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Abstract

Neuronal responses associated with complex tasks are superpositions of several1

elementary physiological and functional motifs. Important challenges in this context2

relate to identification of elementary responses (also known as basic functional3

neuronal networks), combinations of responses for given tasks, and their use in task4

and efficacy prediction, and physiological characterization. Task-specific functional5

MRI (fMRI) images provide excellent datasets for studying the neuronal basis of cog-6

nitive processes. In this work, we focus on the problem of deconvolving task-specific7

aggregate neuronal networks into elementary networks, to use these networks for8

functional characterization, and to “explain” these networks by mapping them to9

underlying physiological regions of the brain. This task poses a number of challenges10

due to very high dimensionality, small number of samples, acquisition variability,11

and noise. We propose a deconvolution method based on supervised non-negative12

matrix factorization (SupNMF) that identifies elementary networks as factors of a13

suitably constructed matrix. We show the following important results: (i) SupNMF14

reveals cognitive "building blocks" of task connectomes that are physiologically15

interpretable; (ii) SupNMF factors can be used to predict tasks with high accuracy;16

and (iii) SupNMF outperforms other supervised factoring techniques both in terms17

of prediction accuracy and interpretability. More broadly, our framework provides18

important insights into the physiological underpinnings of brain function.19

1 Introduction20

Connectomic studies use functional brain images of human subjects performing tasks to elucidate21

complex cognitive processes. Functional Magnetic Resonance Imaging (fMRI) is a common imaging22

modality used to analyze the underlying natural processes in healthy individuals and the dysregulation23

of such processes due to disease and/or injury. Functional networks derived from fMRIs typically24

superpose many neurophysiological responses elicited by stimuli. Identifying and separating25

functional networks into their basic building blocks is essential to explain the shared, and unique26

aspects of neuronal responses across heterogeneous populations performing different tasks. Ideally,27

these elemental networks should be grounded in neurophysiology, identifying coherent modules of28

neural responses that are interpretable by neuroscientists and other domain experts.29

The method of choice for connectomic analysis is Independent Component Analysis (ICA) [36, 24],30

which is used on individual fMRIs to spatially localize regions of interest. Group-ICA [13, 10, 34]31

combines fMRIs across individuals to model shared regions of interest. Other ML-based interpretable32

methods have been proposed in the recent past [19, 26, 33, 29]. However, these methods are limited33

in their ability to handle large datasets with diverse subjects (young v/s old, healthy v/s diseased) per-34

forming a variety of cognitive tasks. Large-scale efforts, such as the Human Connectome Project [46],35

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) dataset [42], and Alzheimer’s Disease36
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Neuroimaging Initiative (ADNI) [25] have each collected and curated neuroimages from cohorts of37

several hundred subjects. Current efforts by the UK Biobank will image over 100,000 individuals [35].38

Each of these datasets includes subjects of different ages, stages of neuroplasticity, and degeneration.39

In this paper, we propose a novel framework that deconvolves networks derived from fMRIs of subjects40

performing different tasks into a small set of elementary networks that serve as building blocks that are:41

(i) shared across large cohorts; (ii) can be composed into task-specific networks; and (iii) are predictive42

of tasks and efficacy. We call these networks canonical task connectomes. Our framework also com-43

putes the extent of expression of these networks for each task, along with its neurophysiological basis.44

Our approach first combines individual functional networks into a population-level matrix X. We then45

deconvolve this matrix into its factorsA andS such that each columnA(i,∗) corresponds to a canonical46

task connectome, and the corresponding row S(∗,i) characterizes the extent to which the canonical47

network is expressed in every subject. However, since individual samples (fMRIs) correspond to48

subjects performing different tasks, the latent canonical representations must encode this important49

information. We accomplish this by formulating a suitable supervised matrix factorization problem,50

where factors are guided by a supervision matrix of tasks and subjects.51

We present experimental results on the “unrelated set” of subjects in the Human Connectome Project.52

We compare results from two methods – Supervised Singular Value Decomposition (SupSVD) and53

