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ABSTRACT

Most real-world domains can be formulated as multi-agent (MA) systems. Inten-
tionality sharing agents can solve more complex tasks by collaborating, possibly
in less time. True cooperative actions are beneficial for egoistic and collective
reasons. However, teaching individual agents to sacrifice egoistic benefits for a
better collective performance seems challenging. We build on a recently proposed
Multi-Agent Reinforcement Learning (MARL) mechanism with a Graph Neural
Network (GNN) communication layer. Rarely chosen communication actions were
marginally beneficial. Here we propose a MARL system in which agents can
help collaborators perform better while risking low individual performance. We
conduct our study in the context of resource distribution for wildfire management.
Communicating environmental features and partially observable fire occurrence
help the agent collective to pre-emptively distribute resources. Furthermore, we
introduce a procedural training environment accommodating auto-curricula and
open-endedness towards better generalizability. Our MA communication proposal
outperforms a Greedy Heuristic Baseline and a Single-Agent (SA) setup. We fur-
ther demonstrate how auto-curricula and openendedness improves generalizability
of our MA proposal.

Figure 1: Dashboard of multi-agent wildfire environment in inference mode. A web browser
application can be found at: https://philippds-pages.github.io/RL-Wild-Fire_
WebApp/.
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1 INTRODUCTION

1.1 MOTIVATION

The human ability to communicate motives and intentions is the basis for our society’s success. If
the intersection of such is large enough, communication can lead to collaboration between involved
parties. A collaboration exists if all collaborators behave beneficially for themselves and the collective
of parties. A collective party can represent a group or an individual with an agency; therefore, we can
consider entities with specific interests agents. Many, if not all, domains in society involve multiple
agents and can be described as MA systems. While human intelligence is the highest observed in
nature, not only human societies strive through collaboration. Insects and Mammals collaborate to
procreate, care, protect and ultimately survive as species. Bees, i.e. assign each other tasks, request
help and fight off predators (Bonabeau et al., 1999). The highly cooperative Meerkats organise
themselves in groups of up to fifty members, while some breed, others help raise the young offspring
by foraging and keeping watch (Clutton-Brock, 2002). Some monkeys and lions even kill the young
of revivals, i.e. to maintain food source saturation (Hoogland, 1985).

In the context of nature, Charles Darwin argues for the survival of the fittest (Darwin, 1977) and,
therefore, the occurrence of competition. While in Artificial Intelligence, the majority of significant
work on MA systems consider two opposing agents only, the problems of interest of this work
are cooperative MA systems, where groups of agents act together to achieve higher individual and
collective goals (Cohen et al., 1997; Guestrin et al., 2002; Decker, 1987; Panait & Luke, 2005;
MATARIC, 1998). Just like in human society or the animal world, individuals have unique or
mixtures of motives. However, we can define agents with mixed or identical motives in a MA
environment simulation. Assuming shared intentionality leaves us with the question of how to
collaborate. Communication can play a crucial role to collaborate successfully. Human society
uses language as communication medium (Barón Birchenall, 2016). Agents can send signals of
various types as a form of language. Nevertheless, observing others’ behaviour can be a form of
communication. Body language, a tail-wagging dog, or the red colour of an octopus can communicate
internal states and intention. But we can also design agents that directly share policies - state action
transitions - or memory data of past experiences. Core questions we ask: Can agents in a MA system
learn the importance of communication? Subsequently: Can agents learn to use the communicated
information to take actions beneficial for themselves and the collective? And finally: Can agents
learn to ask for help, form temporary alliances to encounter a high-stress state? Answering these
questions will be the challenge of the experiments conducted and presented in this paper.

