
Published as a conference paper at ICLR 2022

GRADIENT INFORMATION MATTERS IN POLICY OPTI-
MIZATION BY BACK-PROPAGATING THROUGH MODEL

Chongchong Li 1∗, Yue Wang 2†, Wei Chen 3†, Yuting Liu 1, Zhi-Ming Ma 4 & Tie-Yan Liu 2

1 Beijing Jiaotong University
{18118002,ytliu}@bjtu.edu.cn
2 Microsoft Research Asia
{yuwang5,tyliu}@microsoft.com
3 Institute of Computing Technology, Chinese Academy of Sciences
chenwei2022@ict.ac.cn
4 Academy of Mathematics and Systems Science, Chinese Academy of Sciences
mazm@amt.ac.cn

ABSTRACT

Model-based reinforcement learning provides an efficient mechanism to find the
optimal policy by interacting with the learned environment. In addition to treat-
ing the learned environment like a black-box simulator, a more effective way to
use the model is to exploit its differentiability. Such methods require the gra-
dient information of the learned environment model when calculating the policy
gradient. However, since the error of gradient is not considered in the model
learning phase, there is no guarantee for the model’s accuracy. To address this
problem, we first analyze the convergence rate for the policy optimization meth-
ods when the policy gradient is calculated using the learned environment model.
The theoretical results show that the model gradient error matters in the policy
optimization phrase. Then we propose a two-model-based learning method to
control the prediction error and the gradient error. We separate the different roles
of these two models at the model learning phase and coordinate them at the pol-
icy optimization phase. After proposing the method, we introduce the directional
derivative projection policy optimization (DDPPO) algorithm as a practical im-
plementation to find the optimal policy. Finally, we empirically demonstrate the
proposed algorithm has better sample efficiency when achieving a comparable or
better performance on benchmark continuous control tasks. Codes are available
at https://github.com/CCreal/ddppo

1 INTRODUCTION

Reinforcement learning (RL) is a powerful technique for solving the sequential decision making
problems (Li, 2018; Sutton & Barto, 1998). Recent work on model-based RL (Nagabandi et al.,
2018; Luo et al., 2018; Kurutach et al., 2018; Wang et al., 2019; Janner et al., 2019; Pan et al.,
2020), has shown the power of first learning the environment model and then using it to do the policy
optimization. Several methods are proposed to achieve the goal of getting similar performance by
using fewer data, such as ensembles (Kurutach et al., 2018), probabilistic models (Chua et al., 2018),
and meta-learning (Clavera et al., 2018).

In addition to treating the learned environment as a black-box simulator, a more effective way of
using the model is to exploit its differentiability (Heess et al., 2015; Clavera et al., 2019; D’ Oro
& Jaśkowski, 2020; Amos et al., 2021), which is mainly focused in this paper. To get the policy
updating direction, these methods compute the policy gradient directly by back-propagating through
the model. Therefore, the model gradient is used in the calculation and its error will influence the
accuracy of the policy gradient. However, since the traditional model learning only aims to get the
accurate prediction for the next state and the reward, there is no guarantee for the accuracy of the

∗This work was done when Chongchong Li was interning at MSRA.
†Corresponding author.

1

https://github.com/CCreal/ddppo

Published as a conference paper at ICLR 2022

model gradient. In other words, the algorithm requires the accurate model gradient, but we only
learn to decrease the prediction error which results in an objective mismatch.

In this paper, to address these problems, we first theoretically analyze the problem and then propose
our solution based on the theoretical results. First of all, we present the convergence rate analysis
for the policy optimization algorithms in which the policy gradient is calculated using the learned
environment model. By taking the model gradient error into account, we can see that the gradients
of the transition and reward models matter in the policy optimization. Specifically, the bias of the
estimated policy gradient used to update the policy is not only introduced by the prediction error of
the learned model but also introduced by the gradient error of the learned model. Furthermore, the
policy gradient bias due to the different types of model error will finally influence the convergence
rate of the policy optimization process.

Then, inspired by the theoretical results, we propose the two-model-based learning method. Ac-
cording to the policy gradient bias and convergence rate analysis, in order to optimize the policy
efficiently and accurately, we need the learned environment model both with small prediction error
and small gradient error. Therefore, we propose to set separate models for different purposes of
usage. In the model learning phase, the prediction model aims to reduce the prediction error, and the
gradient model focuses on minimizing gradient error. In the policy optimization phase, we will use
the prediction model to rollout the data and use the gradient model to calculate the policy gradient.

To make the proposed method applicable, we introduce the directional derivative projection policy
optimization (DDPPO) algorithm. Our first goal is to use data to estimate the gradient or Jacobian
matrix for the environment model and use the estimator to learn the model’s gradient explicitly.
The challenge is that the state and action are usually with high dimensions and directly estimating
the gradient or Jacobian matrix using data is intractable. Thus, we first estimate the directional
derivative using data and then project the model’s gradient or Jacobian matrix into these directions.
Minimizing the error between the estimated directional derivative and the projection value, we can
learn the model’s gradient. Secondly, after learning the environment model with a more accurate
gradient, we can leverage two-model-based learning method to do the policy optimization.

Finally, we conduct experiments on the simple environments and the benchmark MuJoCo continu-
ous control environments. The experimental results verify our theoretical findings and demonstrate
the effectiveness of the proposed method.

Our main contribution can be summarized as follows:

1. We theoretically depict how the different model errors influence the convergence rate of the
model-based policy optimization algorithm. The result shows that the gradient error of the model
indeed matters in the convergence of the policy optimization.

2. We propose the two-model-based learning method and the practical DDPPO algorithm which
learns and uses two environment models (prediction model used for rollout and gradient model used
to provide the gradient information) for the model-based policy optimization.

3. Empirically, we can achieve better sample efficiency in the MuJoCo continuous control tasks than
state-of-the-art model-based and model-free methods .

2 PRELIMINARIES

Reinforcement Learning: We consider a discrete-time Markov decision process (MDP) M, de-
fined by tuple (S,A, f, r, γ, p0), where S and A are the state and action spaces, respectively. Here,
f : st+1 = f(st, at, ϵt) is the transition distribution, r : st = r(st, at) is a reward function, p0 is the
initial state distribution and γ represents the discount factor. We define the return (J) as the expected
sum of discounted rewards along a trajectory (R =

∑∞
t=0 γ

tr(st, at)). The goal of reinforcement
learning is to find a policy πϕ that maximizes the expected sum of discounted rewards, i.e.,

max
ϕ

J(ϕ) = max
ϕ

EπϕR = max
ϕ

Eπϕ

[
∞∑
t=0

γtr(st, at)

]
. (1)

Model-based RL is characterized by learning the transition model using data collected from inter-
action with the environment. Typically, we use a parametric function f̃θ to denote the transition

2

Published as a conference paper at ICLR 2022

model trained by a neural network. The state predicted by the learned model is defined as s̃t+1 and
s̃t+1 ∼ f̃θ. Similarly, we use a parametric function r̃θ to denote the reward model. Generally we
use M to denote the true model and M̃ the learned model. Then s̃t+1, r̃t ∼ M̃θ(st, at).

The model is trained by supervised learning, typically, via maximum likelihood:

JM̃p(θp) = E
[
log M̃p(st+1, rt|st, at)

]
, (2)

where (st, at, rt, st+1) are data collected from interaction with the environment.

Policy Optimization According to the Policy Gradient Calculated Using Model: After we learn
the model, we can use the model to rollout trajectories and use the data to calculate the policy gra-
dient for the purpose of policy optimization. Specifically, denote the policy parameters as ϕ, we can
calculate the return J using generated data as Jπ(ϕ) = E [

∑∞
t=0 γ

tr̃t], where s̃t+1, r̃t ∼ M̃(s̃t, ãt)
and ãt ∼ πϕ(s̃t). To optimize the objective, one can use the traditional policy optimization meth-
ods such as A3C (Mnih et al., 2016), PPO (Schulman et al., 2017), SAC (Haarnoja et al., 2018).
Beyond that, many previous works argue that we can use the model to calculate the policy gradient
by back-propagating through the model (Heess et al., 2015; Clavera et al., 2019; Amos et al., 2021)
leveraging the re-parameterization trick (Kingma & Welling, 2014).

Specifically, since we have learned the environment model, we can calculate the gradient of the
objective w.r.t. ϕ by chain rule as shown in Equation 3 in which the gradients drt

dat
, drkdsk

, dsk
dst+1

, dst+1

dat
need to be calculated using the learned model.

dJ

dϕ
= E

∞∑
t=0

dJ

dat

dat
dϕ

= E
∞∑
t=0

(
γt
drt
dat

+

∞∑
k=t+1

γk
drk
dsk

dsk
dst+1

dst+1

dat

)
dat
dϕ

. (3)

The expectation is taken over randomness from random policy and transition. To optimize the policy,
we can update the policy parameters in the gradient direction. Since we don’t have the true gradient,
we use learned model to estimate the policy gradient denoted as dRM̂

dϕ . αt is learning rate.

ϕt+1 = ϕt + αt
dRM̂

dϕ
. (4)

Notations : We use fraction notation d·
d· to represent the gradient calculated by taking gradient

on the true model and use the ”hat” version d̂·
d· to represent the gradient calculated on the learned

model. We use the ”tilde” notation ·̃ to represent the state, action or reward generated using the
learned model and the without-tilde notation to represent those variables generated using the true
model. For example, the notation dst+1

dst
denotes the gradient function value calculated by taking

gradient for the output of the transition model s′ (s′ = f(s, a, ϵ)) with respect to its input s given
input value equals s = st. We use the notation ϵf to represent the transition model prediction error

which means, for ∀ s, a, we have E
∥∥∥(f̃(s, a)− f(s, a))

∥∥∥ ≤ ϵf . We use the notation ϵgf to represent
the gradient error of the transition model. For ∀ s, a, we have

E

∥∥∥∥∥ d̂s′ds − ds′

ds

∥∥∥∥∥+ E

∥∥∥∥∥ d̂s′da − ds′

da

∥∥∥∥∥ = E

∥∥∥∥∥df̂(s, a)ds
− df(s, a)

ds

∥∥∥∥∥+ E

∥∥∥∥∥df̂(s, a)da
− df(s, a)

da

∥∥∥∥∥ ≤ ϵgf . (5)

Similarly, we use the notation ϵgr to represent the gradient error of the reward model.

3 RELATED WORK

Due to the space limitation, we clarify several highly related works in this section and put the de-
tailed related work into the Appendix A. Overall speaking, most of the model-based policy opti-
mization algorithms aim to calculate the policy gradient accurately and efficiently. These works can
be divided into two categories, i.e., how to learn the model and how to use the model.

