calibration tech-582

niques such as histogram binning or temperature583

scaling. Applying these methods makes it difficult584

to disentangle improvements due purely to elicita-585

tion from those due to recalibration. To isolate the586

contribution of our elicitation designs and to avoid587

conflating them with downstream post-processing588

effects, we report raw atomic and macro confidence589

scores, leaving a systematic study of post-hoc tech-590

niques to future work.591

Ethics Statement592

Our research adheres to strict ethical standards. We593

ensured compliance with the licenses of all datasets594

and models used. No human participants were in-595

volved in our experiments. After thorough assess-596

ment, we do not anticipate any additional ethical597

concerns or risks related to our work.598
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Appendix866

A Atomic Calibration Metrics867

ECE In computing the Expected Calibration Er-
ror (ECE), the predictions are sorted and divided
into a fixed number of bins K. The predicted
value of each test instance falls into one of the
bins. ECE uses empirical estimates as follows:

ECE =
K∑
i=1

P (i) · |oi − ei| ,

where oi is the true fraction of positive instances868

in bin i, ei is the mean of the post-calibrated prob-869

abilities for the instances in bin i, and P (i) is the870

empirical probability (fraction) of all instances that871

fall into bin i. The lower the ECE value, the better872

a model is calibrated.873

When labels are continuous values between 0874

and 1, the ECE formulation can be generalized.875

Instead of binning instances based on binary out-876

comes, the continuous predictions are grouped into877

bins according to their predicted probability val-878

ues. Specifically, the observed calibration error879

oi in each bin is the average of the continuous la-880

bel values for the instances in that bin, and ei is881

the mean predicted probability for those instances.882

This ensures that the calibration error accounts for883

all possible real-valued outcomes within the range884

[0,1], providing a more nuanced measure of cali-885

bration when the labels are continuous.886

Brier Score The Brier score measures the accu-
racy of probabilistic predictions. In binary classifi-
cation, it compares the predicted probability of the
positive class with the actual binary outcome (0 or
1). The Brier score is defined as:

P =
1

n

n∑
i=1

(ŷi − yi)
2 ,

where ŷi is the predicted probability for instance i887

and yi ∈ {0, 1} is the actual binary outcome.888

For continuous labels in the range [0, 1], the889

Brier score can still be used, where yi is now a890

continuous value between 0 and 1. In this case,891

the Brier score becomes equivalent to the mean892

squared error (MSE) between predicted probabili-893

ties and the true values, and minimizing the Brier894

score for continuous labels is analogous to minimiz-895

ing MSE. Both metrics aim to reduce the squared896

differences between predicted and true values, with897

lower scores indicating better calibration and accu-898

racy.899

AUROC Following (Kuhn et al., 2022), AUROC 900

metric is equivalent to the probability that a ran- 901

domly chosen correct answer has a higher confi- 902

dence score than a randomly chosen incorrect an- 903

swer. Higher scores are better for AUROC, and 904

perfect confidence score is 1, while a random con- 905

fidence measure would be 0.5. 906

Spearman Correlation Following Zhang et al. 907

(2024), we calculate Spearman Correlation to as- 908

sess whether samples with higher factuality have 909

correspondingly higher confidence scores. Com- 910

pared to Pearson Correlation, it focuses on assess- 911

ing the rank correlation, is robust to outliers and 912

does not require that data is in normal distribution. 913

B Statistics in Atomic and Macro 914

Calibration 915

To assess the confidence of a model, we generate 916

responses using various questions (e.g., N ques- 917

tions). For each response, a single confidence score 918

is too coarse-grained. Instead, we evaluate the con- 919

fidence of each atomic claim, with an average of M 920

atomic claims per response. These individual con- 921

fidences are then aggregated into a response-level 922

confidence score. 923

Atomic calibration is computed over MN data 924

points, where M is the average number of atomic 925

claims per response, and N is the number of re- 926

sponses. In contrast, response-level calibration is 927

based on N data points. This distinction highlights 928

the trustworthiness of the model’s confidence at 929

both the atomic and response levels, providing a 930

more granular view of its performance. 931

From the above discussion, it follows that to 932

ensure sufficient data points for atomic calibration, 933

MN must be large. In our datasets, N typically 934

exceeds 1,000, ensuring that MN remains robust 935

even when some responses have only a few calims. 936

The detailed generation statistics are further il- 937

lustrated in Figures 5, 6, and 7. Figure 5 presents 938

the average answer length, while Figure 6 shows 939

the average number of atomic claims per answer. 940

Finally, Figure 7 highlights the percentage of an- 941

swers containing fewer than 10 atomic facts. 942

12



bios longfact wildhallu
Datasets

0

50

100

150

200

250

300
Av

er
ag

e 
An

sw
er

 L
en

gt
h 

(in
 w

or
ds

) Average Answer Length (in words) by Dataset and Model

mistral-7b-instruct
qwen2-7b-instruct
llama3-8b-instruct
qwen2-57b-instruct
mistral-8-7b-instruct
llama3-70b-instruct
qwen2-72b-instruct

Figure 5: Average answer length (in words) for different models on Bios, longfact, and wildhallu.
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Figure 6: Average number of atomic claims per answer for different models on Bios, longfact, and wildhallu.
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Figure 7: Answer with less than 10 atomic facts (%) by dataset and model. Notably, Mistral-8×7B-Instruct has
6% short answers. Human evaluation reveals that these responses are primarily instances where the model refuses
to answer.
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C Applications943