1.2 CONTRIBUTION

In this work, we study communication in the context of a distributed wildfire lookout tower grid.
Wildfires occur continuously and globally as part of the Earth’s ecosystem (Bond & Keeley, 2005).
Furthermore, climate change increases the likelihood of extreme wildfire conditions worldwide (Goss
et al., 2020; Coogan et al., 2019). Approximately 420 Mha is the total estimated area burned annually.
While humans initiate 90% of wildfires and only 10% by lightning, environmental conditions,
topography and fuel composition can suppress or enhance occurrence and growth. Satellites can
detect fires, but only once they are already too large, and some areas are not well covered by cell phone
networks. We propose unmanned lookout towers equipped with environmental sensors, cameras and
local processing units. LoRa (long-range) is a low-power wide-area network modulation technique
that can send signals with low power requirements in ranges of up to 15 kilometres (Corporation,
2020). As outlined in the introduction, we chose the wildfire problem context based on its high impact
and to minimise the gap between the testbed environment and the real world. By working closely on
a real-world problem and its complexity, we believe we can achieve better MA collaboration systems,
which is the main focus of this paper (Küttler et al., 2020). We use a graph to organize our proposed
MA lookout tower grid. Each lookout tower agent is represented by a node and has three closest
neighbours to exchange local information. Such information exchange can help predict fire growth
and fire management resource distribution across the lookout tower grid. Proposed communication
mechanisms consist of two strands: 1. streaming of information between neighbours and 2. requesting
help and answering a help request as part of the agent action space. The environment includes multiple
environmental conditions, topology, and distributed fuel in the form of forest volume. To minimise
simulation inaccuracies and increase generalizability, we can procedurally generate an infinite amount
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of environment conditions with varying difficulty levels (Jaderberg et al., 2021). Furthermore, the
environment design allows for auto-curricula, in which the MA collective can advance automatically
from one difficulty level to another to improve training (Baker et al., 2020).

We present a message passing (Gilmer et al., 2017) GNN (Scarselli et al., 2009) based communication
layer on top of a MARL mechanism (Zhang et al., 2021). We use a Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017) for our Reinforcement Learning (RL) agents. We demon-
strate how our collaboration mechanism using communication can help agents organise themselves to
surpass a Greedy Heuristic, SA baselines. Furthermore, how our environment design, accomodating
for openendedness and auto-curricula, can help our MA system advance further to become more
robust and generally perform well, even in unseen environments.

2 RELATED WORK

While wildfire science is not the main domain of this paper, we still think it is important to set the stage
and point to some relevant work in the field we have drawn inspiration and insight from. Generally,
we found that RL approaches in wildfire applications are vastly underrepresented (Jain et al., 2020).
Only a few works use RL algorithms, such as advanced actor-critic (A3C) and Monte Carlo tree
search (MCTS) methods, addressing topics related to fire behaviour prediction, more specifically
fire spread and growth (Subramanian & Crowley, 2017; Ganapathi Subramanian & Crowley, 2018).
Nevertheless, we have been pinpointing aspects from various applications in wildfire science that
help us develop a better wildfire simulation environment. One interesting aspect resonating with our
communication approach is remote data sensing in possibly hard to reach terrain, spread across a
network of agents organised in proximity neighbourhoods and directed graphs (Huot et al., 2021).
While we are looking at a highly distributed stationary MA system, there has been work on networks
(Haksar & Schwager, 2018) of autonomous unmanned aerial vehicles (UAV) to monitor and predict
wildfire growth (Julian & Kochenderfer, 2019; Afghah et al., 2019). Finally, we want to mention
work on predicting wildfire using climate data, which is part of our agents sensing abilities (Xiong
et al., 2020).

RL is a powerful learning paradigm consisting of an agent interacting with an environment to learn
from experiences through positive or negative rewards. From the perspective of an individual agent
in a MA system, all other agents are part of the environment. Therefore SARL (Single-Agent
Reinforcement Learning) is building the foundation for MARL (Wang & Raj, 2017). RL does not
require any data; consequently the learning environment plays a crucial role in providing enough
and diverse experiences (Jaderberg et al., 2021) in conjunction with carefully crafted reward signals.
Many domains are interested in RL research and applications (Leitão & Karnouskos, 2015), such
as game theory and distributed systems, but also optimal control, autonomous cars (Shalev-Shwartz
et al., 2016) and robotics (Kober et al., 2013; Gupta et al., 2017; Ismail & Sariff, 2018). Games
have been part of one of three main historical threads of RL development (Sutton & Barto, 2015).
Therefore naturally, MARL has been studied using a diversity of games, including multiple competing
and cooperating players. Traditional two-player tabletop games such as GO (Silver et al., 2016;
2017), Chess (Campbell et al., 2002), Shogi (Silver et al., 2018) and Hex (Anthony et al., 2017),
recent work on multi-player games such as Poker (Moravčík et al., 2017; Brown & Sandholm, 2018)
and Diplomacy (Anthony et al., 2022; Calhamer, 1959), but also computer games including Atari
games (Mnih et al., 2015), Dota (Berner et al., 2019), Starcraft (Vinyals et al., 2019) and overcooked
(Fontaine et al., 2021) have significantly shaped developments in AGI and RL research. Game
engines such as unity include realistic physics (Ward et al., 2020), ideal for digital twins of real-world
scenarios.