Learn the better model: Chua et al. (2018) design an ensemble-based neural network to learn the
true model. Zhang et al. (2021a) design the dropout mechanisms to improve the robustness of the

3

Published as a conference paper at ICLR 2022

learned model. Zhang et al. (2020b) design the auto-regressive network structure to improve the
accuracy of the model prediction.
Consider the decision-making phase when learning the model: These works are always called
Decision-aware model learning (DAML). D’Oro et al. (2020) use policy gradient to get the re-
weighted model prediction error for each sample. Farahmand et al. (2017) use the value function to
get the re-weighted model prediction error for each sample.
Use the learned model to argument data: Janner et al. (2019) use the learned model to rollout the
trajectories and use both the generated and the true trajectories to train the SAC algorithm. Yu et al.
(2020); Lee et al. (2020) extend the similar idea to the offline model-based RL setting.
To calculate the policy gradient by back-propagating through the model: SVG (Heess et al.,
2015) presents a framework for learning continuous control policies using back-propagating through
the model. More recent works (Clavera et al., 2019; Amos et al., 2021) extend the idea by combining
the learned Q-function and the SOTA policy optimization algorithms and thus achieve better perfor-
mance. MAGE (D’ Oro & Jaśkowski, 2020) computes the policy gradient using value gradient and
proposes to reduce the value gradient through TD learning.

Different from the above methods, we further consider the influence of the model gradient error with
respect to the convergence of the policy optimization. We will use multiple function approximators
to separate different requirements for the model at the learning and using phase. Moreover, we can
leverage the insight inside of these related works to better design our model-based algorithms.

4 MODEL-BASED POLICY OPTIMIZATION BY CONSIDERING THE MODEL
GRADIENT ERROR

In this section, we will analyze the influence of the model error in the policy optimization process.
First of all, for the policy optimization algorithms that using policy gradient calculated according
to the learned model, we theoretically show that both the prediction error and the gradient error of
the learned model matter for the policy gradient bias and the convergence rate. Secondly, based on
the theoretical findings, we propose our method to learn the accurate model for policy optimization.
Thirdly, we show the implementation details of our method and propose the DDPPO algorithm.

4.1 CONVERGENCE RATE FOR MODEL-BASED POLICY OPTIMIZATION

In this section, we will prove the finite sample bound for the model-based policy optimization algo-
rithms. Due to the space limitation, we put the full proof into the Appendix C.

Due to the space limitation, we simply put the assumptions that is necessary for understanding the
theoretical results here and put the detailed assumptions into Appendix C.
Assumption 1. The transition model, the reward model and the policy function are all Lipschitz
continuous. The state space and the reward are both bounded. For a fixed policy, the stationary
distribution exists and has the uniform ergodicity property:

dTV (P (st+τ ∈ ·|st = s), µθ(·)) ≤ mρτ ∀τ ≥ 0, ∀s ∈ S. (6)

First of all, we analyze the bias of the policy gradient introduced by the model error. Recall the
policy gradient formulation (Equation 3) in the section 2. In the model-based setting, we need to use
the learned model to calculate the gradient value (drtdat

, drkdsk
, dsk
dst+1

, dst+1

dat
) in Equation 3. Since the

model error is unavoidable, it is necessary for us to analyze the bias of the policy gradient introduced
by the model error.
Theorem 1. Suppose assumptions hold. The policy gradient bias ϵM can be bounded as

ϵM =

∥∥∥∥∥E
(
dRM̂

dϕ
− dRM

dϕ

)∥∥∥∥∥ ≤ C6ϵ
g
r + C7ϵ

g
f + C8ϵf , (7)

where C6, C7, C8 are three constants related to the Lipschitz constants of the transition model and
the reward model and γ.

Remark: The above theorem shows that the difference between the policy gradient calculated using
two different models can be upper bounded by the difference of the gradient of the reward modelϵgr ,

4

Published as a conference paper at ICLR 2022

the gradient of the transition modelϵgf , and the prediction of the transition modelϵf . The result
suggests that gradient error matters in estimating the policy gradient. Now, one natural conjecture
is that the gradient error will influence the convergence of the policy optimization process. The next
theorem depicts the influence rigorously.

Secondly, we analyze the convergence rate for the policy gradient algorithms. Since it is always a
non-convex optimization problem, the commonly used measure is the speed of the gradient norm
converges to zero. Recall the update rule (Equation 4). We update the policy parameters by following
the estimated policy gradient direction. Intuitively, the model error will influence the convergence.
Theorem 2. Suppose assumptions 3, 4, 5, 6,7, and 8 holds. LJ is the Lipschitz constant of the
objective function for the parameter ϕ and Lgs is the smoothness constant of the objective function
for the parameter ϕ. Suppose the policy parameters are updated as shown in Equation 4 and the
learning rate is set as αt. We have

min
0<t<T

E

∥∥∥∥ dJdϕt
∥∥∥∥2 ≤ 2∑T

t=1 αt

(
2UJ + 2τα0L

2
J +

T∑
t=1

α2
t

(
L2
JL

g
J
2τ + LgJL

2
R

))
+ 2LJmρ

τ + ϵ2M . (8)

Remark: The above theorem shows the rate of the model-based policy gradient method converges
to its stationary point. This setting is commonly used in the previous papers that analyze the con-
vergence rate for the actor critic method with function approximation and non-convex optimization
(Wu et al., 2020; Kumar et al., 2019; Qiu et al., 2021; Ghadimi & Lan, 2013). The results show that
if we set the learning rate αt that satisfies the condition limT→∞

∑T
t=1 α

2
t∑T

t=1 αt
= 0, the policy optimiza-

tion process will converge to near its stationary point with rate O
(∑T

t=1 α
2
t∑T

t=1 αt

)
. As an example, if we

set the learning rate as αt = 1√
t
, we can get the convergence with rate O(1√

T
).

Remark: The bias is introduced by the policy gradient bias and the Markov noise. The bias in-
troduced by the Markov noise can be arbitrarily small if we set τ sufficiently large which doesn’t
change the main order of the convergence rate. The bias introduced by the policy gradient bias is
analyzed in Theorem 1. According to the theoretical results, to reduce policy gradient bias, we need
to control the model prediction error and the model gradient error in the model learning phase.

4.2 TWO-MODEL-BASED LEARNING POLICY OPTIMIZATION

The theorem in the previous subsection indicates that both the model prediction error and the model
gradient error are crucial for policy optimization. In this subsection, we will discuss how to learn
and use the model taking both errors into account. Specifically, our approach repeatedly alternates
between collecting samples from the environment, training the model, and optimizing the policy.

Model Learning: Different from the classical model-based methods, we design a two-model-based
learning method to achieve the goal. We call these two models prediction models and the gradient
models respectively. Our goal is to use the prediction model to predict the next state and the reward
and to use the gradient model to calculate the policy gradient. Training of the prediction model is
commonly through supervised learning, e.g., maximum likelihood with early stopping on a valida-
tion set (Janner et al., 2019; Clavera et al., 2019). Training of the gradient model is more complex.
For the purpose of reducing the gradient error, we need to use the data collected from the environ-
ment to estimate the gradient of the environment model and construct the mean square gradient error
for the parameter optimization.

Policy Optimization: To update the policy, we first generate trajectories by unrolling the latest
policy on the prediction model. Then, we calculate the gradient of the objective by back-propagating
through the gradient model. Finally, we update the parameters in the policy by following the policy
gradient direction.

4.3 DIRECTIONAL DERIVATIVE PROJECTION POLICY OPTIMIZATION: A PRACTICAL
IMPLEMENTATION

In this subsection, we propose Directional Derivative Projection Policy Optimization (DDPPO) as
an implementation of our proposed two-model-based learning method. The key question is how to
use the data collected from the environment to estimate the gradient or Jacobian of the environment

5

Published as a conference paper at ICLR 2022

Algorithm 1 Directional Derivative Projection Policy Optimization
1: Initialize the policy πϕ, predictive model M̃p

θp
, gradient model M̃g

θg
, value function Qψ

2: Initialize environment replay buffer Denv , model replay buffer Dmodel
3: repeat
4: Take an action in real environment with policy πϕ, and add transition (s, a, s′) to Denv
5: Train predictive model M̃p

θp
and update θp by maximizing JM̃p(θp)

6: Train gradient model M̃g
θg

and update θg by maximizing JM̃g (θg)

7: for Nrollouts steps do
8: Sample st uniformly from Denv
9: Perform k-step model rollout on M̃p

θp
starting from st with policy πϕ

10: Add samples to Dmodel
11: end for
12: D ← Denv ∪ Dmodel
13: for NupdateQ steps do
14: Update ψ using data form D: ψ ← ψ − λQ∇ψJQ(ψ)
15: end for
16: for Nupdate Policy steps do
17: Sample trajectories of length H with policy π and predictive model M̃p

θp

18: Update ϕ using sampled trajectories and gradient model M̃g
θg

: ϕ← ϕ+ λπ∇πJπ(ϕ)
19: end for
20: until The policy performs well in real environment M
21: return Optimal policy πϕ∗

model. Note that the dimension of the Jacobian of the learned environment model is the product
of the state’s dimension and the action’s dimension, which is usually large. Directly estimate the
gradient or Jacobian matrix is intractable. For model-based RL, we cannot estimate gradients by
perturbing one dimension of a state or action and estimate the partial derivative, because we can
only sample data from the environment, and this is contrary to the purpose of efficiency. Besides
these, we will also discuss how to design two models to rollout and calculate gradients respectively
when optimizing the policy. The overall algorithm pseudo-code is shown in Algorithm 1. More
details for explaining the pseudo-code can be found in Appendix B.1.

Model Learning: Prediction loss and the gradient loss.

The prediction model M̃p is trained following Janner et al. (2019) via maximum likelihood (Equa-
tion 2) To improve the ability of models to portray complex environment, we use a bootstrap ensem-
ble of models {M̃θ1 , . . . , M̃θB} which is consistent with Janner et al. (2019); Clavera et al. (2019).

Different from the prediction model, the gradient model M̃g aims to better characterize the gradient
of the environment instead of an accurate prediction. Hence, we hope to trade-off the original
maximum likelihood objective by a gradient loss term that constraints the Jacobian of the learned
model. Although the model’s gradient or Jacobian matrix is difficult to estimate directly on account
of the high dimensions, the directional derivative can be estimated by finite difference using data
sampled. Meanwhile, the directional derivative of the learned model can be calculated by projecting
the model’s gradient or Jacobian matrix into a certain direction.