Supervised Non-Negative Matrix Factorization (SupNMF) on subjects from HCP at rest and for54

six tasks (Language, Emotional Processing, Gambling, Motor, Relational Processing, and Social55

Processing). Our results show that:56

• Canonical task connectomes have high task-specificity. We show that our approach constructs57

networks that uniquely characterize different tasks and are therefore excellent markers of tasks.58

• Canonical task connectomes are generalizable across cohorts. We show that canonical59

representations obtained on a suitably constructed train set can accurately predict tasks being60

performed by the test set. We also show that SupNMF outperforms SupSVD in terms of61

prediction accuracy across ranges of parameters.62

• Canonical task connectomes identify common neural processes. We show that our approach63

finds functional networks that are shared across tasks. This enables novel interpretations64

of processes and responses associated with different task stimuli.65

• Canonical task connectomes have a strong physiological basis. We show that the canonical66

connectomes can be mapped to regions of the brain to identify physiological underpinnings67

of tasks, that are in strong agreement with literature in neurosciences.68

The rest of the paper is organized as follows: in Sections 2.2 and 2.3, we discuss relevant methods69

for supervised matrix factorization. In Section 2.1, we provide details for our proposed framework.70

Then, we describe the HCP dataset and the preprocessing pipeline. This is followed by comprehensive71

experimental results in section 3, where we demonstrate the interpretability and generalizability of our72

proposed approach. Finally, we conclude with related methods in Section 4 and discussion in Section 5.73

2 Methods and Materials74

We describe our formulation and solution to the problem of identifying interpretable task-specific75

brain networks, called “connectomes” from neuroimaging datasets of subjects performing a variety76

of cognitive tasks. Connectomes are networks in which regions of the brain correspond to nodes and77

correlated activity quantifies the strength of edges across corresponding nodes (regions). We describe,78

in more detail, the process of construction of connectomes in Section 2.4.79

We hypothesize and validate that neuronal activity observed during a task is composed of a small set80

of elementary patterns or motifs. Correspondingly, the observed connectome is a superposition of81

these motifs that we call canonical task connectomes. The goal of our formulation and methods is82

to demonstrate the existence and applications of such canonical task connectomes.83

We abstract our connectome as a region×region similarity matrix. Our problem of finding canonical84

task connectomes can be formulated as one of Supervised Matrix Factorization (SMF) – a family of85

deconvolution techniques that expresses a data matrix as a sum of low-rank factors. The specific factors86

are determined by the optimization criteria and constraints associated with different methods. In87
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SMF, the factors are further guided by additional information (in our case, task labels associated with88

subjects) written as a supervision matrix. We use two state-of-the-art supervised matrix factorization89

techniques – Supervised Non-negative Matrix Factorization (SupNMF) and Supervised Singular90

Value Decomposition (SupSVD) to compute matrix factors. We suitably formulate our deconvolution91

problem for using these techniques, apply them to a large cohort of subjects, comprehensively compare92

their performance, and show that our formulation, combined with SupNMF yields highly interpretable,93

consistent, and strong task-specific signals.94

2.1 Overview of our proposed framework95

We write an observed connectome matrix CO ∈Rd×d as a linear combination of a small number of96

latent (i.e., unobserved) matrices Cl.97

C
(j)
O =

r∑
i=1

S(j,i)C
(i)
l (1)

Here, r denotes the number of latent connectomes (i.e., the dimensionality of latent space), i denotes98

the index of latent connectome, j is the index of observed connectome (subject or data sample) in the99

dataset, andS∈Rn×r represents the matrix of coefficients corresponding to the weights associated with100

each latent matrix. Each connectome (data sample) in the dataset has an associated task-label vector101

y∈{0,1}t, where t is the number of tasks. A connectome has exactly one non-zero in its label vector,102

corresponding to the task that was being performed by the subject during imaging. We aim to learn latent103

factors and use them to construct a predictor f that takes in a row of S and correctly predicts the task.104