While there is work on various methods on collaboration without active communication (Matignon
et al., 2012; Panait & Luke, 2005) such as gradient-based distributed policy search (Peshkin et al.,
2000), reward function sharing (Lauer & Riedmiller, 2000), memory sharing (Lowe et al., 2017;
Pesce & Montana, 2020; Hernandez-Leal et al., 2019) and parameter sharing (PS) (Gupta et al., 2017;
Hernandez-Leal et al., 2019), we are interested in communication as part of the agents’ action space
(Xuan et al., 2001). Active communication requires a protocol and a medium. A protocol describes the
rule of communication. The medium could be anything from low-level binary data (Berna-Koes et al.,
2004), discrete or continuous, text, numbers-based or a combination of such as message packages. In
our work, vectors of observations are part of the messages sent (MATARIC, 1998), but other work
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proposes transferring more complex information, such as intentions or policy gradients (Foerster et al.,
2016). Our work can be classified as a decentralised, partially observable Markov decision process
(Dec-POMDP) (Oliehoek, 2012) in combination with a GNN (Scarselli et al., 2009) message passing
(Gilmer et al., 2017) communication layer. The proposed MA communication mechanism builds
on a combination of previous work, including communication as part of the agents’ action space
(Foerster et al., 2016), enabling the agent to send help requests to members of its neighbourhood and
information broadcasting as an extension of the lookout towers local sensing capabilities (Sukhbaatar
et al., 2016). Our message passing GNN is structuring incoming neighbourhood information, while
work by (Almasan et al., 2020) implemented a GNN, as part of the main training feedback. Recently
published work on MARL and GNN communication layer is demonstrating how communication
can improve the collective performance, and the importance of shared information (Siedler, 2021).
Here we advance the communication protocol and the agents ability to raise and answer help requests
actively. Requesting help, as well as helping is part of the agents action space.

3 BACKGROUND

3.1 PROXIMAL POLICY OPTIMISATION

All agents are trained using state of the art algorithm Proximity Policy Optimization (PPO). Two
main concepts distinguish PPO. Firstly, PPO estimates a trust region to take safe learning steps while
performing gradient ascent. Secondly, Advantage estimates how good an action is compared to the
average action in a specific state. Many other RL algorithms, such as Asynchronous Advantage
Actor Critic (A3C), use this concept (Udacity-DeepRL, 2019). Advantage: Advantage can be
described as the difference of the Q Function and the Value Function: A(s, a) = Q(s, a) − V (s),
where s is the state and a the action (Zychlinski, 2019). The Q Value (Q Function), denoted as
Q(s, a), measures the overall expected reward given state s, performing action a. Assuming the agent
continues playing until the end of the episode following policy π. The Q is abbreviated from the word
Quality, and denoted as: Q(s, a) = E

[∑N
n=0 γ

nrn

]
. The State Value Function, denoted as V (s),

measures, similar to the Q Function, overall expected reward, with the difference that the State Value
is calculated after the action has been taken and is denoted as: V(s) = E

[∑N
n=0 γ

nrn

]
. The Q Value

V (s), with n = 0, is the expected reward r0 in state s, before action a was taken, while the Q Value
measures the expected reward r0 after a was taken. Trust Region: After some experience samples
πθk(at|st) have been collected, the trust region can be calculated as the quotient of the current policy
to be refined πθ(at|st) and the previous policy as follows rt(θ) =

πθ(at|st)
πθk

(at|st) =
current policy

old policy . This
is a simplified gradient ascent objective function with limited deviation between the current and old
policies (Achiam, 2018).

LCLIP
θk

(θ) = E
s,a∼θk

[
min

(
rt(θ)A

θk(s, a), g(ϵ, Aθk(s, a))
)]

,

where

g(ϵ, A) =

{
(1 + ϵ)A, if A ≥ 0

(1− ϵ)A, otherwise

The advantage function will be clipped to the value at (1−ϵ) or (1+ϵ), if the probability ratio between
the current and the previous policy is outside the range of (1 + ϵ) and (1− ϵ). This also means that
the advantage will never exceed the clipped values. In the original PPO paper by (Schulman et al.,
2017) ϵ was set to 0.2. Finally, the policy that yields the highest sum over all Advantage estimates
At in range of max time step T of a trajectory τ ∈ Dk will be used to override the old policy θold

(OpenAI, 2021): θk+1 = argmax
θk

1
|Dk|T

∑
τ∈Dk

∑T
t=0 min

(
πθ(at|st)
πθk

(at|st) , g(ϵ, A
θk(s, a))

)
.