Hence in this paper, we use the error between the estimated directional derivative and the projec-
tion value to constrain the learned model’s gradient. Note that for an input x = (s, a), and the
corresponding output M(x) with dimension d, the projection of the Jacobian along a vector v, i.e.,
∇xM(x) · v

||v|| , can be estimated by finite difference, M(x+v)−M(x)
||v|| . Therefore, we use the finite

difference as a target to constraint the Jacobian of the gradient model. Since the finite difference
converges to the directional derivative when the norm of v goes to zero, the data point x+ v should
be close to x. So in this paper, we sample the nearest n data points of x to calculate n directional
derivatives in n different directions and use the finite difference to constraint the Jacobian of the
learned model. Sampling the nearest points is for a more accurate estimation of the directional
derivatives since the finite difference is closer to the true directional derivative if the two inputs are
closer. Then, the gradient loss item can be constructed as follows:

R =
1

n

n∑
i=1

1

d
||∇xM̃(x) · vi − (M(xi)−M(x))||2, (9)

6

Published as a conference paper at ICLR 2022

0 5k 10k 15k
Steps

0

200

400

600

800

1000

1200

Av
er

ag
e R

et
ur

n

InvertedPendulum

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

Av
er

ag
e R

et
ur

n

Hopper

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

Av
er

ag
e R

et
ur

n

Walker2d

0 25k 50k 75k 100k
Steps

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e R

et
ur

n

HalfCheetah

0 25k 50k 75k 100k 125k 150k
Steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e R

et
ur

n

Ant

0 25k 50k 75k 100k 125k 150k
Steps

0

1000

2000

3000

4000

5000

Av
er

ag
e R

et
ur

n

Humanoid

Ours MBPO STEVE SVG MAAC MAGE SAC

Figure 1: Learning curves of our algorithm and baselines on six different MuJoCo environments. Solid curves
express the mean of five trials. Shaded regions correspond to standard deviation among five trials. Our method
has better sample efficiency than the model-based baselines. The improvement of performance over previous
algorithms is large on complex environments, i.e., Ant and Humanoid.

where vi denotes directions xi − x, and xi are the nearest n points of x in the buffer. Intuitively,
the gradient at x can be constrained if there are enough points close enough to x. And a relatively
small gradient loss item means the learned model should have a gradient such that its first-order
approximation is consistent with the given data. By leveraging the gradient loss term, the gradient
mode M̃g , is trained via a multi-objective loss:

JM̃g (θg) = E
[
log M̃g(st+1, rt|st, at)

]
+ w ·R. (10)

Note that here we don’t prefer to learn gradient model using gradient loss term only. We can just use
the data in the buffer to estimate a few of the directional derivatives since the points sampled should
be close to the x to make the estimation correct. So here we also use the prediction loss to constrain
the hypothesis space of the learned model to prevent large bias local optimal. Finally, the trained
gradient model and the prediction model will be used for policy optimization.

Model Usage: Policy optimization by back-propagating through model. In our DDPPO algo-
rithm, to train the policy, the objective function we use is constructed by following SAC (Haarnoja
et al., 2018), since SAC can achieve outstanding performance. The policy is learned by rolling out
the prediction model for H steps and maximizing the following objective function:

Jπ(ϕ) = E

[
H−1∑
t=0

γt(r̃t − α log πϕ(at|s̃t)) + γH(Q̃(s̃H , aH)− α log πϕ(aH |s̃H))

]
, (11)

where s̃t+1 ∼ M̃p
ψp

, s̃0 random sampled from the environment buffer Denv , a ∼ πϕ, α is the tem-
perature hyperparameter in SAC. Note that the policy can be learned by computing the derivative of
the objective since the learned prediction model M̃p is differentiable. However, in our approach, we
replace the gradient ∇s̃t,atM̃

p(s̃t, at) by ∇s̃t,atM̃
g(s̃t, at) to calculate the full gradient, believing

in that the gradient model can capture the true gradient better than the prediction model.

As for the Q-value function, it can be trained by minimizing the Bellman residual. In practice, we
follow SAC (Haarnoja et al., 2018) that trains two Q-functions to mitigate positive bias which is
known to degrade the performance of value-based methods (Hasselt, 2010; Fujimoto et al., 2018),
and make use of target Q-function which has been shown to stabilize training (Mnih et al., 2015).

5 EXPERIMENT RESULTS

The goal of our experimental evaluation is to answer the following questions: (1) How does our
algorithm perform on benchmark reinforcement learning tasks, compared to state-of-the-art model-
based and model-free algorithms? (2) Does it matter to explicitly learn the gradient of the model
by using the gradient loss? (3) How does the sensitivity of our algorithm when changing the hyper-
parameters n and w that are related to the gradient model learning? (4) Why build two models? To
answer these questions, we evaluate our approach on model-based continuous control benchmarks
in the MuJoCo (Todorov et al., 2012). Experimental details can be found in Appendix B.2.

7

Published as a conference paper at ICLR 2022

0 20 40 60 80 100 120
Epochs

1

2

3

4

5

6

7

Gr
ad

ien
t E

rro
r o

f M
od

el

Pendulum

0

2

4

6

8

10

12

14

Pr
ed

ict
ive

 E
rro

r o
f M

od
el

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Gr
ad

ien
t E

rro
r o

f M
od

el

LQR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ed

ict
ive

 E
rro

r o
f M

od
el

0 500 1000 1500 2000 2500 3000
Steps

1600

1400

1200

1000

800

600

400

200

0

Av
er

ag
e

Re
tu

rn

Pendulum

300 320 340 360 380 400
Steps

100

80

60

40

20

0

Av
er

ag
e

Re
tu

rn

LQR

with gradient loss without gradient loss gradient error predictive error

Figure 2: The left two figures show learning curves of models with and without gradient loss on two simple
environments. Data used to train each model is collected by a random policy. Solid curves express the mean of
gradient error of five trials. Dotted lines express the mean of prediction error during the training of the model.
Shaded regions correspond to standard deviation among five trials. The model with gradient loss has a lower
gradient error than the model without gradient loss. The improvement is more pronounced in nonlinear cases,
i.e., Pendulum environment. The right two figures show the overall performance of using two different types
of model, which yields the importance of considering the gradient loss.

5.1 COMPARISON WITH STATE-OF-THE-ARTS

To answer the first question, we compare our method against state-of-the-art model-based and
model-free methods in terms of sample complexity and asymptotic performance. Model-free base-
line includes SAC (Haarnoja et al., 2018), which is a widely accepted baseline. For model-based
methods, we select MBPO (Janner et al., 2019) and STEVE (Buckman et al., 2019) as our base-
line which both use short-horizon model-based rollouts. We also compare to model-based methods
SVG (Heess et al., 2015), which firstly uses the derivative of models to learn the policy, and MAAC,
(Clavera et al., 2019) similar to SVG, however entirely relies on the predictions of the model, remov-
ing the need for likelihood ratio terms. MAGE (D’ Oro & Jaśkowski, 2020) is added to comparison
since this method focuses on the gradient of the Q-function.

The learning curves for all methods, shown in Figure 1, highlight the strength of our method in terms
of performance and sample complexity. In all the MuJoCo simulator environments, especially in two
higher-dimensional tasks, Ant and Humanoid, our method learns faster and has better efficiency than
previous model-based and model-free methods. Note that MAGE learns fastest on Humanoid, and
the trick of this algorithm can also be applied to our method. However, even without the help of
tricks in MAGE, we can still achieve better asymptotic properties. We get a return around 5400 in
the Humanoid environment using just over 100 thousand interactions with the environment, while
around three times as many interactions are needed for MBPO to achieve the same performance.

5.2 GRADIENT ERROR ANALYSIS

In this subsection, we answer the second question, i.e., does it matter to explicitly learn the gradient
of the model by using the gradient loss? Firstly, we aim to analyze the difference between the
gradient of the true model and the learned model. We collect experience using a random policy and
train the model with and without gradient loss respectively. Then we calculate the MSE error of the
gradient of the model. Figure 2 shows how the gradient error and the prediction error changes during
training of the model on two simple environments that the true gradient is analytical available. From
the results in Figure 2 we can see that the prediction error for both models decreases to zero while the
gradient error of the model without gradient loss keeps larger than that of the model with gradient
loss. The learning curves highlight the strength of adding a gradient loss to the model in terms of
high prediction accuracy and accurate gradient estimation under the simple case.

5.3 ABLATION STUDY

To answer the third question, i.e., how does the sensitivity of our algorithm when changing the hyper-
parameters, and to show the results in a comprehensive way, we use a low-dimensional environment,
Hopper, and a high-dimensional environment, Ant, as our representative and then conduct two sets
of experiments in them. Figure 3 shows the results. The left column shows how the efficiency of our
algorithm changes by tuning n. The results demonstrate that, regardless of the value n, our method is
better than our variant without gradient loss. The middle column shows the results for tuning w. The
results indicate that the weight is recommended to be smaller for a higher-dimensional environment
and the performance is not sensitive to the number of directional derivatives used to construct the
gradient loss, even only one directional derivative used can also help to improve the performance.

8

Published as a conference paper at ICLR 2022

0 25k 50k 75k
Steps

0

1000

2000

3000

4000

Av
era

ge
 Re

tur
n

Number of points: Hopper
without gradient loss
ours(n=1)
ours(n=5)
ours(n=25)
MAAC

0 25k 50k 75k
Steps

0

1000

2000

3000

4000

Av
era

ge
 Re

tur
n

Weight: Hopper
without gradient loss
ours(w=1)
ours(w=10)
ours(w=50)
MAAC

0 25k 50k 75k
Steps

0

1000

2000

3000

4000

Av
era

ge
 Re

tur
n

Method: Hopper
ours
without gradient loss
single model
MAAC

0 25k 50k 75k 100k 125k
Steps

0

2000

4000

6000

Av
era

ge
 Re

tur
n

Number of points: Ant
without gradient loss
ours(n=1)
ours(n=5)
ours(n=25)
MAAC

0 25k 50k 75k 100k 125k
Steps

0

2000

4000

6000

Av
era

ge
 Re

tur
n

Weight: Ant
without gradient loss
ours(w=0.1)
ours(w=0.5)
ours(w=1.0)
MAAC

0 25k 50k 75k 100k 125k
Steps

0

2000

4000

6000

Av
era

ge
 Re

tur
n

Method: Ant
ours
without gradient loss
single model
MAAC

Figure 3: Left: This figure indicates our method is not sensitive to the number of directional derivatives used
to construct the gradient loss. Middle: The performances of our method with differentw, the coefficient in front
of the gradient loss. The weight is recommended to be smaller for a higher-dimensional environment. Right:
Our method outperforms the variant (without gradient loss) which underpins the importance of considering the
gradient error when training the model. And the higher performances than the variant (single model) that only
uses one model highlight the strength of the two-model-based structure.