Selective Question Answering: Selective ques-944

tion answering involves setting a confidence thresh-945

old, which can be derived from a validation set,946

to selectively reject questions with low confidence.947

This approach aims to improve the overall factu-948

ality of the responses by eliminating potentially949

unreliable answers.950

Using the Bios dataset, we evaluate the per-951

formance of three models: Llama3-8B-Instruct,952

Mistral-7B-Instruct, and Qwen2-7B-Instruct with953

DIS-GEN and Semantic Entropy (SE). We observe954

an improvement in overall factuality as we grad-955

ually rejected more questions (from 0% to 10%).956

The table below illustrates this trend, highlight-957

ing the utility of DIS-GEN in identifying accurate958

responses and improving selective question answer-959

ing. Our comparison between DIS-GEN and Se-960

mantic Entropy (SE) indicates that DIS-GEN brings961

more significant improvements in factuality, sug-962

gesting that better calibration methods can sub-963

stantially enhance the results of selective question964

answering.965

LLM Ensemble: In the LLM Ensemble method,966

we use three models to generate answers to the967

same question and select the response from the968

model with the highest confidence. This ap-969

proach aims to enhance factuality by leveraging970

the strengths of each model. The Answer Dis-971

tribution (AD) shows the proportion of the final972

response contributed by each model, highlighting973

the benefit of ensemble methods. The table be-974

low presents the results of applying this method on975

the Bios and WildHallu datasets, comparing two976

different selection strategies: DIS-GEN and SE.977

The results demonstrate that the ensemble978

method with DIS-GEN significantly improves fac-979

tuality. For instance, in the Bios dataset, the factu-980

ality score increases from 0.475 to 0.556, and in the981

WildHallu dataset, it increases from 0.655 to 0.752.982

In contrast, using SE results in no improvements,983

with factuality scores even lower than the best indi-984

vidual model (0.484 vs 0.502 and 0.671 vs 0.701)985

for the Bios and WildHallu datasets, respectively.986

These findings suggest that ensembling does not987

always guarantee better results, and the selection988

strategy, such as DIS-Gen, plays a crucial role in989

improving factuality.990

Atomic Reunion: In Atomic Reunion, for each991

question, we begin by sampling the model’s output992

five times (this is also what we need to calculate 993

GEN-DIS. These outputs are then broken down 994

into atomic claims, which are individual, verifiable 995

statements. Each claim is evaluated for confidence, 996

and only those with a high confidence level are 997

retained. Subsequently, we prompt a LLM, such as 998

GPT-4o, to reassemble the selected atomic claims 999

into a cohesive and factually accurate response. 1000

This method seeks to enhance factuality by uti- 1001

lizing smaller, more manageable pieces of infor- 1002

mation, allowing the LLM to generate a more re- 1003

liable answer by combining only high-confidence 1004

atomic claims. The table below presents the factu- 1005

ality scores of the new answers generated through 1006

the Atomic Reunion approach. As observed, this 1007

approach leads to a significant improvement in fac- 1008

tuality compared to the baseline models. 1009

D Reliability of Atomic Facts Generation 1010

and Verification 1011

The processes of atomic fact generation and verifi- 1012

cation have been extensively studied and validated 1013

in prior work (Min et al., 2023; Wei et al., 2024; 1014

Zhao et al., 2024). For instance, FActScore (Min 1015

et al., 2023) reports an error rate of 2%. In this 1016

work, we leverage their pipeline while employing 1017

stronger models from GPT-3.5 and GPT-4o, to fur- 1018

ther enhance performance. 1019

We, the authors, conducted additional tests com- 1020

paring GPT’s atomic decompositions with ground- 1021

truth manual segmentations. We manually selected 1022

30 samples for this evaluation. The results of our 1023

assessment are as follows: 1024

• Consistency: Over 10 trials, GPT demon- 1025

strated a high inter-run consistency of 95%, 1026

indicating stable and repeatable outcomes. 1027

• Error Rate: The error rate, which includes 1028

missing or overly segmented claims and mis- 1029

classification of factuality, was measured at 1030

6.4%. This error rate is manageable within the 1031

context of our calibration framework, suggest- 1032

ing that the model’s atomic fact generation is 1033

reliable. 1034

E Experiment Details 1035

We use vLLM (Kwon et al., 2023) for our LLM in- 1036

ference tasks, with the following parameters: tem- 1037

perature = 1, top-p = 0.95, and a maximum output 1038

of 512 tokens. For discriminative confidence elic- 1039

itation methods, we set the temperature to 0 and 1040
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Refuse Rate Llama3-8B-Instruct Mistral-7B-Instruct Qwen2-7B-Instruct

SE

0% 0.475 0.403 0.502
5% 0.479 0.407 0.506

7.5% 0.483 0.411 0.511
10% 0.485 0.416 0.518

DIS-Gen

0% 0.475 0.403 0.502
5% 0.496 0.419 0.517

7.5% 0.511 0.438 0.533
10% 0.528 0.465 0.557

Table 5: Factuality Scores with Varying Refuse Rates for Selective Question Answering

Model Bios WildHallu

Factuality Scores Answer Distribution Factuality Scores Answer Distribution

DIS-Gen

Llama3-8B-Instruct 0.475 31% 0.655 29%
Mistral-7B-Instruct 0.403 23% 0.631 27%
Qwen2-7B-Instruct 0.502 46% 0.701 44%
Ensemble 0.556 / 0.752 /

SE

Llama3-8B-Instruct 0.475 18% 0.655 15%
Mistral-7B-Instruct 0.403 37% 0.631 44%
Qwen2-7B-Instruct 0.502 45% 0.701 41%
Ensemble 0.484 / 0.671 /

Table 6: LLM Ensemble Results on Bios and WildHallu Datasets

Model Before Atomic Reunion After Atomic Reunion

DIS-Gen

Llama3-8B-Instruct 0.475 0.501
Mistral-7B-Instruct 0.403 0.441
Qwen2-7B-Instruct 0.502 0.575

Table 7: Factuality Scores Before and After Atomic Reunion using DIS-Gen

only consider the top 10 logits. For generative1041

methods, we use N = 20 samples. The experi-1042

ments are conducted on A100-SXM-40GB GPUs.1043

Running the discriminative methods takes 30 min-1044

utes for 500 samples, while the generative methods1045

take 1.3 hours for the same number of samples. We1046

use GPT-4o as the auxiliary model for generating1047

atomic claims and fact-checking the LLM.1048
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F Confidence Fusion Results1049