3.2 GRAPH NEURAL NETWORK

Many flavours of GNNs exist (Li et al., 2017; Veličković et al., 2018; Defferrard et al., 2017), but
(Scarselli et al., 2009) fundamentally introduced them. A graph is a data structure based on nodes or
vertices and edges. Nodes are objects holding arbitrary features. Edges represent the relationships
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between nodes. Edges can be directed from node A to B 2c, or undirected, from node A to B and
vice versa 2d.

(a) Graph Node (b) Graph Edge (c) Directed Graph (d) Undirected Graph

Figure 2: Graph G consisting of vertices V (blue dots) and edges E (red lines): G = (V, E)

The basic functionalities of GNNs are graph, node and edge classification. Features of a node can
be predicted using edges or the existence of edge connections using node features. Graphs as a
whole can be classified i.e. using node features and the graphs topology. However, the simplest form
of a GNN is the message passing framework proposed by (Gilmer et al., 2017) using the network
architecture introduced by (Battaglia et al., 2018), utilising a "graph-in, graph-out" architecture. The
input graph topology is not modified but its loaded feature embeddings.

Node states can be denoted as v, edges connecting with node v as xco[v]. The state of a node hv

consists of n-dimensional vector features. Adjacencies between a node and its neighbours are the
mapped transition of the node, denoted as hne[v], including all neighbouring node features, denoted
as xne[v]. The transition function f is used to embed each node on a n-dimensional space (Zhou et al.,
2020): hv = f(xv, xco[v], hne[v],xne[v]

)
While the two most popular algorithms to define neighbourhoods on graphs are Breadth-First Search
(BFS) (Burkhardt, 2021), Depth-First Search (DFS) (Kaur & Garg, 2012) and random walk based
DeepWalk (Perozzi et al., 2014), we define neighbourhoods by finding Euclidean distance based
n nearest neighbours. Passing state hv and feature xv to the GNN outputs the result of function g:
ov = g(hv, xv). A basic last step is applying gradient descent to formulate loss using the ground
truth tv as well as the output ov of node v: loss =

∑p
i=1(ti − oi). In our approach we are using

gradient ascent and a reward function utilised by PPO.

3.3 MULTI-AGENT COMMUNICATION

Figure 3: GNN Message Passing Communication Diagram: Neighbourhood graph (n=3); Observa-
tions: Inbox environmental data, inbox help requests and local environmental data; Agent (PPO);
Actions: send support, request support back, send a help request to others, support self; Rewards:
individual and collective reward for preparedness in case of fire. A zoomed-in version of this diagram
can be found in the appendix: Figure 15.

Agent communication is possible between an agent and the agents in its neighbourhood. Two main
functionalities define communication. Firstly, each agent can send help request hr messages as part
of its action space. Help request messages are sent at time step t and received by all neighbours uv of
v at time step t+ 1. The neighbouring agents can now collaborate and react to the help request hrt
by sending resources, if available, at time step t + 2 to support v. If the sent resources help v, uv

gets a small positive bonus reward of +0.1 for helping, no other agent can receive a bonus reward for
reacting to hrt thereafter. A help request message consists of a boolean signal, hrt = [false/true].
An agent can receive multiple help requests as part of its help request inbox hri[hr1, hr2, hr3] and
needs to decide which to react to if at all. And secondly, information broadcasting between each agent
v and its neighbours uv . All neighbours receive broadcasted messages in an inbox ibi[ib1, ib2, ib3, ].
Received messages ib[cofpos(x, y, z), temp, hum, prep, oc] including information such as closest
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observed fire location (if existing) cofpos, in the form of a 3-dimensional vector cofpos(x, y, z), local
temperature temp, humidity hum, the current preparation value prep and the percentage of overcast
oc at the lookout tower location as scalars. The graph-structured communication is the input to the
neural network of the GNN. The agent has to learn how to reason about the broadcasting information
and whether to support its neighbours or itself in preparation for approaching fire. While helping a
neighbour might yield a bonus reward, there is a risk for unpreparedness of its own lookout tower,
which might result in low rewards.

4 METHODOLOGY

4.1 ENVIRONMENT

(a) Terrain (b) Forest (c) Lookout Towers (d) Network (e) Lookout Region

Figure 4: Static environment features. Zoomed-in version in the appendix: I.

We now describe the 3-D Wildfire Lookout Tower environment, developed in the game engine unity,
used for training and evaluating the Greedy Heuristic Baseline, Single- and Multi-Agent experiments.
The scenario is a procedurally generated landmass with a distributed network of lookout towers,
forest and environmental condition features. Static features of the environment are shown in Figure 4.
A sample of the terrain is shown in Figure 4a. Terrain height values influence the distribution of trees
forming the forest volume (4b). Nine lookout towers are distributed in a fixed three by three grid.
The placement of a lookout tower also determines the neighbourhood, consisting of the three closest
lookout towers. Each lookout tower has a fixed observation region (Figure 4e, 16).