0 25k 50k 75k
Steps

0

500

1000

1500

2000

2500

3000

3500

4000

Av
era

ge
 Re

tur
n

Hopper
ours(#params ~2M)
baseline(#param ~1M)
baseline(#param ~2M)

0 25k 50k 75k 100k 125k
Steps

0

1000

2000

3000

4000

5000

6000

7000
Av

era
ge

 Re
tur

n
Ant

ours(#params ~2M)
baseline(#param ~1M)
baseline(#param ~2M)

Figure 4: Our method performs better than baselines with a similar number of parameters which supports that
the improvement is not actually from the additional parameters. Results for all six domains are shown in Figure
7 in Appendix B.3.

Now we answer the last question, i.e., why build two models. To investigate the importance of the
gradient loss and role of two-model-based, we remove the gradient loss in our method and retrain
the policy (without gradient loss) to see the importance of considering the gradient loss. To see
the impact of training two models for prediction and gradient calculation respectively, we design a
variant of our method that trains only one model with gradient loss used for both purposes (single
model). The experimental results are shown in the right column of Figure 3. The results underpin the
importance of considering the gradient error when training the model if back-propagating through
it. On the other hand, the results highlight the strength of the two-model-based structure. We also
draw the prediction error of both models in our algorithm and the results are shown in Appendix
B.3. The prediction error of the prediction model is lower than that of the gradient model, which
further validates the idea of two-model-based learning. To address the concern that the improvement
of the performance may be caused by more parameters, we design a variant of our model that trains
a model with double parameters, however without gradient loss. The experimental results are shown
in Figure 4 that yields the importance of considering gradient information.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we theoretically analyze how the model gradient error and the model prediction error
influence the policy gradient bias and the convergence rate of model-based policy optimization. The
theoretical results motivate us to design a two-model-based learning method for policy optimization.
We design the learning and using methods for the two models respectively by taking the model gra-
dient information into account and propose DDPPO algorithms as a practical implementation. Our
algorithm can achieve superior sample efficiency than state-of-the-art model-based reinforcement
learning algorithms on challenging high-dimensional continuous control tasks. For future work, it is
enticing to design a better gradient estimator in order to optimize the gradient model more efficiently.
The idea about learning the model according to its usage instead of only considering its prediction
error is also general enough to be applied to other problems beyond reinforcement learning.

9

Published as a conference paper at ICLR 2022

REFERENCES

Romina Abachi, Mohammad Ghavamzadeh, and Amir-massoud Farahmand. Policy-Aware Model
Learning for Policy Gradient Methods. arXiv:2003.00030 [cs], January 2021. URL http:
//arxiv.org/abs/2003.00030. arXiv: 2003.00030.

Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson. On the model-based
stochastic value gradient for continuous reinforcement learning. In Learning for Dynamics and
Control, pp. 6–20. PMLR, May 2021. URL http://proceedings.mlr.press/v144/
amos21a.html. ISSN: 2640-3498.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion. arXiv:1807.01675
[cs, stat], June 2019. URL http://arxiv.org/abs/1807.01675. arXiv: 1807.01675.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep
Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Mod-
els. In Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://papers.nips.cc/paper/2018/hash/
3de568f8597b94bda53149c7d7f5958c-Abstract.html.

Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour, and Pieter Abbeel.
Model-Based Reinforcement Learning via Meta-Policy Optimization. In Conference on Robot
Learning, pp. 617–629. PMLR, October 2018. URL https://proceedings.mlr.press/
v87/clavera18a.html. ISSN: 2640-3498.

Ignasi Clavera, Yao Fu, and Pieter Abbeel. Model-Augmented Actor-Critic: Backpropagating
through Paths. In International Conference on Learning Representations, September 2019. URL
https://openreview.net/forum?id=Skln2A4YDB.

Sebastian Curi, Felix Berkenkamp, and Andreas Krause. Efficient Model-Based Re-
inforcement Learning through Optimistic Policy Search and Planning. In Advances
in Neural Information Processing Systems, volume 33, pp. 14156–14170. Curran As-
sociates, Inc., 2020. URL https://papers.nips.cc/paper/2020/hash/
a36b598abb934e4528412e5a2127b931-Abstract.html.

Wojciech M. Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pas-
canu. Sobolev Training for Neural Networks. In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc., 2017. URL https://papers.nips.cc/paper/
2017/hash/758a06618c69880a6cee5314ee42d52f-Abstract.html.

Pierluca D’ Oro and Wojciech Jaśkowski. How to Learn a Useful Critic? Model-based Action-
Gradient-Estimator Policy Optimization. In Advances in Neural Information Processing Systems,
volume 33, pp. 313–324. Curran Associates, Inc., 2020. URL https://papers.nips.cc/
paper/2020/hash/03255088ed63354a54e0e5ed957e9008-Abstract.html.

Marc Peter Deisenroth and Carl Edward Rasmussen. PILCO: a model-based and data-efficient ap-
proach to policy search. In Proceedings of the 28th International Conference on International
Conference on Machine Learning, ICML’11, pp. 465–472, Madison, WI, USA, June 2011. Om-
nipress. ISBN 978-1-4503-0619-5.

Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Matteo Papini, and Marcello Restelli.
Gradient-Aware Model-Based Policy Search. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):3801–3808, April 2020. ISSN 2374-3468. doi: 10.1609/aaai.v34i04.5791.
URL https://ojs.aaai.org/index.php/AAAI/article/view/5791. Number:
04.

H. Drucker and Y. Le Cun. Improving generalization performance using double backpropagation.
IEEE Transactions on Neural Networks, 3(6):991–997, November 1992. ISSN 1941-0093. doi:
10.1109/72.165600. Conference Name: IEEE Transactions on Neural Networks.

10

http://arxiv.org/abs/2003.00030
http://arxiv.org/abs/2003.00030
http://proceedings.mlr.press/v144/amos21a.html
http://proceedings.mlr.press/v144/amos21a.html
http://arxiv.org/abs/1807.01675
https://papers.nips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://papers.nips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://proceedings.mlr.press/v87/clavera18a.html
https://proceedings.mlr.press/v87/clavera18a.html
https://openreview.net/forum?id=Skln2A4YDB
https://papers.nips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html
https://papers.nips.cc/paper/2020/hash/a36b598abb934e4528412e5a2127b931-Abstract.html
https://papers.nips.cc/paper/2017/hash/758a06618c69880a6cee5314ee42d52f-Abstract.html
https://papers.nips.cc/paper/2017/hash/758a06618c69880a6cee5314ee42d52f-Abstract.html
https://papers.nips.cc/paper/2020/hash/03255088ed63354a54e0e5ed957e9008-Abstract.html
https://papers.nips.cc/paper/2020/hash/03255088ed63354a54e0e5ed957e9008-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/5791

Published as a conference paper at ICLR 2022

Amir-Massoud Farahmand, Andre Barreto, and Daniel Nikovski. Value-Aware Loss Function for
Model-based Reinforcement Learning. In Artificial Intelligence and Statistics, pp. 1486–1494.
PMLR, April 2017. URL http://proceedings.mlr.press/v54/farahmand17a.
html. ISSN: 2640-3498.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-Based Value Estimation for Efficient Model-Free Reinforcement Learning.
arXiv:1803.00101 [cs, stat], February 2018. URL http://arxiv.org/abs/1803.
00101. arXiv: 1803.00101.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing Function Approximation Error in
Actor-Critic Methods. In Proceedings of the 35th International Conference on Machine Learn-
ing, pp. 1587–1596. PMLR, July 2018. URL https://proceedings.mlr.press/v80/
fujimoto18a.html. ISSN: 2640-3498.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Interna-
tional Conference on Machine Learning, pp. 1861–1870. PMLR, July 2018. URL https:
//proceedings.mlr.press/v80/haarnoja18b.html. ISSN: 2640-3498.

Hado Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems, vol-
ume 23. Curran Associates, Inc., 2010. URL https://proceedings.neurips.cc/
paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yu-
val Tassa. Learning Continuous Control Policies by Stochastic Value Gradients.
In Advances in Neural Information Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://papers.nips.cc/paper/2015/hash/
148510031349642de5ca0c544f31b2ef-Abstract.html.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to Trust Your Model: Model-
Based Policy Optimization. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://papers.nips.cc/paper/2019/hash/
5faf461eff3099671ad63c6f3f094f7f-Abstract.html.

Gabriel Kalweit and Joschka Boedecker. Uncertainty-driven Imagination for Continuous Deep
Reinforcement Learning. In Proceedings of the 1st Annual Conference on Robot Learning,
pp. 195–206. PMLR, October 2017. URL https://proceedings.mlr.press/v78/
kalweit17a.html. ISSN: 2640-3498.

Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua Bengio, Devi Parikh,
and Dhruv Batra. Learning Dynamics Model in Reinforcement Learning by Incorporating the
Long Term Future. In International Conference on Learning Representations, September 2018.
URL https://openreview.net/forum?id=SkgQBn0cF7.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat], May 2014. URL http://arxiv.org/abs/1312.6114. arXiv: 1312.6114.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-
critic method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-Ensemble
Trust-Region Policy Optimization. In International Conference on Learning Representations,
February 2018. URL https://openreview.net/forum?id=SJJinbWRZ.

Balázs Kégl, Gabriel Hurtado, and Albert Thomas. Model-based micro-data reinforcement learn-
ing: what are the crucial model properties and which model to choose? In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
p5uylG94S68.

11

http://proceedings.mlr.press/v54/farahmand17a.html
http://proceedings.mlr.press/v54/farahmand17a.html
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1803.00101
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/fujimoto18a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://proceedings.neurips.cc/paper/2010/hash/091d584fced301b442654dd8c23b3fc9-Abstract.html
https://papers.nips.cc/paper/2015/hash/148510031349642de5ca0c544f31b2ef-Abstract.html
https://papers.nips.cc/paper/2015/hash/148510031349642de5ca0c544f31b2ef-Abstract.html
https://papers.nips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://papers.nips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://proceedings.mlr.press/v78/kalweit17a.html
https://proceedings.mlr.press/v78/kalweit17a.html
https://openreview.net/forum?id=SkgQBn0cF7
http://arxiv.org/abs/1312.6114
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=p5uylG94S68
https://openreview.net/forum?id=p5uylG94S68

Published as a conference paper at ICLR 2022

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2020.

Yuxi Li. Deep Reinforcement Learning. arXiv:1810.06339 [cs, stat], October 2018. URL http:
//arxiv.org/abs/1810.06339. arXiv: 1810.06339.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learn-
ing. In International Conference on Learning Representations, January 2016. URL https:
//openreview.net/forum?id=tX_O8O-8Zl.

