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Abstract

Chinese Spelling Correction (CSC) aims to de-001
tect and correct spelling errors in given sen-002
tences. Recently, multi-domain CSC has grad-003
ually attracted the attention of researchers be-004
cause it is more practicable. In this paper, we005
focus on the key flaw of the CSC model when006
adapting to multi-domain scenarios: the ten-007
dency to forget previously acquired knowledge008
upon learning new domain-specific knowledge009
(i.e., catastrophic forgetting). To address this,010
we propose a novel model-agnostic Multi-stage011
Knowledge Transfer (MKT) framework, which012
utilizes a continuously evolving teacher model013
for knowledge transfer in each domain, rather014
than focusing solely on new domain knowl-015
edge. It deserves to be mentioned that we are016
the first to apply continual learning methods017
to the multi-domain CSC task. Experiments 1018
prove the effectiveness of our proposed method,019
and further analyses demonstrate the impor-020
tance of overcoming catastrophic forgetting for021
improving the model performance.022

1 Introduction023

Chinese Spelling Correction (CSC) plays a crit-024

ical role in detecting and correcting spelling er-025

rors in Chinese text (Li et al., 2022; Ma et al.,026

2022), enhancing the accuracy of technologies like027

Optical Character Recognition (OCR) and Auto-028

matic Speech Recognition (ASR) (Afli et al., 2016;029

Wang et al., 2018). In search engines, for example,030

CSC reduces human error, ensuring that users find031

the information they seek accurately.032

In practical applications, the input text may from033

various domains, demanding that the model con-034

tains different domain-specific knowledge. As il-035

lustrated in Table 1, the word “强基(Strong Foun-036

dation)” is evidently common in Chinese Educa-037

tion domain. Accurately correcting “张(open)” to038

“强(Strong)” requires the model to have specific039

1Our codes and data will be public after peer review.

Input 他通过了张(zhāng)基计划。
He passed the Open Foundation plan.

+EDU 他通过了强(qiáng)基计划。
He passed the Strong Foundation plan.

+CHEM 他通过了羟(qiǎng)基计划。
He passed the Hydroxyl project.

Target 他通过了强(qiáng)基计划。
He passed the Strong Foundation plan.

Table 1: Case of catastrophic forgetting in CSC.

knowledge about the Chinese Education domain. 040

Therefore, some related works begin to focus on 041

the impact of multi-domain knowledge on the per- 042

formance of CSC models (Wu et al., 2023). 043

Previous works place greater emphasis on a 044

model’s ability to generalize to unseen domains, 045

known as zero-shot performance, leveraging shared 046

knowledge across different domains for generaliza- 047

tion (Liu et al., 2023). However, this paradigm 048

falls short of enabling models to retain domain- 049

specific knowledge, which is necessary for nuanced 050

understanding and application. Human learning 051

processes can continuously acquire new domain- 052

specific knowledge without losing their learned old 053

knowledge. Therefore, in this paper, we first in- 054

vestigate continual learning, which aligns perfectly 055

with the human learning process, into CSC models 056

for addressing this issue. 057

The core challenge of the continual learning set- 058

ting is to minimize catastrophic forgetting of pre- 059

viously acquired knowledge while learning in new 060

domains (Wang et al., 2024). As demonstrated in 061

Table 1, when a CSC model learns the educational- 062

specific word “强基(Strong Foundation)”, it ac- 063

curately corrects errors. However, after it con- 064

tinues to learn knowledge from the chemistry do- 065

main, it would learn the new knowledge of “羟 066

基(hydroxyl)”, but forget the education word “强 067

基(Strong Foundation)”. However, in the previ- 068

ous works of multi-domain CSC, this catastrophic 069
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forgetting challenge remains unexplored.070