(a) Wind (b) Overcast (c) Temperature (d) Humidity (e) Fire

Figure 5: Dynamic environment features. Zoomed-in version in the appendix: I.

The dynamic features of the environment (Figure 5) are based on perlin noise (Perlin, 1985) and a
main wind direction, including a wind field (5a), overcast (5b), temperature (5c) and humidity (5d).
Wildfire is also part of the dynamic environment features. The fire’s initiation and growth are based
on environmental features and probability. At the beginning of an episode the location on the terrain
with the lowest overcast, highest temperature and lowest humidity is chosen to ignite a wild fire. Fire
can not spread to the next tree when the distance is larger than ten meters. However, if the distance
is lower, the following conditions add twenty percent each to the probability of fire spreading: if
the angle between the wind direction vector and the target vector is lower than 45 degrees; if the
target is at a higher location; if the target temperature is higher than 21 Celsius degree; if the target
humidity is higher than 50 percent and if overcast is zero. When all conditions are true, the chance of
fire spreading to the target is 100 percent. Once the fire has spread, a tree will burn ten time-steps.
At this point it is important to stress that the focus of this paper is not on simulating hyper-realistic
environmental conditions or fire behaviour, rather a close adjustable abstraction.

While we are aware of the fact that simulation will always differ from the real world, we try to
close the simulation to reality gap by following a strategy explained by Thore Graepel, creating as
much diversity in our simulation environment as possible (Fry, 2022). We aim towards achieving
open-endedness through procedurally generating a virtually infinite amount of terrain scenarios.
Additionally, ten difficulty levels modify the height of the terrain, resulting in less observable regions
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(a) seed=0, diffic.=1 (b) seed=1, diffic.=3 (c) seed=2, diffic.=5 (d) seed=3, diffic.=7 (e) seed=4, diffic.=10

Figure 6: Open-ended environment and increasing difficulty. Zoomed-in version in the appendix: F.

for each agent and, therefore, higher communication necessity and overall higher difficulty predicting
fire growth. Furhter terrain samples can be found in the difficulty vs seed matrix in the Appendix (F).

4.2 PERFORMANCE EVALUATION METHOD:

Each lookout tower has a resource reserve rr of value 1.0. Initially, all lookout towers support value
sv is at 0.0. Resources from the resource reserve rr can be distributed in 0.1 increments. Distribution
targets can be self or lookout towers in the neighbourhood. In order to distribute resources to a target,
the resource reserve rr needs to be larger or equal to 0.1. If the resource reserve is empty, resources
have to be deducted in 0.1 decrements from self or lookout towers in the neighbourhood to free up
resources for redistribution. If there is no self-need for resources, agents can collect reward fractions
for distributing resources to neighbouring lookout towers in need. An example scenario could be:
0.5 resources are distributed to self, and 0.5 resources at a neighbouring lookout tower. There is no
observed fire near self, but fire is approaching at the neighbouring location. The agent now gets 0.5
times the performance of the neighbouring tower, but none for the distributed resources at target self.
Performance is calculated using a broken power law function using β = −1, s = 2, xn = 270, a = 5

and x = distance to closest observed fire
influence region distance leading to F (x, xn, a, s, β) =

(
1 + [x∗1000xn

]
a
)−1

s

, where

x =

{
x remapped from domain 0 to 1, to domain 0.5 to 0, if fire moves towards tower
x remapped from domain 0 to 1, to domain 0.5 to 1, otherwise.

The reward function will yield the highest possible reward if a tower is prepared well and has a high
support value before fire crossing the influence region. Each tower relies on environmental data and
observed fire locations to predict how much support preparation is needed.

4.3 EXPERIMENTS

Table 1: Experiment setups and parameters for lookout tower grids of 9. Auto-curriculum (AC), seed
(s), environment terrain with seed 0 (s=0); infinite environment terrain scenarios (s=inf).