Ângelo Gregório Lovatto, Thiago Pereira Bueno, Denis Mauá, and Leliane Nunes de Barros.
Decision-Aware Model Learning for Actor-Critic Methods: When Theory Does Not Meet Prac-
tice. October 2020. URL https://openreview.net/forum?id=a9lwn6v40C4.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Al-
gorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guar-
antees. In International Conference on Learning Representations, September 2018. URL
https://openreview.net/forum?id=BJe1E2R5KX.

Ali Malik, Volodymyr Kuleshov, Jiaming Song, Danny Nemer, Harlan Seymour, and Stefano Er-
mon. Calibrated Model-Based Deep Reinforcement Learning. In International Conference on
Machine Learning, pp. 4314–4323. PMLR, May 2019. URL https://proceedings.mlr.
press/v97/malik19a.html. ISSN: 2640-3498.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236. URL
https://www.nature.com/articles/nature14236. Number: 7540 Publisher: Na-
ture Publishing Group.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous Methods for Deep Reinforcement
Learning. In International Conference on Machine Learning, pp. 1928–1937. PMLR, June 2016.
URL http://proceedings.mlr.press/v48/mniha16.html. ISSN: 1938-7228.

Nirbhay Modhe, Harish Kamath, Dhruv Batra, and Ashwin Kalyan. Model-Advantage Optimization
for Model-Based Reinforcement Learning. arXiv:2106.14080 [cs, stat], June 2021. URL http:
//arxiv.org/abs/2106.14080. arXiv: 2106.14080.

Anusha Nagabandi, Gregory Kahn, Ronald Fearing, and Sergey Levine. Neural Network Dy-
namics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. In
IEEE International Conference on Robotics and Automation, pp. 7559–7566, May 2018. doi:
10.1109/ICRA.2018.8463189.

Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-Aware Prediction: Learning to Model What
Matters. In International Conference on Machine Learning, pp. 7207–7219. PMLR, November
2020. URL http://proceedings.mlr.press/v119/nair20a.html. ISSN: 2640-
3498.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Feiyang Pan, Jia He, Dandan Tu, and Qing He. Trust the Model When It Is Confident: Masked
Model-based Actor-Critic. In Advances in Neural Information Processing Systems, volume 33,
pp. 10537–10546. Curran Associates, Inc., 2020. URL https://papers.nips.cc/
paper/2020/hash/77133be2e96a577bd4794928976d2ae2-Abstract.html.

Shuang Qiu, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. On finite-time convergence of actor-
critic algorithm. IEEE Journal on Selected Areas in Information Theory, 2(2):652–664, 2021.

12

http://arxiv.org/abs/1810.06339
http://arxiv.org/abs/1810.06339
https://openreview.net/forum?id=tX_O8O-8Zl
https://openreview.net/forum?id=tX_O8O-8Zl
https://openreview.net/forum?id=a9lwn6v40C4
https://openreview.net/forum?id=BJe1E2R5KX
https://proceedings.mlr.press/v97/malik19a.html
https://proceedings.mlr.press/v97/malik19a.html
https://www.nature.com/articles/nature14236
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/2106.14080
http://arxiv.org/abs/2106.14080
http://proceedings.mlr.press/v119/nair20a.html
https://papers.nips.cc/paper/2020/hash/77133be2e96a577bd4794928976d2ae2-Abstract.html
https://papers.nips.cc/paper/2020/hash/77133be2e96a577bd4794928976d2ae2-Abstract.html

Published as a conference paper at ICLR 2022

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs], August 2017. URL http://arxiv.org/
abs/1707.06347. arXiv: 1707.06347.

Yuda Song and Wen Sun. PC-MLP: Model-based Reinforcement Learning with Policy Cover
Guided Exploration. In International Conference on Machine Learning, pp. 9801–9811. PMLR,
July 2021. URL https://proceedings.mlr.press/v139/song21b.html. ISSN:
2640-3498.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press Cam-
bridge, 1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
October 2012. doi: 10.1109/IROS.2012.6386109. ISSN: 2153-0866.

Manan Tomar, Amy Zhang, Roberto Calandra, Matthew E. Taylor, and Joelle Pineau. Model-
Invariant State Abstractions for Model-Based Reinforcement Learning. arXiv:2102.09850 [cs],
June 2021. URL http://arxiv.org/abs/2102.09850. arXiv: 2102.09850.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking Model-Based Reinforce-
ment Learning. arXiv:1907.02057 [cs, stat], July 2019. URL http://arxiv.org/abs/
1907.02057. arXiv: 1907.02057.

Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and Tie-Yan Liu. Finite sample analysis of the
gtd policy evaluation algorithms in markov setting. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 5510–5519, 2017.

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor
critic methods. ArXiv, abs/2005.01350, 2020.

Yao Yao, Li Xiao, Zhicheng An, Wanpeng Zhang, and Dijun Luo. Sample Efficient Reinforcement
Learning via Model-Ensemble Exploration and Exploitation. arXiv:2107.01825 [cs], July 2021.
URL http://arxiv.org/abs/2107.01825. arXiv: 2107.01825.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,
Frank Hutter, and Roberto Calandra. On the Importance of Hyperparameter Optimization for
Model-based Reinforcement Learning. In International Conference on Artificial Intelligence
and Statistics, pp. 4015–4023. PMLR, March 2021a. URL https://proceedings.mlr.
press/v130/zhang21n.html. ISSN: 2640-3498.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586–3612, 2020a.

Michael R Zhang, Thomas Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Mohammad
Norouzi, et al. Autoregressive dynamics models for offline policy evaluation and optimization. In
International Conference on Learning Representations, 2020b.

Wanpeng Zhang, Xi Xiao, Yao Yao, Mingzhe Chen, and Dijun Luo. MBDP: A Model-based
Approach to Achieve both Robustness and Sample Efficiency via Double Dropout Planning.
arXiv:2108.01295 [cs], August 2021b. URL http://arxiv.org/abs/2108.01295.
arXiv: 2108.01295.

13

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://proceedings.mlr.press/v139/song21b.html
http://arxiv.org/abs/2102.09850
http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/1907.02057
http://arxiv.org/abs/2107.01825
https://proceedings.mlr.press/v130/zhang21n.html
https://proceedings.mlr.press/v130/zhang21n.html
http://arxiv.org/abs/2108.01295

Published as a conference paper at ICLR 2022

A RELATED WORK

Reinforcement learning (RL) is a powerful technique for solving the sequential decision making
problems (Li, 2018; Sutton & Barto, 1998). The sequential decision-making problem is always
formulated as the Markov decision process (MDP) framework. The agent uses policy to determine
its action according to the current state of the environment, interacts with the environment, and gets
the immediate reward from the environment as feedback. Then, the environment changes to the next
state. The goal for reinforcement learning is to find the optimal policy that can achieve the highest
expectation of the summation of the future reward. Recent work on model-based RL (Nagabandi
et al., 2018; Luo et al., 2018; Kurutach et al., 2018; Wang et al., 2019; Janner et al., 2019; Pan et al.,
2020), has shown the power of first learning the environment model and then use it to do the policy
optimization. These methods all achieve similar performance by using fewer data compared to their
model-free counterparts.

Model-free and Model-based Methods: Model-free approaches, as a general-purpose tool for
learning complex policies (Mnih et al., 2015; Lillicrap et al., 2016; Haarnoja et al., 2018), has the
problem of low-efficiency (Janner et al., 2019), which limits the application in real-world physical
systems where data collection can be an arduous process. Model-based Reinforcement Learning
attempts to reduce sample complexity while maintaining the asymptotic performance. The learned
model can be viewed as a black-box simulator and then used for training a model-free policy (Naga-
bandi et al., 2018; Luo et al., 2018; Kurutach et al., 2018; Wang et al., 2019; Janner et al., 2019; Pan
et al., 2020). Tools like ensembles (Kurutach et al., 2018), probabilistic models (Chua et al., 2018),
and meta-learning (Clavera et al., 2018) are widely used in model-based RL. A major problem of
model-based RL is model-bias (Deisenroth & Rasmussen, 2011) caused by a compounding error
effect of long-term predictions. To address this problem, a popular approach is to use interpolation
between different horizon predictions (Buckman et al., 2019; Janner et al., 2019) and interpolating
between model and real data (Kalweit & Boedecker, 2017). Different from the traditional model
based method, we argue to learn the model beyond the accurate prediction and to use the model
more efficiently by calculating the policy gradient analytically through the learned model.

Improved Model-based Methods: Several issues have been studied to achieve better performance
in model-based RL. Malik et al. (2019) explore which uncertainties are needed for model-based RL.
Further research implements a masking mechanism based on the model’s uncertainty estimation to
decide whether the model should be used or not (Pan et al., 2020). Dropout mechanisms are also
applied to model-based RL algorithms to improve the robustness while maintaining high sampling
efficiency (Zhang et al., 2021b). Efficient exploration is also considered in model-based RL (Curi
et al., 2020; Song & Sun, 2021; Yao et al., 2021). For model learning, Ke et al. (2018) use latent
variables to carry future information that improves long-term predictions, Tomar et al. (2021) use
model-invariance state abstraction to improve generalization. Kégl et al. (2021) firstly design met-
rics to evaluate the various popular generative models when using them on the control problem.
Zhang et al. (2021a) shows that tuning of hyperparameters dynamically improves the performance
compared to using static hyperparameters which are kept fix for the whole training. This operation
can be seen as a simple treatment of model uncertainty. Considering that we also need the predic-
tion model at the model learning and using phase, we can leverage the useful ideas inside of these
methods to help us to build a robust prediction model and use it efficiently.

Decision-aware Model Learning:Decision-aware model learning (DAML) (Lovatto et al., 2020;
Nair et al., 2020; Abachi et al., 2021; D’Oro et al., 2020; Farahmand et al., 2017; Modhe et al.,
2021) considers the problem that how we can learn the model that can be better leveraged by the
policy optimization or Q learning. D’Oro et al. (2020) using policy gradient to re-weight the model
prediction error for each sample. Farahmand et al. (2017) use the value function to re-weight the
model prediction error for each sample. Please note that, although the main goal about learning the
model by considering the follow-up decision making problems seems very similar, our ideas and
methods are totally different from DAML. DAML is still the traditional rollout-based model-based
method with a re-weighted prediction loss.