ŷ(j)=f(S(j,∗)) (2)
Here, f :Rr→{0,1}t. Combining equations 1 and 2, we get our objective function105

minimize
S,f,Cl

n∑
j=1

(
||C(j)

O −
r∑

i=1

S(i,j)C
(i)
l ||

2
F +λ(y(j)−f(S(j,∗))))2

)
(3)

Here, n denotes the total number of data samples, and d denotes the number of regions in each106

connectome. The first term in the objective function minimizes the approximation error, and the second107

term minimizes the classification error. The relative importance of the two terms are controlled by the108

tuneable parameter λ. Rather than working with tensors, we simplify our setting by: a) vectorizing109

the connectomes and stacking them column-wise into a population-level data matrix, X∈RO(d2)×n;110

and b) modeling f(.) as a linear function. We create a one-hot matrix Y to represent labels for the111

different cognitive tasks performed by the subjects. We now model the problem as one of supervised112

matrix factorization. We compute the factors using different matrix factorization techniques – NMF,113

SVD, SupNMF, and SupSVD. We discuss the latter two approaches in Sec 2.2 and 2.3 respectively.114

On this matrix, we note that the columns of the basis matrix are connectomes that are superposed to115

approximate of the columns of X. We call them “canonical task connectomes”. Our results show that116

these representations strongly correlate with anatomical and physiological processes associated with117

different tasks.118

To show the generalizability of these canonical representations, we divide the cohort randomly into119

train and test sets. We use the canonical representation computed from the train set to infer cognitive120

tasks performed by subjects in the test set. In Fig. 1, we illustrate the general framework. Using the121

train set, we find a small number of canonical task connectomes that serve as basis vectors to explain122

brain activity in a large cohort. For the test set, we find coefficients that best fit the previously computed123

basis. Next, we learn a model to map coefficients in the train set to labels. We use this model on the124

test coefficients to predict tasks performed.125

2.2 Supervised Non-negative Matrix Factorization126

Let X∈Rp×n
≥0 denote the data matrix, Y ∈Rk×n

≥0 denote a class label matrix, and k the number of127

different classes. Supervised Non-negative Matrix Factorization (SupNMF) is defined as:128

argmin
A,S,B≥0

||X−AS||2F +λ||Y−BS||2F (4)
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Figure 1: Overview of our framework: (1) The training phase deconvolves the data matrix of vectorized
connectomes in the training set into a small number of basis vectors; (2) The testing phase computes
the coefficients of the functional basis and predicts the task on new subjects.

Here, A∈Rp×r
≥0 is the (non-negative) “basis matrix” which is a low-rank, latent description of the129

columns of X, S ∈ Rr×n
≥0 is the (non-negative) matrix of coefficients that provides the weights to130

each of the latent factors required to explain each data-point, B∈Rk×r
≥0 is the matrix that minimizes131

classification error, and λ controls the relative importance of the supervision term. The first term132

minimizes the error in reconstructing the data matrix and the second term minimizes classification error.133

A few points to note: a) When λ=0, this formulation reduces to unsupervised Non-negative Matrix134

Factorization [47] [31]; b) objectives such as information divergence can be used in lieu of the135

Frobenius Norm [22]. This problem has been modeled as a block multi-convex problem by Haddock136

et al. [22] to derive the following algorithm with multiplicative updates. In the algorithm, M⊙N137

represents the Hadamard Product (i.e., element-wise product) of matrices M and N. Similarly M
N138

represents Hadamard Division.139

Algorithm 1: Supervised NMF
Input:X,Y,r,λ,N
Initialize: A∈Rp×r

≥0 , B∈Rk×r
≥0 , S∈Rr×n

≥0

for i = 1 ,..., N do

A←A⊙XST

SST

B←B⊙ YST

BSST

S←S⊙ ATX+λBTY

ATAS+λBTBS
end

2.3 Supervised SVD140

Supervised Singular Value Decomposition (SupSVD) [32] incorporates a supervision matrix into141

conventional SVD. It assumes that the data matrix X∈Rn×p contains latent, low-rank information142
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that is shared with the supervision matrix Y∈Rn×k. The SupSVD model can be expressed as follows:143