Observation(s)

Setup Agent
Count

Tower
Count

Neighbour
Count

At each
Tower

Total Stack
Size

Action(s)
per Agent

Greedy Heuristic 0 9 0 0 0 0 0
Single-Agent (s=0) 1 9 3 7 63 2 36
Multi-Agent (s=0) 9 9 3 32 32 2 5
Multi-Agent (s=inf,AC) 9 9 3 32 32 2 5

All agent experiments have been trained and tested for 500 time-steps per episode. Each agent
can take multiple decisions at every time step, depending on its action space. Greedy Heuristic
Baseline: The hand-designed greedy heuristic baseline keeps all resources to itself and does not
support neighbours. Naturally, no training is required. Single-Agent (seed 0): The agent in the
single-agent setup controls resource distribution of all lookout towers. The egoistic reward is gained
by distributed resources, multiplied by performance value p, and the average collective reward cr
consisting of the average performance ap over all lookout towers. The environment scenario with
seed 0 is used for training. Multi-Agent (seed 0): In the multi-agent setup each lookout tower is
controlled by an individual agent. All agents receive egoistic and collective rewards, as explained in
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the single-agent setup description. Additionally in the multi-agent setup, reacting to a help request
first yields a small bonus reward. The environment scenario with seed 0 is used for training. Multi-
Agent (Openended & Autocurricula): Finally, to show the strength of openendedness (seed=inf)
and auto-curricula (AC), we trained a multi-agent setup, but with changing environment scenario for
each episode as well as rising difficulty level. The difficulty level advances if the agent has achieved
a certain cumulative reward threshold, over 100 past episodes. Further details on the curricula design
can be found in the Hyperparameters Appendix B.3.

4.4 RESULTS

Table 2: Experiment results while training and inference mode, including training time. Inference:
Mean reward and performance for environment with seed 0 and seed inf.

Training Time Inference: Mean Reward Inference: Performance

Setup 5e7 step(s) seed=0 seed=inf seed=0 seed=inf
(↓ better) (↑ better) (↑ better) (↑ better) (↑ better)

Greedy Heuristic - 122.3±46.7 111.2±36.1 0.117±0.039 0.109±0.034
Single-Agent (s=0) 787e3(sec) 1073.1±457.3 589.9±283.3 0.189±0.070 0.111±0.043
Multi-Agent (s=0) 132e3(sec) 995.5±172.2 876.1±131.2 0.178±0.035 0.154±0.226
Mutli-Agent (s=inf,AC) 128e3(sec) 967.5±164.17 907.0±142.7 0.171±0.034 0.158±0.027

Results show that our Multi-Agent proposal surpasses the Greedy Heuristic, Single-Agent and Multi-
Agent setup in unseen environments (seed=inf). While the Single-Agent setup can also achieve
high rewards, the training-time is almost 10 times higher. We further show that setups that have
been trained on a single environment only return low cumulative rewards on unseen environments
(seed=inf). While the Multi-Agent setup, trained on multiple environments (seed=inf) with an auto-
curricula (AC), yields lower mean rewards on the seed 0 environment, it outperforms the other setups
- not trained without further environments and auto-curricula - by a wide margin. Additional data on
training (D) and inference (E), including how communication helps our approach to achieve higher
performance and cumulative rewards, can be found in the Appendix.

Figure 7: First and second diagram: Training over 5e7 total time steps: cumulative rewards and loss.
Third and fourth diagram: Inference on various environments with difficulty level 8: reward vs time
step and performance vs episode.

5 DISCUSSION AND FUTURE WORK

There are three interesting directions to develop our work further: Firstly, we define neighbourhoods
as the three nearest lookout towers, using Euclidean distance. There are further strategies to define
neighbourhoods, such as Breath-First-Search (BFS) (Burkhardt, 2021). BFS allows to define multi-
layered neighbourhoods. Furthermore incoming messages could be pooled and weighted depending
on the distance or neighbourhood-layer of the lookout towers the message is coming from. Secondly,
instead of rewarding helping with a bonus reward, we could turn this around and slightly weight
rewards higher for actions that benefit agents self first. And lastly we could threshold the support
amount one lookout tower is able to receive. In our current approach the centre most lookout tower
could hold full support of all eight neighbours, which might not be beneficial for the collective but
yield temporarily high egoistic rewards.
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A APPENDIX

B HYPERPARAMETERS

B.1 SINGLE AGENT TRAINING HYPERPARAMETERS

behaviors:
WT_SA:

trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 2048
learning_rate: 0.0003
beta: 0.01
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear

network_settings:
normalize: false
hidden_units: 512
num_layers: 2
vis_encode_type: simple

reward_signals:
extrinsic:

gamma: 0.99
strength: 1.0

curiosity:
gamma: 0.99
strength: 0.02
encoding_size: 256
learning_rate: 0.0003

keep_checkpoints: 5
max_steps: 50000000
time_horizon: 128
summary_freq: 40500
threaded: true