To mitigate catastrophic forgetting in multi-071

domain CSC, we devise a multi-stage knowledge072

transfer framework based on continual learning,073

which employs a dynamically evolving teacher074

model that at each stage imparts all its previ-075

ously accumulated knowledge to the current student076

model. Finally, through extensive experiments and077

analysis, we demonstrate the effectiveness of our078

proposed method. Our contributions are summa-079

rized as follows:080

1. We are the first to pay attention to the081

catastrophic forgetting phenomenon of multi-082

domain CSC, which is the key challenge that083

must be overcome for the CSC model to truly084

adapt to real multi-domain scenarios.085

2. We present a model-agnostic MKT framework086

that leverages the idea of continual learning to087

significantly suppress catastrophic forgetting.088

3. We conduct extensive experiments and solid089

analyses to verify the effectiveness and com-090

petitiveness of our proposed methods.091

2 Our Approach092

Our approach is a special form of knowledge dis-093

tillation that takes into account scenarios involv-094

ing multiple stages of training. We leverage the095

knowledge acquired from these stages. This strat-096

egy of multi-stage knowledge transfer provides an097

effective solution to the challenges encountered in098

continual learning.099

2.1 Problem Formulation100

The CSC task is to detect and correct spelling er-101

rors in Chinese texts. Given a misspelled sen-102

tence X = {x1, x2, ..., xn} with n characters,103

a CSC model takes X as input, detects possible104

spelling errors at character level, and outputs a cor-105

responding correct sentence Y = {y1, y2, ..., yn}106

of equal length. This task can be viewed as a con-107

ditional sequence generation problem that mod-108

els the probability of p(Y |X). In multi-domain109

CSC tasks, assuming that there are n domains110

D = {D1, D2, ..., Dn}, these domains are trained111

sequentially, where each domain Dk is trained112

without access to the data from previous domains,113

from D1 to Dk−1. Furthermore, after training do-114

main Dk, we should consider the performance of115

all domains from D1 to Dk.116
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Figure 1: Overview of MKT framework.

2.2 Structure of MKT framework 117

To tackle catastrophic forgetting, an intuitive so- 118

lution is to transfer the knowledge previously ac- 119

quired to the most recent model. The foundational 120

idea revolves around transferring previously ac- 121

quired knowledge to the latest model iteration. 122

However, maintaining a distinct model for each 123

stage quickly becomes untenable due to escalating 124

storage and computational requirements with the 125

addition of each stage. 126

To address this challenge, our framework em- 127

ploys a dynamic teacher model strategy. As il- 128

lustrated in Figure 1, this teacher model acts as a 129

comprehensive knowledge repository, effectively 130

serving as a backup of the student model from 131

the previous stage to calculate the distillation loss 132

for the current stage’s student model. It encapsu- 133

lates all the domain-specific knowledge accumu- 134

lated to date, providing crucial guidance for the 135

model training in the current phase. 136

2.3 MKT framework for Multi-domain CSC 137

We consider the scenario where the training is com- 138

prised of m stages, denoted by k = 1, 2...,m. At 139

k-th stage, a subset of data {x(i)k , y
(i)
k }Tk

i=1 are fed 140

to the model, where Tk refers to the number of 141

samples at k-th stage, x(i)k refers to i-th sample at 142

k-th stage. 143

Assume that uk(·) is an unknown target function 144

that maps each x
(i)
k to y

(i)
k at stage k, i.e., y(i)k = 145

uk(x
(i)
k ). Under the continual learning setting, our 146

goal is to train a CSC model g(· ;w) parameterized 147
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by w, such that g(· ;w) not only fits well to uk(·),148

but also fits uk−1(·) , uk−2(·), · · · , u1(·) in early149

stages to alleviate catastrophic forgetting.150

We need to minimize the loss function to opti-151

mize the model weights:152

L(k) = λL(k)
s + (1− λ)L

(k)
h . (1)153

In the equation, λ is a hyper-parameter that ranges154

from [0, 1]. L(k)
s is the knowledge distillation loss,155

calculating cross entropy between the output prob-156

abilities of teacher model g(· ;wk−1) and student157

model g(· ;wk):158

L(k)
s = −

Tk∑
i=1

g(x
(i)
k ; ωk−1)× log g(x

(i)
k ; ωk).

(2)159

L
(k)
h is the cross-entropy loss between the output160

of student model g(· ;wk) and ground truth yk:161

L
(k)
h = −

Tk∑
i=1

y
(i)
k × log g(x

(i)
k ; ωk). (3)162

Algorithm 1 MKT Framework
Input: Training set Dk, Student model Sk−1

Output: Student model Sk

1: Copy Sk−1 as the teacher model Tk

2: Freeze the parameters of Tk

3: Sk forward propagation and calculates the loss guided by
Tk according to Equation 1