X=UVT +E

U=YB+F
(5)

Here, U∈Rn×r is a latent score matrix, V ∈Rp×r is a full-rank loading matrix, and B∈Rk×r is144

a coefficient matrix, with F ∈ Rn×r and E ∈ Rn×p being error matrices. For model estimation, a145

modified version of the expectation–maximization (EM) algorithm was proposed by Li et al. [32].146

2.4 Data147

We validate our model and methods on data from the Human Connectome Project (HCP) Young Adult148

dataset [46]. Specifically, we use the fMRIs from the set of 100 “unrelated subjects”. For each subject,149

we have separate fMRIs when they are at rest, and while they perform six cognitive tasks (Language,150

Emotional Processing, Gambling, Motor, Relational Processing, and Social Processing) [2]. We first151

use the Minimal Pre-Processing Pipeline prescribed by the HCP consortium [18]. This process includes152

spatial artifact/distortion removal, head motion correction, registration, and normalization to standard153

space. For each input noisy fMRI, the Minimal Preprocessing Pipeline outputs a clean and standardized154

voxel×time time-series matrix. Then, we use the Atlas of Glasser et al. [17] to aggregate this matrix155

into a region×timematrix. We note that each region consists of proximal voxels with shared anatomy.156

In all, the Glasser Atlas demarcates 180 regions in each hemisphere (360 in total). We then create the157

functional connectome (FC) matrix for each fMRI by computing the Pearson Correlation between all158

pairs of regions. In all, we have 700 FCs (100 subjects×7 tasks). We vectorize the upper triangular159

matrix of each FC and stack them side by side to create a population-level matrix of size 700×64620.160

3 Results161

In this section, we show that our canonical task connectomes are highly specific to a small subset of162

tasks, and as a consequence provide both an understanding of the neural response, as well as the ability163

to predict tasks. Then, we provide evidence of strong spatial localization for these representative164

brain networks, which establishes interpretability on the basis of neuro-anatomy. We also show that165

the regions implicated in the tasks are supported by prior experimental studies, which establishes166

physiological interpretations.167

3.1 Canonical Task Connectomes have High Task Specificity168

In the first set of results, we demonstrate that our connectomes encode information that is unique169

to each task. This is non-trivial because of: a) inherent heterogeneity in basal brain activity across170

individuals; b) individual-level differences in cognitive processes to perform a task; c) diversity of171

task conditions; and d) noise in the imaging modality. Using four methods for matrix factorization172

– SupNMF, NMF, SupSVD, and SVD, we deconvolve the population-level matrix X to find different173

sets of canonical task connectomes and the corresponding linear coefficients that quantify the extent174

to which each canonical task connectome is present in every functional connectome. For the purposes175

of visualization, we project the coefficients’ matrix (S for NMF/SupNMF, and U for SVD/SupSVD)176

into two dimensions using UMAP, shown in Fig 2. We observe that in each case, resting-state (Red)177

FCs are always clustered separately. This confirms that resting-state brain activity is very different178

from all task-specific brain activity. We also see that Language (Blue) and Social Processing (Purple)179

are also clearly separated by all four methods. This suggests that the task-specific networks in the180

case of these two tasks are strongly distinct, and can be deconvolved with no supervision.181

However, other tasks – Emotion Processing (Green), Gambling (Amber), Motor (Pink), and Social182

Processing (Gray) are separated only by SupNMF (Fig 2a. The lack of separation observed in NMF,183

SVD, and SupSVD strongly indicates that the canonical representations obtained by SupNMF are most184

task-specific. To quantify the task discriminatory power of our approach, we cluster the coefficients185

using k-means for k={1,...,7} and compute the Adjusted Rand Index (ARI) in each case. The results186

are shown in Fig 3. It is evident that ARI for SupNMF is significantly higher for all choices of k. For187