B.2 MULTI AGENT TRAINING HYPERPARAMETERS

behaviors:
WT_MA:

trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 2048
learning_rate: 0.0003
beta: 0.01
epsilon: 0.2
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lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear

network_settings:
normalize: false
hidden_units: 512
num_layers: 2
vis_encode_type: simple

reward_signals:
extrinsic:

gamma: 0.99
strength: 1.0

curiosity:
gamma: 0.99
strength: 0.02
encoding_size: 256
learning_rate: 0.0003

keep_checkpoints: 5
max_steps: 5000000
time_horizon: 128
summary_freq: 24300
threaded: true

B.3 MULTI AGENT AUTO CURRICULUM TRAINING HYPERPARAMETERS

behaviors:
WT_MA:

trainer_type: ppo
hyperparameters:

batch_size: 128
buffer_size: 2048
learning_rate: 0.0003
beta: 0.01
epsilon: 0.2
lambd: 0.95
num_epoch: 3
learning_rate_schedule: linear

network_settings:
normalize: false
hidden_units: 512
num_layers: 2
vis_encode_type: simple

reward_signals:
extrinsic:

gamma: 0.99
strength: 1.0

curiosity:
gamma: 0.99
strength: 0.02
encoding_size: 256
learning_rate: 0.0003

keep_checkpoints: 5
max_steps: 100000000
time_horizon: 128
summary_freq: 40500
threaded: true

environment_parameters:
difficulty:
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curriculum:
- name: Lesson1

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 900

value: 1
- name: Lesson2

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 950

value: 2
- name: Lesson3

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1000

value: 3
- name: Lesson4

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1050

value: 4
- name: Lesson5

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1100

value: 5
- name: Lesson6

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1150

value: 6
- name: Lesson7

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1200

value: 7
- name: Lesson8

completion_criteria:
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measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1250

value: 8
- name: Lesson9

completion_criteria:
measure: reward
behavior: WT_MA
signal_smoothing: true
min_lesson_length: 100
threshold: 1300

value: 9
- name: Lesson10

value: 10
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B.4 HYPERPARAMETER DESCRIPTION

Hyperparameter Typical Range Description

Gamma 0.8− 0.995 discount factor for future re-
wards

Lambda 0.9− 0.95 used when calculating the
Generalized Advantage Esti-
mate (GAE)

Buffer Size 2048− 409600 how many experiences should
be collected before updating
the model

Batch Size 512−5120 (continuous), 32−
512 (discrete)

number of experiences used
for one iteration of a gradient
descent update.

Number of Epochs 3− 10 number of passes through the
experience buffer during gra-
dient descent

Learning Rate 1e− 5− 1e− 3 strength of each gradient de-
scent update step

Time Horizon 32− 2048 number of steps of experi-
ence to collect per-agent be-
fore adding it to the experi-
ence buffer

Max Steps 5e5− 1e7 number of steps of the sim-
ulation (multiplied by frame-
skip) during the training pro-
cess

Beta 1e− 4− 1e− 2 strength of the entropy regular-
ization, which makes the pol-
icy "more random"

Epsilon 0.1− 0.3 acceptable threshold of diver-
gence between the old and
new policies during gradient
descent updating

Normalize true/false weather normalization is ap-
plied to the vector observation
inputs

Number of Layers 1− 3 number of hidden layers
present after the observation
input

Hidden Units 32− 512 number of units in each fully
connected layer of the neural
network

Intrinsic Curiosity Module

Curiosity Encoding Size 64− 256 size of hidden layer used to en-
code the observations within
the intrinsic curiosity module

Curiosity Strength 0.1− 0.001 magnitude of the intrinsic re-
ward generated by the intrinsic
curiosity module
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C PSEUDOCODE

PPO-CLIP pseudocode (OpenAI, 2021; Schulman et al., 2017):

Algorithm 1 PPO-Clip

1: Input: initial policy parameters θ0, initial value function parameters ϕ0

2: for k = 0, 1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by running policy πk = π(θk) in the environment.
4: Compute rewards-to-go R̂t.
5: Compute advantage estimates, Ât (using any method of advantage estimation) based on the
6: current value function Vϕk

7: Update the policy by maximizing the PPO-Clip objective:
8: θk+1 = argmax

θ

1
|Dk|T

∑
τ∈Dk

∑T
t=0 min

(
πθ(at|st)
πθk

(at|st)A
πθk (st, at), g(ϵ, A

πθk (st, at))
)

,

9: typically via stochastic gradient ascent with Adam.
10: Fit value function by regression on mean-squared error:
11: ϕk+1 = argmin