Differentiable Model-based Method: A more effective way of using the model is to exploit its
differentiability. SVG (Heess et al., 2015) presents a framework for learning continuous control
policies using back-propagating through the model. However, SVG just uses real trajectories lever-
aging likelihood ratio term which in turn increases the variance of the gradient estimate. Recently,

14

Published as a conference paper at ICLR 2022

Amos et al. (2021) extend SVG further leveraging the soft update (Haarnoja et al., 2018) and model-
based value expansion (Feinberg et al., 2018). Different from SVG, MAAC (Clavera et al., 2019)
entirely relies on the predictions of the model, removing the need for likelihood ratio terms, and
achieves better performance than MBPO leveraging model-based value expansion for updating pol-
icy and Q-function. The plan horizon in these methods allows to trade-off between the accuracy
of the learned model and the accuracy of the learned Q-function. In addition to back-propagating
through the path, MAGE (D’ Oro & Jaśkowski, 2020) uses the differentiability of the learned model
to compute gradient targets in temporal difference learning. Our method is different from these
methods. Different from these methods, our main contribution is that we propose to use two models
to learn the model prediction and the model gradient respectively. By explicitly construct the gradi-
ent estimator, our gradient model can produce a more accurate policy gradient and thus benefits for
the policy optimization.

Outside of RL: Several algorithms outside of RL adopt gradient penalties into the loss function
when training a neural network, known as double backpropagation (Drucker & Le Cun, 1992).
Sobolev training (Czarnecki et al., 2017) is most related to this topic, which tries to learn both
the value and gradient of a target function during supervised training. However, Sobolev training
requires the ground-truth gradient available. In the model-based reinforcement learning setting, we
do not know the ground-truth gradient.

B ALGORITHM DETAILS

B.1 IMPLEMENTATION OF DDPPO

B.1.1 DIRECTIONAL DERIVATIVE

The directional derivative of a function f with respect to a vector v at a point (e.g., position) x

may be denoted by ∇vf(x) that is a limit: ∇vf(x) = limh→0
f(x+hv)−f(x)

h . If the function f is
differentiable at x then the directional derivative exists along any vector v and we have: ∇vf(x) =
∇f(x) · v

|v| . Note that if f is a scalar function and the dimension of x is high, then ∇f(x) is a vector
and difficult to estimate, however ∇vf(x) is a scalar, and easy to estimate by finite-difference. This
intuition helps us to design the constraint on the gradient of the learned model using data samples.

B.1.2 BACK-PROPAGATING THROUGH GRADIENT MODEL

In our method, we use the prediction model to rollout, however use the gradient model to calculate
the gradient when performing policy optimization. This procedure is like SVG (Heess et al., 2015)
that gets predictions using the true environment however gets the gradient using a learned model.
Note that reparameterization and important sampling weights are needed for this method. In our
paper, we use the learned model as a deterministic model that only uses the mean outputted as the
prediction. Now we show an example of calculating the gradient. When predicting, we first receive
a state s and use the policy to get action a, then using the prediction model to get the next state
and reward s′, r. Note that we need to memory the computation graph for getting the action. Then
we use the gradient model to calculate the gradient by feeding the (s, a) to it and back-propagation.
Combined with the memorized computing graph we can get the final policy gradient.

B.1.3 IMPLEMENTATION

Our algorithm can be divided into three main parts: model learning, policy optimization, and Q-
function learning. And our approach alternates between collecting samples from the environment,
training the model, updating Q-function, and policy optimization. The overall algorithm pseudo-
code is demonstrated in Algorithm 1.

Firstly, we collect data using the current policy and add it into the environment replay buffer Denv .
Then the prediction model is trained using data from Denv . The gradient model is also trained with
the multi-objective loss. The third step is to perform k step model rollout on the prediction model
M̃p
θp

with the current policy, where k is increased over time which proposed by Janner et al. (2019)
to achieve better performance. Those samples are appended to the replay buffer Dmodel, together
with samples from Denv , used to update the Q-function. To update the policy, firstly, we obtain

15

Published as a conference paper at ICLR 2022

Table 1: Hyperparameter settings for DDPPO results shown in Figure 1.
Environment Name InvertedPendulum Hopper Walker2D HalfCheetah Ant Humanoid

epochs 15 100 100 100 150 150
environment steps /epoch 1000

ensemble size 7
G1 /environment step 10
G2 /environment step 10

H 3 2 3
n 10 25 25 5
w 10 50 0.1 1.0 0.1 0.1

imaginary trajectories by unrolling the latest policy on the prediction model M̃p
θp

for H steps from a
randomly sampled state in Denv . Then we update policy by calculating the gradient of the objective
in equation 11, while using the gradient model M̃g

θg
instead of M̃p

θP
.

In our approach, we apply the soft Q-update (Haarnoja et al., 2018) which minimizes the following
objective:

JQ = E
[(

Q̃(st, at)−
(
r(st, at) + γQ̃(st+1, at+1)− α log(πϕ(at+1|st+1))

))2]
. (12)

The temperature hyperparameter is automatically tuned by adjusting the expected entropy over the
visited states to match a target value (Haarnoja et al., 2018) with the following objective:

Jα = E
[
−α log πϕ(at, st)− αH̄

]
, (13)

where H̄ is the target entropy.

B.2 EXPERIMENT SETTINGS

B.2.1 ENVIRONMENT SETTINGS

We evaluate our approach on six continuous control benchmark tasks in the MuJoCo (Todorov et al.,
2012) simulator in our experiments: InvertedPendulum-v2, Hopper-v2, Walker2d-v2, HalfCheetah-
v2, Ant-v2 and Humanoid-v2. Standard full-length versions of these tasks are used. Note that
the Ant and Humanoid environments are truncated observations which is consistent with MBPO
(Janner et al., 2019). The code for building Ant and Humanoid environment is provided by Janner
et al. (2019).1

B.2.2 HYPERPARAMETER SETTINGS

0 25k 50k 75k 100k
Steps

0

500

1000

1500

2000

2500

3000

3500

Av
er

ag
e

Re
tu

rn

Hopper

ours(H=1)
ours(H=2)
ours(H=3)
MBPO

Table 1 shows the hyperparameters used for DDPPO to
achieve results shown in Figure 1. G1 is the number of up-
dates for policy per environment step, G2 is the number of
updates for critic per environment step. H is the rollout length
for updating policy. n is the number of directional derivatives
used to construct the gradient loss. w is the coefficient in front
of the gradient loss when updating the gradient model. Note
that H is used to trade-off between the accuracy of the learned
model and the accuracy of the learned Q-function. As shown
in the right figure, the results by setting a small H is close
to the results of MBPO, while a larger H may cause worse
results. We try different steps and propose 2 for Hopper and
3 for other environments. We employ 5000 (200 for the In-
vertedPendulum environments) warmup steps of interaction
with the environment before starting to update the actor and
the critic. The network structure of both the prediction model and the gradient model is the same

1https://github.com/JannerM/mbpo/tree/master/mbpo/env

16

Published as a conference paper at ICLR 2022

as MBPO. Both models are trained after every 250 steps of interaction with the environment. Every
time after model training, we perform rollout for k steps and add the collected data to the buffer used
for updating the critic. k is increased with the number of interactions. For InvertedPendulum, Ant,
HalfCheetah, and Walker2D k keeps fixed. For Hopper k increases from 1 to 15 between epoch 25
to epoch 155. For Humanoid k increases from 1 to 25 between epoch 25 to epoch 155. The policy
and Q-value function are updated 10 times per environment step which is less than the number of
MBPO. For updating the policy we rollout on the prediction model for H steps with batch size 256.

B.2.3 EXPERIMENT DETAILS FOR BASELINES

For MBPO, we directly use the reported number given by Janner et al. (2019)2; For SAC we use the
codes and hyperparameters available3; For MAGE, we use the codes available4 and hyperparameters
from the author. For MAAC, the model structure and hyperparameters such as learning rate are the
same as MBPO, and the extra hyperparameter, H , we try different steps and set 2 for hopper and 3
for others which is consistent with ours. For other baselines, we use the codes or results from Wang
et al. (2019)5. Note that the number of layers and the number of nodes of Q value functions are all
the same for SAC, MBPO, MAAC, and ours. The number of layers and the number of nodes of the
learned model are all the same for MBPO, MAAC, and ours. Finally, we keep unimportant hyper-
parameters of our method as consistent as possible to SAC or MBPO to keep it as fair as possible.

B.3 MORE RESULTS FOR ABLATIONS

The results in Figure 3 show the importance of considering the gradient error when training the
model if back-propagating through it and highlight the designed two-model-based learning proce-
dure. We extend the experiments in Section 5.3 to more environments. The results in Figure 5 show
the performance of our method compared to the variants of our method. The results in Figure 6
show that the prediction models in our algorithm have lower prediction error than the gradient mod-
els, which confirm our conjecture that the prediction and gradient calculation should be done by the
corresponding model.

0 5k 10k 15k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

InvertedPendulum

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Hopper

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Walker2d

0 25k 50k 75k 100k
Steps

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
tu

rn

HalfCheetah

0 25k 50k 75k 100k 125k 150k
Steps

0

2000

4000

6000

Av
er

ag
e

Re
tu

rn

Ant

0 25k 50k 75k 100k 125k 150k
Steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

Humanoid

ours without gradient loss single model
Figure 5: The impact of adding the gradient loss and the importance of two-model-based learning.

2https://github.com/JannerM/mbpo
3https://github.com/pranz24/pytorch-soft-actor-critic
4https://github.com/nnaisense/MAGE
5https://github.com/WilsonWangTHU/mbbl

17

Published as a conference paper at ICLR 2022

25000 50000 75000 100000
Env Steps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n Hopper

10000 15000 20000 25000
Env Steps

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n Ant

0 25000 50000 75000 100000
Env Steps

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n HalfCheetah

5000 10000 15000 20000
Env Steps

0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n InvertedPendulum

0 25000 50000 75000
Env Steps

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n Walker2d

50000 100000 150000
Env Steps

0.1

0.2

0.3

0.4

0.5

Pr
ed

ict
iv

e
er

ro
r o

n
va

lid
at

io
n Humanoid

gradient model prediction modelgradient model prediction model

Figure 6: Prediction error of the prediction model and the gradient model on validation during the
training of the agent. Directly adding the gradient loss item to the model training loss may influence
the learning for prediction. This may be the reason why the performance of our variants (single
model) is not even as good as using the model without consideration of the gradient loss for some
environments, such as Hopper, HalfCheetah, and Humanoid.

0 5k 10k 15k
Steps

0

200

400

600

800

1000

Av
er

ag
e

Re
tu

rn

InvertedPendulum

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Hopper

0 25k 50k 75k 100k
Steps

0

1000

2000

3000

4000

Av
er

ag
e

Re
tu

rn

Walker2d

0 25k 50k 75k 100k
Steps

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e

Re
tu

rn

HalfCheetah

0 25k 50k 75k 100k 125k 150k
Steps

0

2000

4000

6000

Av
er

ag
e

Re
tu

rn

Ant

0 25k 50k 75k 100k 125k 150k
Steps

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

Humanoid

ours(#param ~2M) baseline(#param ~1M) baseline(#param ~2M)

Figure 7: The higher performances than the variant with a similar number of parameters support that
the improvement of our method is not actually from the additional capacity.