4: Optimize the parameters of Sk

5: Return Sk

As shown in Algorithm 1, during the training163

phase of the k-th domain, we employ the model re-164

fined from the preceding k− 1 domains, i.e, Sk−1,165

as the teacher model Tk, alongside the concurrently166

trained student model Sk. The parameters of Tk are167

frozen. The final loss is a weighted summation of168

the knowledge distillation loss L(k)
s and the original169

loss of the CSC task L
(k)
h .170

3 Experiment and Result171

3.1 Datasets and Metrics172

Considering the multi-domain setting we focus on,173

we set up four domains, namely General, Car,174

Medical, and Legal domains. The reason for this175

setting is that the differences in characteristics be-176

tween these domains are the most obvious, which177

brings the most serious catastrophic forgetting to178

CSC models. For the general domain, as in previ-179

ous work, we also use SIGHAN13/14/15 (Wu et al.,180

2013; Yu and Li, 2014; Tseng et al., 2015) and 181

Wang271K (Wang et al., 2018) as training data and 182

SIGHAN15 test set as our test data. For other spe- 183

cial domains, we utilize the data resources released 184

by LEMON (Wu et al., 2023) and ECSpell (Lv 185

et al., 2023), and randomly take 500 samples from 186

the original data of each domain as the test set. The 187

dataset statistics are presented in the Appendix B. 188

Our evaluation predominantly relies on the 189

sentence-level F1 score, a widely acknowledged 190

metric. This criterion is notably stringent, adjudg- 191

ing a sentence as accurate solely when every error 192

within is precisely identified and rectified, thereby 193

providing a more rigorous evaluation compared to 194

character-level metrics. 195

3.2 Baseline Methods 196

We select three widely used CSC baselines that em- 197

body varying integration of sensory inputs, to as- 198

sess the efficacy of our method in diverse structural 199

contexts: BERT (Devlin et al., 2019) is to directly 200

fine-tune the chinese-roberta-wwm-ext model with 201

the training data. Soft-Masked BERT (Zhang et al., 202

2020) incorporates a soft masking process after the 203

detection phase, where it calculates the weighted 204

sum of the input and [MASK] embeddings. RE- 205

ALISE (Xu et al., 2021) models semantic, phonetic 206

and visual information of input characters, and se- 207

lectively mixes information in these modalities to 208

predict final corrections. Other implementation 209

details are shown in the Appendix C. 210

3.3 Results and Analyses 211

Main Results From Table 2, we see that after 212

the optimization of our MKT, whether it is BERT, 213

Soft-Masked BERT specially designed for CSC, or 214

REALISE that integrates multi-modal information, 215

performance improvements have been achieved in 216

all domains. This reflects the effectiveness and 217

the model-agnostic characteristic of our proposed 218

MKT framework. 219

Parameter Study To explore the impact of the 220

key parameter λ, we conduct experiments on 221

BERT+MKT using varying λ values. As Table 3 222

indicates, settings λ between 0.005 and 0.02 stably 223

bring improvements over the baseline. Particularly, 224

setting λ at 0.01 performs best in all domains. We 225

think that the main reason for this phenomenon is 226

that the amount of training data in each special do- 227

main accounts for approximately 1% of the amount 228

of general training data (as shown in Appendix B). 229

3



Backbone Model General CAR MED LAW Avg

BERT Baseline 67.41 33.50 42.86 62.35 51.53
+MKT(Ours) 67.90↑ 35.86↑ 43.46↑ 62.88↑ 52.53↑

Soft-Masked BERT Baseline 54.22 30.73 43.88 68.54 49.34
+MKT(Ours) 60.98↑ 35.11↑ 51.27↑ 70.68↑ 54.51↑

REALISE Baseline 70.78 27.48 53.33 70.59 55.55
+MKT(Ours) 72.74↑ 29.25↑ 55.28↑ 70.85↑ 57.03↑

Table 2: Performance on the test set of each domain after training on all datasets.

λ General CAR MED LAW Avg

0 67.41 33.50 42.86 62.35 51.53
0.001 65.42 34.00↑ 43.13↑ 62.07 51.16

0.005 65.92 34.80↑ 43.19↑ 62.22 51.53↑

0.01 67.90↑ 35.86↑ 43.46↑ 62.88↑ 52.53↑

0.015 66.73 36.10↑ 44.29↑ 61.97 52.27↑

0.02 66.48 37.47↑ 42.92↑ 62.63↑ 52.38↑

0.05 67.41 32.32 41.98 61.66 50.84
0.1 68.18↑ 31.02 41.09 60.62 50.23
0.2 67.74↑ 27.55 38.31 56.96 47.64
0.5 66.47 23.53 27.09 44.44 40.38
0.8 60.64 12.35 15.15 26.22 28.59

Table 3: Performance of BERT+MKT on each domain
after training across all domains with different λ.

General +CAR +MED +LAW
Training Stage

71

72

73

74

75

76

77

78

F1
-s

co
re

REALISE
+MKT

Figure 2: The phenomenon of model forgetting general-
domain knowledge during incremental domain training.