NMF, SVD, and SupSVD, ARI plateaus at k=4, which is consistent with the UMAP plots.188

Since Canonical Task Connectomes are shown to be task-specific, they provide excellent189

representations to classify tasks performed by a test subject.190
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(a) UMAP of SupNMF (b) UMAP of NMF

(c) UMAP of SupSVD (d) UMAP of SVD

Figure 2: Task-specificity of canonical task connectomes obtained by different methods. We use UMAP
to visualize the “coefficients matrix” for different tasks. (a)-(d) show the results for SupNMF, NMF,
SupSVD, and SVD respectively. We see that Rest (Red), Language (Blue), and Social (Purple) are
clustered in all four cases. However, the remaining tasks are only separated by SupNMF.

Figure 3: ARI values for k-means clustering on the coefficients obtained by SupNMF, NMF, SupSVD,
and SVD. We observe that ARI for SupNMF is consistently higher than other methods.

3.2 Canonical Task Connectomes are Generalizable across Cohorts191

We show that canonical task connectomes are stable representations of different tasks. To demonstrate192

this, we first compute the canonical representations on a training set. Then, we predict the task193

performed in the test-set. More specifically, we create Xtrain and Xtest by 80/20 random splits of the194

subjects. We deconvolve Xtrain to find the canonical task connectomes Ã and the coefficient matrix195

S̃, and use S̃ along with corresponding task labels to train a classifier. Now, given a test subject (or196

test set), we compute the least-squares solution Ŝ using Ŝ=Ã†Xtest. Finally, we predict the labels197

of Xtest using Ŝ and the trained classifier.198

We compare the test accuracy of SVD, NMF, SupNMF, and SupSVD using three classifiers – K-nearest199

neighbor, support vector machine, and a 3-layer perceptron. In Table 1, we summarize the results200

for rank-10 approximations, averaged across 10 runs. The factors computed by SupNMF yield high201

accuracy (>88%) for all three classifiers. The factors output by SupSVD and NMF also perform well202

in predicting task conditions. This can be attributed to the fact that while individual factors of SupSVD203

and NMF are not task-specific, the combinations of different factors still have reasonable predictive204
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Table 1: Test accuracy using different classifiers
Method SupNMF SupSVD NMF SVD

KNN 88.54± 0.49 83.30± 2.00 82.64± 2.02 69.11± 4.24
MLP 88.14± 2.16 83.96± 2.53 87.36± 2.33 74.44± 3.98
SVM 87.64± 2.00 86.09± 3.31 86.86± 1.70 73.61± 2.73

power. This is evident from Fig. 4, where we show the normalized and thresholded columns of S̃ from205

both SupNMF and NMF. In SupNMF, most connectomes from a common task are assigned to the206

same “canonical connectome”. However, in NMF, we see that connectomes from a common task are207

assigned to different factors. The accuracy of predicting on the basis of singular vectors is poor, due208

to the orthogonality constraints enforced on the columns of U. We show similar plots for SupSVD209

and SVD in Supplementary Section 1.210

(a) Coefficients of SupNMF on test set (b) Coefficients of NMF on test set

Figure 4: Coefficient matrices of SupNMF and NMF for test connectomes. We L-1 normalize the
columns of S̃ obtained by both SupNMF and NMF and fit to the Normal Distribution. We then use
90 percentile as the cutoff to discard small values in both matrices. For coefficients in SupNMF, we see
that each “canonical connectome” is assigned to one task in most cases. This is evident by the minimal
mixing of colors. However, in NMF, we see that coefficients corresponding to a common task are
spread across different “canonical connectomes”. In this figure, each task(color) has 20 connectomes.
We compute rank-10 coefficient matrices in both cases.