C PROOFS OF THE THEOREM

In this section, we present the proof of the main theorems in section 3.

18

Published as a conference paper at ICLR 2022

First of all, we summarize the necessary assumptions here. These assumptions are commonly used
for analyzing reinforcement learning algorithms.

Assumption 2 (Stationary). For ∀t1 < t2 and s0t1 , s
1
t1 , denote τ = t2 − t1 there exist L1(τ) < ∞,

τ = t2 − t1, such that
∥∥∥∥E(s1t2−s0t2s1t1

−s0t1

)∥∥∥∥ ≤ L1(τ). And L1(τ) can be uniformly upper bounded

by L1 < ∞. Here, ||E
(
s1t2

−s0t2
s1t1

−s0t1

)
|| is the 2-norm of the matrix of which the element ij is:

E
(
s1t2

(i)−s0t2 (i)
s1t1

(j)−s0t1 (j)

)
, where st(i) is the i-th element in the vector st.

Assumption 3 (Bounded region). There exist a finite D < ∞ such that: (Wu et al., 2020; Wang
et al., 2017)

∥s1 − s2∥ ≤ D for ∀s1, s2 ∈ S. (14)

Assumption 4 (Lipschitz). The transition model and the reward model are both Lipschitz continu-
ous with Lipschitz constant Lf and Lr respectively (Clavera et al., 2019). In addition, we need the
derivative of the transition model and the reward model to be Lipschitz continuous with Lipschitz
constant Lfg and Lrg .

Assumption 5 (Uniform ergodicity). For a fixed policy πθ(·|s0), denote µθ as the stationary dis-
tribution induced by the policy and the transition probability measure P (·|s, a). Then there exists
m < ∞, C0 < ∞, and ρ ∈ (0, 1) such that:(Wu et al., 2020; Zhang et al., 2020a; Qiu et al., 2021)

dTV (P (st+τ ∈ ·|st = s), µθ(·)) ≤ mρτ ∀τ ≥ 0, ∀s ∈ S. (15)

Assumption 6 (Lipschitz policy). Let πϕ(a|s) be a policy parameterized by θ. there exist constants
such that for all given state s and action a we have:(Wu et al., 2020; Clavera et al., 2019; D’ Oro
& Jaśkowski, 2020) ∥∥∥∥dπϕ(a|s)dϕ

∥∥∥∥ ≤ Lπ. (16)

Assumption 7 (Step-size). The step-size αt is non-increasing and non-negative (Wang et al., 2017;
Wu et al., 2020).

Assumption 8 (Bounded reward). The reward is bounded in the region [0, rmax] (Clavera et al.,
2019; Wu et al., 2020).

Here, we show some lemmas that is important for the proof.

Lemma 1. Suppose assumptions hold, denote the C0 = min(Dϵf ,
1−Lt+1

f

1−Lf
) for ∀t we have

∥s̃t − st∥ ≤ C0ϵf (17)

Lemma 2. Denote C1 = tL2
1, C2 = tC0LfgL2

1. We have

δ

(
E
(
dst
ds0

))
=

∥∥∥∥∥E
(
d̂st
ds0

− dst
ds0

)∥∥∥∥∥ ≤ C1ϵ
g
f + C2ϵf (18)

Lemma 3. If constent 0 < γ < 1, for arbitrary constant C, we have:

∞∑
t=0

tγtC =
γ

(1− γ)2
C (19)

Lemma 4. Denote constants C3 = L1

1−γ and C4 =
LrL

2
1γ

(1−γ)2 ,C5 = C0L1Lrg

(1−γ) +
C0LfgLrγ

(1−γ)2 , then we
have:

δ

(
dR

ds

)
=

∥∥∥∥∥E
(
dRM̂

ds
− dRM

ds

)∥∥∥∥∥ ≤ C3ϵ
g
r + C4ϵ

g
f + C5ϵf (20)

19

Published as a conference paper at ICLR 2022

Lemma 5. Considering a Markov process M with stationary distribution µ. Data ξt are sampled
from the M . There are two functions of parameter ϕ: G(ϕt, ξt) and g(ϕt) where

g(ϕt) = Eξ∼µG(ϕt, ξ). (21)

Denote the upper bound for the function G as L1. Denote the Lipschitz constant for the function G
as L2.

ϕt+1 = ϕt − αtG(ϕt, ξt) (22)

For all 0 < T < ∞, we can proof that:∥∥∥∥∥
T∑
t=1

αt ⟨g(ϕt), G(ϕt, ξt)− g(ϕt)⟩

∥∥∥∥∥ ≤ 2τα0L
2
1 +

T∑
t=τ+1

α2
tL

2
1L2τ +

T∑
t=1

αtL1mρτ (23)

Lemma 6. Denote UJ as the upper bound of the expected sum of discounted rewards J . Then
UJ ≤ rmax

1−γ

Lemma 7. There exist two constants LJ and LgJ such that for all ϕ1, ϕ2, we have
∥J(ϕ1)− J(ϕ2)∥ ≤ LJ ∥ϕ1 − ϕ2∥ (24)∥∥∥∥ dJdϕ1

− dJ

dϕ2

∥∥∥∥ ≤ LgJ ∥ϕ1 − ϕ2∥ (25)

Lemma 8. There exist constants LR such that for all ϕ1, ϕ2, we have
E ∥R(ϕ1)−R(ϕ2)∥ ≤ LR ∥ϕ1 − ϕ2∥ (26)

(27)

Lemma 9. Suppose the function J is smooth with smoothness constant LgJ

J(ϕ2) ≥ J(ϕ1) + ⟨ dJ
dϕ1

, ϕ2 − ϕ1⟩ −
LgJ
2
∥ϕ2 − ϕ1∥ (28)

Lemma 10. If x, y, z > 0 and
√
x ≤ √

y +
√
z, then we have

x ≤ 2y + 2z (29)

C.1 PROOF OF THEOREM 1

Overall speaking, the main idea behind the proof of Theorem 1 can be summarized as follows.

Considering that to calculate a gradient value of a function output w.r.t its input, we need to specify
the function and the input value. Therefore, as in the Equation 3, both the function(f̃ and r̃) to be
taking gradient and the input value s̃t are different from the ground-truth. So we need to first bound
the error of the prediction state(Lemma 1) and then bound the error of the gradient of the learned
model in true state (Lemma 4).

Firstly, we define some notations, denote C6 =
LfLπ+LfC3Lπγ

1−γ , C7 =
γLfLπC4+L1Lπγ/(1−γ)

1−γ ,

C8 =
C0Lrg+γC5LfLπ+L1LrLπLfgC0γ/(1−γ)

1−γ , now we can prove the theorem by using previous
lemmas:∥∥∥∥∥E

(
dRM̂

dϕ
− dRM

dϕ

)∥∥∥∥∥ (30)

=

∥∥∥∥∥E
(∞∑
t=0

γt

(
d̂r̃t
dϕ

− drt
dϕ

)
+ γ

∞∑
t=0

γt

(
d̂R

ds̃t+1

d̂s̃t+1

dãt

dãt
dϕ

− dR

dst+1

dst+1

dat

dat
dϕ

))∥∥∥∥∥ (31)

≤ 1

1− γ
(LrgC0ϵf + ϵgr)Lπ +

∥∥∥∥∥E
(
γ

∞∑
t=0

γt

(
δ

(
dR

ds

)
d̂s̃t+1

dãt
+

dR

dst+1
δ

(
ds

da

))
Lπ

)∥∥∥∥∥ (32)

≤ 1

1− γ
(LrgC0ϵf + ϵgr)Lπ +

γ

1− γ
LfLπ(C3ϵ

g
r + C4ϵ

g
f + C5ϵf) +

γ

(1− γ)2
L1LrLπ(LfgC0ϵf + ϵgf)

(33)

=C6ϵ
g
r + C7ϵ

g
f + C8ϵf . (34)

20

Published as a conference paper at ICLR 2022

The first equation is the definition. The second inequality follows the assumption 2, the right term .
The third term follows the lemma 4

Remark: This theorem is fit for the case that the Lipschitz constant Lf < 1. For the dynamics that
the gradient is always larger than 1, it is unrealistic and uncontrollable. For the dynamics that the
gradient is always less than 1, theorem 1 and the assumptions are enough. For the last case, it needs
a stronger assumption directly on ∥s̃t − st∥.

C.2 PROOF OF THE THEOREM 2

First of all, we briefly summarize the proof idea here. We first decompose the difference of objective
function brought by parameter updating into two terms according to its smooth assumption(Equation
35). The first term is an inner product term. The inter product term can be further decompose into
two terms(Equation 36). One is about the model error and the other one is about the non-i.i.d.
data. We can carefully bound each terms and then combine them all together to proof the theorem.
Readers can refer to the related papers Wang et al. (2017) Wu et al. (2020) Ghadimi & Lan (2013)
to get more insight of the proof.

According to the lemma 9, we can have:

J(ϕt+1) ≥ J(ϕt) + αt

〈
dJ

dϕt
,
dRM̂

dϕ

〉
− LJ

2
∥ϕt+1 − ϕt∥2, (35)

where dRM̂

dϕ is the estimated policy gradient calculated using learned model and used to update the
policy parameter from ϕt to ϕt+1.

Denote h1
t =

dRM̂

dϕ − dRM

dϕ , h2
t =

dRM

dϕ .