Bios LongFact WildHallu

ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

GEN-BINARY 13.7 19.0 81.9 8.4 11.5 80.1 12.7 17.0 81.3
DIS-RATING 44.5 42.5 65.0 10.0 14.2 67.9 19.7 23.9 68.1
DIS-CONTEXT 24.8 26.0 77.5 15.7 16.1 75.3 20.6 21.7 79.8

MinConf 14.1 18.3 82.0 8.6 12.7 80.7 7.6 16.0 83.2
HMean 14.3 18.3 82.1 7.6 12.2 81.0 11.5 16.6 83.4
ProdConf 14.2 18.3 82.3 9.5 13.0 81.0 7.9 15.9 83.5
WAvg 10.6 16.6 84.7 5.5 10.7 82.1 12.3 16.4 84.4
AdjustedAlpha 9.8 16.7 85.0 5.8 10.5 81.8 6.5 15.2 84.0
DampedFusion 10.2 16.5 84.6 5.9 10.9 81.9 7.1 15.4 83.8

Table 8: Atomic calibration results of confidence fusion strategies for Mistral-7B-Instruct. The fusion results are
based on GEN-BINARY and DIS-CONTEXT.

Bios LongFact WildHallu

ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑ ECE ↓ BS ↓ AUROC ↑

GEN-BINARY 10.9 16.7 83.8 6.3 9.9 81.9 9.5 14.0 82.5
DIS-RATING 41.5 39.7 64.2 3.5 11.7 62.6 8.2 18.1 70.4
DIS-CONTEXT 26.5 28.3 75.5 13.9 14.8 77.9 17.2 19.4 81.2

MinConf 11.3 16.9 82.4 6.3 10.3 80.5 5.0 13.8 82.6
HMean 11.1 16.9 82.7 2.7 9.6 81.7 4.9 13.6 83.8
ProdConf 12.4 17.0 83.1 8.3 10.6 81.7 7.2 13.7 83.9
WAvg 10.7 15.9 84.8 2.6 9.2 82.8 6.8 13.5 84.3

AdjustedAlpha 8.9 16.0 84.6 2.9 9.1 82.6 4.5 13.2 84.1
DampedFusion 10.2 15.8 84.5 2.6 9.3 82.9 5.2 13.3 84.4

Table 9: Atomic calibration results of confidence fusion strategies for Qwen2-7B-Instruct. The fusion results are
based on GEN-BINARY and DIS-CONTEXT.
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G Confidence Alignment 1050

Gen-Binary
Gen-Multi

Dis-Single
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Dis-Single
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(a) Mistral-7B-Instruct : atomic
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(b) Mistral-7B-Instruct : response
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(c) Qwen2-7B-Instruct : atomic
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(d) Qwen2-7B-Instruct : response
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(e) Llama3-8B-Instruct : atomic
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(f) Llama3-8B-Instruct : response

Figure 8: Heatmaps comparing the Spearman correlation between generative and discriminative confidence elicitation methods
for Bios. Results shown for Mistral-7B-Instruct, Qwen2-7B-Instruct, and Llama3-8B-Instruct.
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(b) Mistral-7B-Instruct : response
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(d) Qwen2-7B-Instruct : response
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(e) Llama3-8B-Instruct : atomic
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(f) Llama3-8B-Instruct : response

Figure 9: Heatmaps comparing the Spearman correlation between generative and discriminative confidence elicitation methods
for LongFact. Results shown for Mistral-7B-Instruct, Qwen2-7B-Instruct, and Llama3-8B-Instruct.
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(b) Mistral-7B-Instruct : response
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(d) Qwen2-7B-Instruct : response
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(e) Llama3-8B-Instruct : atomic
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(f) Llama3-8B-Instruct : response

Figure 10: Heatmaps comparing the Spearman correlation between generative and discriminative confidence elicitation methods
for WildHallu. Results shown for Mistral-7B-Instruct, Qwen2-7B-Instruct, and Llama3-8B-Instruct.
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H Case Study 1051

Hoag's Object, also known as NGC 2623 or the "Flying Saucer Galaxy," is an visually striking 
irregular galaxy located approximately 23 million light-years away from Earth. Discovered in 
1950 by astronomer Dorato Hoag ... … The origin of its irregular form is still a subject of 
ongoing research ... … Regardless of its origins, … , offering valuable insights into the complex 
and dynamic nature of galaxies in the universe.