3.3 Canonical Task Connectomes have a Strong Anatomical and Physiological Basis211

We show that: a) each canonical task connectome is spatially localized to anatomically demarcated212

lobes; and b) the regions enriched in each canonical connectome are known to be implicated in the213

corresponding task. As before, we deconvolve the population-level matrix X to compute A and S. In214

this experiment, we use rank 20 approximation to aid in the interpretation. From each column A(∗,i),215

we construct region×region canonical task connectome Ci. Finally, we create adjacency matrices216

by retaining the top 5% of edges from Ci.217

In Fig 6, we visualize the task-specific connectomes. We restrict our analysis to nodes with degree>35218

(p-value < 1e-5). We note that edges containing the Prefrontal Cortex are over-represented in A4, A5,219

A7, and A18; MotorStrip is over-represented in A17; Parietal Lobe is over-represented in A2, A4,220

and A20; and the Occipital Lobe is over-represented in A1, A2, and A9. In each case, the observation221

is statistically significant with p-values < 1e-10. We note that the temporal lobe is the only major region222

not represented in these canonical connectomes. In all, this high degree of spatial locality indicates223

a strong anatomical basis.224

Next, we normalize the columns of S given by SupNMF and fit to a Gaussian and retain only those225

non-zero values higher than 90 percentile. In Fig. 5, the rows of S are visualized in a combined graph.226

It is evident that the non-zeros of these significant coefficients are highly selective of tasks. In fact,227

coefficients are active only for one specific task. With the knowledge of both the anatomical basis228

of each canonical connectome (Fig. 6 and their associated tasks (Fig. 5), we can now establish the229

physiological basis for these canonical connectomes. We find that our method finds patterns that are230

supported by neuroscience experiments reported in literature. Regions in the left prefrontal cortex231

are associated with word and sentence comprehension [16], which is over-represented in A4 of Fig 6232

corresponding to the language task, as shown in S4 of 5. The dorsal Default Mode Network (dDMN) is233

known to be active during Rest [5]. The anatomical regions for this functional network to the posterior234
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cingulate cortex (in the limbic node), and the angular gyrus found in the posterior part of the inferior235

parietal lobe, which is over-represented in A9 of Fig 6. Additionally substructures corresponding236

to the dorsal medial prefrontal cortex are also found in A9. We see that rest connectomes are strongly237

activated for the corresponding column in the S matrix, as shown in Figure 4. The regions implicated238

in social processing are the medial prefrontal cortex, which is located in the prefrontal cortex of239

the frontal lobe [15]. In our results, these nodes are over-represented in A18. Finally, the regions240

implicated in relational processing are dorsolateral Prefrontal Cortex rostrolateral prefrontal cortex241

and posterior parietal cortex [23]. These regions are over-represented in A20, and A3 respectively.242

Figure 5: Coefficients matrix S of SupNMF. We normalize the columns of S and fit to the Normal
Distribution. We then use 90 percentile as the cutoff to discard small values. Each row of S is nearly
exclusive to one task (as indicated by the minimal mixing of colors/ tasks). We combined all rows
of S into one plot for effective visualization (by summing across columns). The colors code for rest
and six tasks. Within each rectangle bounding box, we have the entire cohort of 100 subjects

.

A1

A6

A11

A16

Figure 6: Canonical Task Connectomes have strong anatomical basis. In each of the 20 canonical task
connectomes, the disconnected semi-circles represent the two hemispheres. Each dot in the inner side
of these hemispheres corresponds to a micro-region in the brain. In all, there are 360 micro-regions,
each can be mapped directly to one of the coarser lobes. The connectomes shown here have strong
spatial localization. As an example, nearly all edges in A1 and A2 have one end in the Right Occipital
Lobe. This visualization uses the BioimageSuite [37]
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4 Related Work243