We can further decompose the value improvement as

J(ϕt+1) ≥ J(ϕt) + αt

(〈
dJ

dϕt
, h1
t

〉
+

〈
dJ

dϕt
, h2
t

〉)
−

LgJ
2
∥ϕt+1 − ϕt∥2. (36)

According to the Cauchy–Schwarz inequality we have

E
〈

dJ

dϕt
, h1
t

〉
≥ −

√
E

∥∥∥∥ dJ

dϕt

∥∥∥∥2 E ∥h1
t∥

2 ≥ −

√
E

∥∥∥∥ dJ

dϕt

∥∥∥∥2(C6ϵ
g
r + C7ϵ

g
f + C8ϵf). (37)

Rearrange the term we have

E
〈

dJ

dϕt
, h2
t

〉
= E

〈
dJ

dϕt
,
dRM

dϕt
− dJ

dϕt

〉
+ E

〈
dJ

dϕt
,
dJ

dϕt

〉
. (38)

Note that the first term in the right hand side is 0 if the data is I.I.D. sampled from the stationary
distribution. If the data is sampled from the markov process, the data is non-i.i.d.. we can further
bound the first term using the Lemma 5

T∑
t=1

αtE
〈

dJ

dϕt
,
dRM

dϕt
− dJ

dϕt

〉
≥ −

(
2τLJα0 +

T∑
t=1

α2
tL

2
JL

g
Jτ +

T∑
t=1

αtLJmρτ

)
. (39)

The second term is

E
〈

dJ

dϕt
,
dJ

dϕt

〉
= E

∥∥∥∥ dJ

dϕt

∥∥∥∥2 . (40)

Noticing that

ϕt+1 − ϕt = αt
dRM̂

dϕt
. (41)

21

Published as a conference paper at ICLR 2022

Combine Equations (37), (39), (40), (41), we can get

αtB1 − αtB3

√
B1 ≤ J(ϕt+1)− J(ϕt) + αtB4 +B5, (42)

where B1 =
∥∥∥ dJdϕt

∥∥∥2, B2 = 2τLJα0 +
∑T
t=1 α

2
t

(
L2
JL

g
Jτ +

Lg
JLR

2

2

)
+
∑T
t=1 αtLJmρτ , B3 =

C6ϵ
g
r +C7ϵ

g
f +C8ϵf , B4 = E

〈
dJ
dϕt

, dR
M

dϕt
− dJ

dϕt

〉
B5 =

Lg
Jα

2
tLR

2

2 Notice B1, B4, B5 are functions
of t.

Taking summarizing on both side, we have
T∑
t=1

αtB1 −
T∑
t=1

αtB3

√
B1 ≤ J(ϕT+1)− J(ϕ0) +

T∑
t=1

αtB4 +

T∑
t=1

B5, (43)

∑T
t=1 αtB1∑T
t=1 αt

−
∑T
t=1 αtB3

√
B1∑T

t=1 αt
≤ 2UJ +B2∑T

t=1 αt
. (44)

We have ∑T
t=1 αt(

√
B1 − B3

2)2∑T
t=1 αt

≤ 2UJ +B2∑T
t=1 αt

+
B2

3

4
. (45)

Therefore,

min
1≤k≤T

(
√
B1 −

B3

2
)2 ≤ 2UJ +B2∑T

t=1 αt
+

B2
3

4
. (46)

According to the lemma 10 We can prove that

min
1≤k≤T

B1 ≤ 4UJ + 2B2∑T
t=1 αt

+B2
3 . (47)

C.3 PROOF OF THE USEFUL LEMMAS

Proof of Lemma 1. According to the transition model definition and its Lipschitz continuous as-
sumption, on the one hand, since the states are bounded in the range with diameter D, we can see
that ∥s̃t − st∥ ≤ D. On the other hand,

∥s̃t − st∥ ≤ ϵf + Lf ∥s̃t−1 − st−1∥ ≤

(
1− Lt+1

f

1− Lf

)
ϵf . (48)

Proof of the Lemma2.∥∥∥∥∥E
(

d̂s̃t
ds̃t−1

· · · · · d̂s̃1
ds̃0

)
−E

(
dst

dst−1
· · · · · ds1

ds0

)∥∥∥∥∥ (49)

=

∥∥∥∥∥E
t∑
i=1

(
Πi−1
j=0

dsj
dsj−1

)(
d̂s̃i

ds̃i−1
− dsi

dsi−1

)(
Πtj=i+1

d̂s̃j
ds̃j−1

)∥∥∥∥∥ (50)

≤E
t∑
i=1

(∥∥∥∥Πi−1
j=0

dsj
dsj−1

∥∥∥∥)
(∥∥∥∥∥ d̂s̃i

ds̃i−1
− d̂si

dsi−1

∥∥∥∥∥+
∥∥∥∥∥ d̂si
dsi−1

− dsi
dsi−1

∥∥∥∥∥
)(∥∥∥∥∥Πtj=i+1

d̂s̃j
ds̃j−1

∥∥∥∥∥
)
(51)

≤
t∑
i=1

L2
1(ϵ

g
f + C0ϵfLfg) (52)

≤tL2
1ϵ
g
f + tC0LfgL2

1ϵf . (53)

22

Published as a conference paper at ICLR 2022

Proof of the Lemma 3. Let s =
∑∞
t=0 tγ

tC, then we can get that γs =
∑∞
t=0 tγ

t+1C =∑∞
t=1 (t− 1)γtC. So, s − γs = (1 − γ)s =

∑∞
t=1 γ

tC = γ
1−γC. At last we can get

s = γ
(1−γ)2C.

Proof of the Lemma 4.∥∥∥∥∥E
(
dRM̂

ds
− dRM

ds

)∥∥∥∥∥ =

∥∥∥∥∥E
∞∑
t=0

γt
d̂r̃t
ds̃t

d̂s̃t
s̃0

− E
∞∑
t=0

γt
drt
dst

dst
s0

∥∥∥∥∥ (54)

≤E
∞∑
t=0

γt

(∥∥∥∥∥ d̂s̃tds̃0
δ

(
drt
dst

)∥∥∥∥∥+
∥∥∥∥drtdst

δ

(
dst
ds0

)∥∥∥∥
)

(55)

≤
∞∑
t=0

γt
(
L1(ϵ

g
r + LrgC0ϵf) + Lr

(
C1ϵ

g
f + C2ϵf

))
(56)

=
1

1− γ
(L1(ϵ

g
r + LrgC0ϵf)) + Lr

∞∑
t=0

γt
(
C1ϵ

g
f + C2ϵf

)
(57)

=
1

1− γ
(L1(ϵ

g
r + LrgC0ϵf)) +

γ

(1− γ)2
Lrϵ

g
fL

2
1 +

γ

(1− γ)2
C0LfgLrϵf (58)

=C3ϵ
g
r + C4ϵ

g
f + C5ϵf . (59)

Proof of the Lemma 5.

T∑
t=1

αt ⟨g(ϕt), G(ϕt, ξt)− g(ϕt)⟩ (60)

=

T∑
t=1

αt (⟨g(ϕt), G(ϕt, ξt)−G(ϕt, ξt+τ)⟩+ ⟨g(ϕt), G(ϕt, ξt+τ)− g(ϕt)⟩) . (61)

We first bound the first term in the right hand side.

∥
T∑
t=1

αt (⟨g(ϕt), G(ϕt, ξt)−G(ϕt, ξt+τ)⟩)∥ (62)

≤∥
τ∑
t=1

αt ⟨g(ϕt), G(ϕt, ξt)⟩∥+ ∥
T∑

t=T−τ+1

αt ⟨g(ϕt), G(ϕt, ξt+τ)⟩∥ (63)

+ ∥
T∑

t=τ+1

αt ⟨g(ϕt), G(ϕt, ξt)−G(ϕt+τ , ξt)⟩∥ (64)

≤2τα0L
2
1 + ∥

T∑
t=τ+1

αt ⟨g(ϕt), G(ϕt, ξt)−G(ϕt+τ , ξt)⟩∥ (65)

≤ 2τα0L
2
1 +

T∑
t=τ+1

αt∥
t+τ−1∑
k=t

⟨g(ϕt), G(ϕk, ξt)−G(ϕk+1, ξt)⟩∥ (66)

≤ 2τα0L
2
1 +

T∑
t=τ+1

αtL2∥
t+τ−1∑
k=t

⟨g(ϕt), ϕk − ϕk+1⟩∥ (67)

≤ 2τα0L
2
1 +

T∑
t=τ+1

α2
tL

2
1L2τ. (68)

(69)

23

Published as a conference paper at ICLR 2022

Now, we will bound the second term in equation in expectation.

∥E

(
T∑
t=1

αt (⟨g(ϕt), G(ϕt, ξt+τ)− g(ϕt)⟩)

)
∥ (70)

=

T∑
t=1

αt (⟨g(ϕt),E (G(ϕt, ξt+τ)− g(ϕt)|Ft)⟩) (71)

≤
T∑
t=1

αtL1∥
∫

G(ϕt, ξ) (P (ξt+τ ∈ ξ|Ft)− µ(ξ)) dξ∥ (72)

≤
T∑
t=1

αtL1dTV (P (ξt+τ ∈ ·|Ft), µ(·)) (73)

≤
T∑
t=1

αtL1mρτ . (74)

Proof of the Lemma 6.

J = E
∞∑
t=1

γtrt ≤
rmax
1− γ

= UJ . (75)

Proof of the Lemma 7. The first inequality comes from Lemma B.4 in Wu et al. (2020). The second
inequality comes from Lemma 3.2 in Zhang et al. (2020a).

Proof of the Lemma 8.∥∥∥∥E(dRM

ds

)∥∥∥∥ =

∥∥∥∥∥E
∞∑
t=0

γt
drt
dst

dst
s0

∥∥∥∥∥ ≤ E
∞∑
t=0

γt
∥∥∥∥drtdst

dst
s0

∥∥∥∥ ≤
∞∑
t=0

γtL1Lr =
1

1− γ
L1Lr. (76)

∥∥∥∥EdRM

dϕ

∥∥∥∥ =

∥∥∥∥∥E
(∞∑
t=0

γt
(
drt
dϕ

)
+ γ

∞∑
t=0

γt
(

dR

dst+1

dst+1

dat

dat
dϕ

))∥∥∥∥∥ (77)

≤ 1

1− γ
LrLπ +

∥∥∥∥∥Eγ
∞∑
t=0

γt
(

dR

dst+1

dst+1

dat

dat
dϕ

)∥∥∥∥∥ ≤ 1

1− γ
LrLπ +

γ

(1− γ)2
L1LπLfLr (78)

=LR. (79)

Proof of the Lemma 9. The conclusion comes from the Equation 4.4.9 in Nesterov et al. (2018).

Proof of the Lemma 10. Since
√
x and

√
y +

√
z are both positive, then we have x ≤ (

√
y +

√
z)2,

i.e., x ≤ y + z + 2
√
yz, note that 2

√
yz ≤ y + z, then we have x ≤ 2y + 2z.

24

	Introduction
	Preliminaries
	Related Work
	 Model-Based Policy Optimization by Considering the Model Gradient Error
	 Convergence Rate for Model-Based Policy Optimization
	Two-Model-Based Learning Policy Optimization
	 Directional Derivative Projection Policy Optimization: A Practical Implementation

	Experiment Results
	Comparison with State-of-the-Arts
	Gradient Error Analysis
	Ablation Study

	Conclusions and Future Work
	Related Work
	Algorithm details
	Implementation of DDPPO
	Directional Derivative
	Back-propagating through Gradient Model
	Implementation

	Experiment Settings
	Environment Settings
	Hyperparameter Settings
	Experiment Details for Baselines

	More results for ablations

	Proofs of the theorem
	Proof of theorem 1
	Proof of the theorem 2
	Proof of the useful lemmas

