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Abstract

Current state-of-the-art models in medical image analysis are often evaluated using
small, single train/test split datasets, which may not provide a reliable indication of model
improvement. This practice, combined with the increasing complexity and computational
cost of newer architectures, exacerbates reproducibility issues, particularly in brain MRI
imaging. This paper introduces a robust statistical framework to assess model comparisons
in medical imaging. We correct common misapplications of the t-test, which assumes data
normality, and promote the use of Two One-Sided Tests for demonstrating non-inferiority
in model optimization scenarios. Through this approach, we aim to enhance the rigor of
model performance evaluations and address the challenges of dataset size and test validity
in medical image analysis.
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ation

1. Introduction and Previous works

In medical deep learning and computer vision, it is common to encounter small and het-
erogeneous datasets while simultaneously deploying state-of-the-art (SOTA) models such as
3D U-net (Çiçek et al., 2016), UNetR (Hatamizadeh et al., 2022), or ensembles of 2D U-nets
(Rad et al., 2018; Couteaux et al., 2019; Dang et al., 2024). Datasets with several hundreds
of subjects, including UCLA LA5c Study (Gorgolewski et al., 2017), focus on classification
tasks for conditions like schizophrenia and ADHD. In contrast, ABIDE (Di Martino and
Mostofsky, 2023), ADNI (Petersen et al., 2010), and BraTS (Bakas et al., 2018), with thou-
sands of subjects, handle tasks such as autism classification and brain tumor segmentation
BraTS (Bakas et al., 2018). However, many papers at leading conferences still report re-
sults comparing to SOTA using a single train/test split. Here we advocate for a pivot in
statistical methods commonly used in two-model comparisons. The most known test is the
‘t-test‘ (Kim, 2015), which often appears in papers simply marked with a ‘p-value‘ star in
the results table and is especially rarely exploited in classification papers.

2. Methods

We will explore two typical settings and assess three different statistical methods for two
common tasks in data analysis: Classification and Semantic Segmentation.We consider two
sets of hypotheses: 1. Our model is not similar to the baseline; this is exactly what is
tested with a two-sided t-test, which is commonly used in numerous works. this is the most
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typical scenario when you want to demonstrate that your model is state-of-the-art (SOTA).
2. Our model is not worse than the baseline model. This is another common scenario, or the
difference between the models is not more than ∆. This scenario is used when optimizing
the model or conducting distillation, or checking if your model is not worse than SOTA.

Statistical Tests: 1. The t-test, applicable for both paired and independent samples
(Kim, 2015), and its counterpart, the Welch test (Welch, 1947), which operates without
the assumption of equal variances. 2. The Wilcoxon signed-rank test for independent
samples (Wilcoxon, 1992). 3. Two one-sided tests (TOST) for equivalence (Schuirmann,
1987), which are particularly useful for proving non-inferiority or equivalence between two
competing models.

Multiple Comparison Correction. Given that the comparisons we perform are part
of a set of experiments, we apply the Bonferroni correction (Weisstein, 2004) to adjust the
p-values, ensuring the control of the family-wise error rate.

3. Results

1. Classification In this study, we compare two models for ADHD classification using data
from the LA5 study with 186 subjects. We employ ROC-AUC as the evaluation metric in
a 3-fold cross-validation setup with a fixed random seed. The reported mean ROC-AUC
values for the “baseline” and “ours” models across three folds are 0.630 (0.049) and 0.716
(0.065), respectively. First, we assume one fold from CV as a single observation, thus we
have 3 samples (Table 1, rows 1-8). Secondly, we use per-subject prediction accuracy as
|y−ypred proba|, where y represents the true labels, and ypred proba the prediction probability
of the classifier. To determine the significance of the observed improvement in predictive
accuracy of the proposed model over the baseline, we test four model architectures and
configurations. To maintain an overall significance level of 0.05, we adjust the individ-
ual hypothesis testing threshold to 0.05/4 = 0.0125 using the Bonferroni correction. Our
analysis assesses the null hypothesis (H0) that there is no significant difference in mean
performance between the two models, contrasting it with the alternative hypothesis (H1)
proposing a significant difference, either in both directions (’two-sided’) or exclusively in
one direction (’greater’). In Table 1, we show that H0 is rejected only in the last test.

2. Segmentation Our goal is to statistically confirm that our model performs similarly
to the baseline but with significantly faster inference. We analyse TCIA-GBM (Clark et al.,
2013) with 102 subjects with brain tumors. We use Dice as the evaluation metric in a 3-fold
CV setup with a fixed random seed. The reported mean Dice values for the ”baseline” and
”ours” models across three folds are 0.845 (0.112) and 0.849 (0.116), respectively.

We use Wilcoxon test, similar to previous tests, to assess the null hypothesis (H0) that
there is no significant difference in mean performance between the two models. This is
contrasted with the alternative hypothesis (H1), which proposes a significant difference in
one direction (’greater’).For the Two One-Sided Tests (TOST), the null hypothesis (H0)
posits that the two samples are significantly different. The alternative hypothesis (H1),
meanwhile, suggests that the means are not significantly different within a specified equiv-
alence margin. We set the margin ∆ based on the benchmark performance of the nn-U-Net
model on the BraTS dataset from the original study (Isensee et al., 2021), specifically for
the tumor core: Mean (STD) 0.851 (0.024), taking STD/2 = 0.012.
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Table 1: H0 testing for two classification models comparison (pvalue<0.0125). For related
samples cross-validation split should be fixed. * - data normality and ** - normality
and variance equality should be proven.

Statistical Test Samples Observations Alternative pvalue H0

1 Wilcoxon Related 3 Two-sided 0.5 Accept

2 Wilcoxon Related 3 Greater 0.25 Accept

3 T-test** Independent 3 Two-sided 0.245 Accept

4 Welch test* Independent 3 Two-sided 0.144 Accept

5 T-test, Mean(STD)* Related 3 Two-sided 0.139 Accept

6 T-test** Independent 3 Greater 0.122 Accept

7 Welch test* Independent 3 Greater 0.072 Accept

8 T-test, Mean(STD)* Related 3 Greater 0.069 Accept

9 Wilcoxon Related 186 Two-sided 0.013 Accept

10 Wilcoxon Related 186 Greater 0.007 Reject

Table 2 shows that the first two tests accept H0, which does not prove equivalence
between the two models. However, the third experiment demonstrates that the two models
are equivalent within the chosen margin.

Table 2: H0 testing for comparison of two segmentation models with Dice scores per-subject
(on comparison in set of experiments). TOST ∆ = 0.012 (Dice). After Bonferroni
correction, desired pvalue < 0.0125. * - data normality should be proven.

Statistical Test Samples Observations Alternative pvalue H0

1 Wilcoxon Related 102 Two-sided 0.029 Accept

2 Wilcoxon Related 102 Greater 0.014 Accept

3 TOST* Related 102 Equivalent 0.007 Reject

4. Conclusions and Discussion

1. We recommend using the Wilcoxon test for related samples with a ’greater’ alternative
to demonstrate the significance of differences. For model classification, we propose assessing
per-subject accuracy.
2. When using T-test and TOST methods, the assumption of data normality should be
verified (Razali et al., 2011; Shaphiro and Wilk, 1965).
3. For assessing the equality of model results, we suggest employing two one-sided tests
(TOST) analysis.
Assumptions: Most of the statistical tests, both parametric and non-parametric, that we
have mentioned operate under the ”big numbers” rule.
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