Matrix Factorization Independent Component Analysis (ICA) and its variants are widely used in244

fMRI analysis. Spatial Independent Component Analysis (ICA) [36, 48, 40, 7, 6] methods decompose245

fMRI data into a set of spatially independent components. They identify patterns of activity across246

the brain that are independent of one another. This information is used to identify distinct networks247

of brain regions involved in various cognitive processes. In a typical ICA model, the source signals248

are assumed to be statistically independent and non-Gaussian, with an unknown linear mixing249

process. The model assumes that every observed vector x∈Rm is generated by a linear mixture of n250

independent sources x=As, where s∈Rn is an N-dimensional vector whose elements are the random251

variables that refer to the independent sources and A∈Rm×n is an unknown mixing matrix. ICA252

aims to estimate an unmixing matrix W∈Rn×m such that the recovered sources: y=Wx=WAs253

is a good representation of the true sources s. Applying the typical ICA model to fMRI data, we254

have data X=AS, where X∈RN×V spans N time points and V voxels, and S contains spatially255

independent source signals. Group ICA is an extension of spatial ICA that allows the identification256

of common patterns of activity across multiple subjects in a study. A popular implementation of Group257

ICA is Multivariate Exploratory Linear Decomposition into Independent Components (MELODIC)258

[3], which is part of the fMRI Standard Library (FSL). Other approaches for multi-subject analysis259

using ICA have been proposed [8, 14, 20, 38, 4]. The model in Calhoun et al. [8] defines Group ICA260

as Xi =AiS, where Xi ∈RNi×V is the fMRI observation for subject i with Ni time points and V261

voxels. Group ICA captures a group subspace with independent spatial maps and time courses. Then,262

these are used to reconstruct subject-specific spatial maps Si and time courses Ai. Group ICA has263

been widely used to study functional connectivity differences between groups of healthy and clinical264

populations [43, 11], as well as to identify brain networks associated with specific cognitive processes265

across a group of individuals [12, 28]. However, both Spatial and Group ICA are limited as they are266

unsupervised approaches that find dominant patterns in the entire dataset. This comes at the expense of267

ignoring more intricate patterns such as: a) differences across individual subjects; and b) shared patterns268

with subsets of subjects (such as disease, cognitive tasks, etc). Since the “canonical task connectomes”269

computed in our approach are guided by additional information relating to subjects/ samples (such270

as task or disease labels), our approach is more flexible and powerful than traditional approaches.271

Other interpretable methods Subspace clustering methods are used in fMRI to partition data into sub-272

spaces and assign each data point (e.g., voxel or region of interest) to its corresponding subspace. This273

allows for the identification of different brain activity patterns or functional connectivity profiles within274

data. Several subspace clustering methods have been applied to fMRI data such as spectral clustering275

[21, 9, 1], sparse subspace clustering [41, 30], low-rank and sparse decomposition (LRSD) [44, 45, 39].276

Subspace clustering reveals distinct brain activity patterns, functional networks, or connectivity profiles277

within the data. However, there are some key limitations of subspace clustering including its unsu-278

pervised nature, reliance on unlabeled data, limited generalization to new datasets, and challenges in279

interpreting identified subspaces. In contrast, we demonstrate that our method generates task-specific280

feature representations, is generalizable, and facilitates interpretation by domain experts. Graph Neural281

Networks and other Deep Neural Network models have also been used to identify regions of interest (and282

functional networks) shared across a cohort of subjects [33, 29, 27]. However, these methods cannot283

separate the distinct networks, which limits their applicability to our problem. Our framework explains284

observed (composite) brain activity in terms of elementary networks, which have biological basis.285

5 Conclusion286

We presented a new problem and framework for fMRI analysis that deconvolves an input set of287

neuroimages of subjects performing different cognitive tasks into a compact set of task-specific288

elementary networks called “canonical task connectomes”. We formulate our problem as one of289

supervised matrix factorization and show that the resulting latent factors/ networks can be interpreted290

as “building blocks” for the different cognitive tasks. We show experimental results on the Human291

Connectome Project dataset, which demonstrate that SupNMF captures the natural task-specific292

structure in suitably abstracted neuroimages. We also show that these canonical task connectomes293

are useful biomarkers to predict the task being performed. Additionally, we show anatomical and294

physiological underpinnings for the networks identified by our framework.295

Our framework can be extended to more complex applications, such as: a) understanding shared and296

unique functional networks across different pathologies; and b) how task-specific networks can get297

dysregulated due to the onset, and progression of diseases.298
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