In a paragraph, introduce the Hoag’s Object to me.

Factuality Dis-Rating Gen-Binary WAvg

0 0.90 0.19 0.40

0 0.10 0.53 0.40

0 0.10 0.12 0.11

1 0.80 0.20 0.38

1 0.50 0.84 0.74

… … … …

Hoag's Object is also known as NGC 2623. 

Selected atomic claims

Hoag's Object is an irregular galaxy. 

Hoag's Object is discovered in 1950. 

Hoag's Object’s form is still a ongoing research. 

Hoag's Object is 23 million light-years from Earth.

Response-level

SE 0.28

P(true) 0.79

Self-Rating 0.40

Response Factuality: 0.54

Atomic level

Dis-Single 0.89

Dis-Context 0.83

Dis-Rating 0.75

Gen-Binary 0.64

Gen-Multi 0.68

WAvg: 0.58

Figure 11: An example from WildHallu dataset by Mistral-7B-Instruct. We only select five atomic facts for demonstration. The
example shows the effectiveness of calculating confidence in atomic level with fusion strategy.

I Prompts 1052

Prompts to Generate Responses

Bios:
Tell me a bio of <ENTITY>.

LongFact:
Can you detail the concept of Gravitational Lensing and how it is utilized in modern astronomy for
the study and understanding of the universe?

Can you explain the process and importance of customer journey mapping in creating effective
marketing strategies?

WildHallu:
In a paragraph, could you tell me what you know about <ENTITY>?

Table 10: Prompts to generate responses. We use the default prompt template for Bios and WildHallu. For LongFact, it has
corresponding Prompt for each question, so we only list two examples here.
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GEN-BINARY

Sample: {sample}
Sentence: {sentence}
Is the sentence supported by the sample above?
You should answer the question purely based on the given sample and not your
own knowledge.
Do not output the explanations.
Your answer should be within “yes” or “no”.
Answer:

Table 11: Prompt for GEN-BINARY.

GEN-MULTI

Sample: {sample}
Sentence: {sentence}
Is the sentence supported, refuted, or not mentioned by the sample above?
You should answer the question purely based on the given sample and not your
own knowledge.
Do not output the explanations.
Your answer should be within “supported”, “refuted”, or “not mentioned”.
Answer:

Table 12: Prompt for GEN-MULTI.

DIS-SINGLE

Please evaluate the truthfulness of the following statement based on your
internal knowledge.
Respond only with “True” or “False” with no other information.
Statement: {atomic_fact_piece}
True or False:

Table 13: Prompt for DIS-SINGLE.

DIS-CONTEXT

You are given a topic and a statement related to that topic.
Evaluate the truthfulness of the statement based solely on your internal
knowledge.
A statement is true only if it is factually accurate according to what you know.
Do not use the topic to evaluate the statement.
Respond with “True” or “False” only, without any additional information.
Topic: {context}
Statement: {atomic_fact_piece}
True or False:

Table 14: Prompt for DIS-CONTEXT.
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DIS-RATING

Please rate your confidence in the truth of the following statement on a scale
from 0 to 10.
A confidence of 0 means you are not confident at all whether the statement is
true, while 10 means you are absolutely confident the statement is true.
The topic provides context for the statement, but focus on the statement itself
when rating your confidence.
Provide only the numerical value for your confidence level, bounded by dollar
signs ($), without any additional information.
Topic: {context}
Statement: {atomic_fact_piece}
Confidence:

Table 15: Prompt for DIS-RATING.
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