ϕ

1
|Dk|T

∑
τ∈Dk

∑T
t=0

(
(Vϕ(st)− R̂t

)
12: typically via some gradient descent algorithm.
13: end for

Simple Multi-Agent PPO pseudocode:

Algorithm 2 Multi-Agent PPO

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, . . . , ÂT

5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for
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D TRAINING DATA VISUALISATION

(a) cumulative rewards vs time step

(b) mean performance vs episode

(c) mean fire count vs mean performance

(d) mean resource vs mean performance

(e) loss vs time step

(f) mean collective performance vs episode

(g) m. collective performance vs mean performance

(h) mean resource vs mean collective performance
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(a) watch tower id vs performance

(b) mean help count vs episode

(c) mean help count vs mean performance

(d) mean resource vs episode

(e) mean request help count vs episode

(f) mean request help count vs mean performance
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E INFERENCE DATA VISUALISATION (LEFT COLUMN: SEED = 0, RIGHT
COLUMN: SEED = INF, AUTO-CURRICULUM; STARTING FROM FIGURE 10
(B)

(a) cumulative reward vs time step

(b) mean performance vs episode

(c) mean collective performance vs episode

(d) Seed = 0

(e) mean performance vs episode

(f) mean performance vs episode

(g) mean collective performance vs episode

(h) Seed = inf, Auto-Curriculum

Figure 10

23



Presented at the Gamification and Multiagent Solutions Workshop (ICLR 2022)

(a) mean fire count vs mean performance

(b) mean collective performance vs mean perfor-
mance

(c) mean resource vs mean performance

(d) mean resource vs mean collective performance

(e) Seed = 0

(f) mean fire count vs mean performance

(g) mean collective performance vs mean perfor-
mance

(h) mean resource vs mean performance

(i) mean resource vs mean collective performance

(j) Seed = inf, Auto-Curriculum

Figure 11
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(a) watch tower id vs performance

(b) mean resource vs episode

(c) mean help count vs episode

(d) Seed = 0

(e) watch tower id vs performance

(f) mean resource vs episode

(g) mean help count vs episode

(h) Seed = inf, Auto-Curriculum

Figure 12
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(a) mean help request vs episode

(b) mean help count vs mean performance

(c) mean request help count vs mean performance

(d) Seed = 0

(e) mean help request vs episode

(f) mean help count vs mean performance

(g) mean request help count vs mean performance

(h) Seed = inf, Auto-Curriculum

Figure 13
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F ENVIRONMENT SCENARIO SAMPLES: DIFFICULTY VS. SEED MATRIX

Figure 14
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G MULTI-AGENT COMMUNICATION

Figure 15

H EGOISTIC REWARD FUNCTION DIAGRAM

Figure 16

I STATIC AND DYNAMIC ENVIRONMENT FEATURES

(a) Terrain

(b) Static Features

(c) Temperature Heatmap

(d) Dynamic Features

Figure 17
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(a) Forest

(b) Info Tags

(c) Lookout Tower Observation Region

(d) Neighbourhood Network

(e) Static Features

(f) Wind Field

(g) Overcast

(h) Humidity Heatmap

(i) Wild Fire

(j) Dynamic Features

Figure 18
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J WILD FIRE GROWTH BEHAVIOUR FRAMES

(a) Frame 1

(b) Frame 3

(c) Frame 5

(d) Frame 7

(e) Frame 2

(f) Frame 4

(g) Frame 6

(h) Frame 8

Figure 19
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K TRAINING SCHOOL ENVIRONMENT SCREENSHOTS

Figure 20: Multi-Agent Training School

Figure 21: Single-Agent Training School

31


	Introduction
	Motivation
	Contribution

	Related Work
	Background
	Proximal Policy Optimisation
	Graph Neural Network
	Multi-Agent Communication

	Methodology
	Environment
	Performance Evaluation Method:
	Experiments
	Results

	Discussion and Future Work
	Appendix
	Hyperparameters
	Single Agent Training Hyperparameters
	Multi Agent Training Hyperparameters
	Multi Agent Auto Curriculum Training Hyperparameters
	Hyperparameter Description

	Pseudocode
	Training Data Visualisation
	Inference Data Visualisation (Left Column: Seed = 0, Right Column: Seed = inf, Auto-Curriculum; starting from figure 10 (b)
	Environment Scenario Samples: Difficulty VS. Seed Matrix
	Multi-Agent Communication
	Egoistic Reward Function Diagram
	Static and Dynamic Environment Features
	Wild Fire Growth Behaviour Frames
	Training School Environment Screenshots