Therefore, intuitively for MKT, an appropriate λ230

can be selected based on the ratio of general train-231

ing data to training data in other domains to obtain232

optimal performance.233

Catastrophic Forgetting As shown in Figure 2,234

we select the best-performing model (i.e., RE-235

ALISE) in Table 2 to observe its performance loss236

(i.e. catastrophic forgetting) in the general domain237

after being incrementally trained with other domain238

data. Obviously, we see that after the optimiza-239

tion of MKT, the performance loss of REALISE240

is much smoother, which shows that catastrophic241

forgetting is well alleviated by our proposed MKT.242

3.4 Case Study 243

Circumventing Catastrophic Forgetting

Input 年轻人的青量级玩乐SUV

+CAR(REALISE) 年轻人的轻量级玩乐SUV
+CAR(+MKT) 年轻人的轻量级玩乐SUV
+MED(REALISE) 年轻人的氰量级玩乐SUV
+MED(+MKT) 年轻人的轻量级玩乐SUV

Target 年轻人的轻量级玩乐SUV

Table 4: Cases from the CAR test set to show MKT
mitigates over-correction and catastrophic forgetting.

To further verify the effectiveness of our MKT in 244

mitigating catastrophic forgetting in multi-domain 245

CSC, we present some cases in Table 4. As shown 246

in table 4, for the test sentence in the CAR domain, 247

when REALISE has just been trained on the CAR 248

domain, it can accurately correct errors. How- 249

ever, when REALISE is then trained on the MED 250

domain, it can no longer correct successfully and 251

instead predicts “氰(cyanide)” related to the medi- 252

cal domain. This is a typical catastrophic forgetting 253

case where old domain knowledge is washed away 254

by new domain knowledge. It can be seen that with 255

the optimization of MKT, REALISE effectively 256

avoids the occurrence of catastrophic forgetting. 257

4 Conclusion 258

This paper demonstrates through experimentation 259

that existing CSC models, when adapting to multi- 260

domain scenarios, tend to forget previously ac- 261

quired knowledge while learning new domain- 262

specific information, a phenomenon known as 263

catastrophic forgetting. Consequently, we pro- 264

pose an effective, model-agnostic framework for 265

multi-stage knowledge transfer to mitigate catas- 266

trophic forgetting. Extensive experiments and 267

detailed analyses demonstrate the importance of 268

catastrophic forgetting we focus on and the effec- 269

tiveness of our proposed method. 270
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Limitations271

We do not compare our proposed method against272

commonly used Large Language Models (LLMs)273

in our experiments. The primary reason is that in274

the CSC task, representative LLMs still lag behind275

traditional fine-tuned smaller models, which has276

been proved by many related works. In addition,277

our approach specifically focuses on the Chinese278

scenarios. However, other languages, such as En-279

glish, could also benefit from our methodology. We280

will conduct related studies on English scenarios281

in the future.282
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A Related Work415

This section comprehensively reviews CSC re-416

search, structured according to the data flow within417

correction models, and also delves into three prin-418

cipal methods in continual learning.419

A.1 Chinese Spelling Correction420

In CSC, we witness significant advancements in421

various model architectures and modules.Early422

models like Confusionset-guided Pointer Networks423

optimize at the dataset level, leveraging confu-424

sion sets for character generation to enhance accu-425

racy through commonly confused characters (Wang426

et al., 2019). Innovations in embeddings, such as427

REALISE, improve model inputs by integrating428

semantic, phonetic, and visual information into429

character embeddings (Xu et al., 2021). Encoder430

improvements are highlighted by Soft-Masked 431

BERT, which employs Soft MASK techniques post- 432

detection to blend input with [MASK] embed- 433

dings for effective error prediction (Zhang et al., 434

2020). SpellGCN innovatively constructs a charac- 435

ter graph, mapping it to interdependent detection 436

classifiers based on BERT-extracted representa- 437

tions (Cheng et al., 2020). While previous multi- 438

domain CSC research emphasizes shared knowl- 439

edge and generalization across domains, this paper 440

pioneers in addressing the catastrophic forgetting 441

of domain-specific knowledge. 442

A.2 Continual Learning 443

In continual learning, replay, regularization, and 444

parameter isolation stand as core strategies (Wang 445

et al., 2023). Replay methods like GEM and 446

MER retain training samples, using constraints or 447

meta-learning to align gradients (Lopez-Paz and 448

Ranzato, 2017; Riemer et al., 2018). Regulariza- 449

tion, exemplified by Elastic Weight Consolidation 450

(EWC), focuses on preserving task-specific knowl- 451

edge by prioritizing parameter importance (Kirk- 452

patrick et al., 2017). Knowledge distillation aims 453

at incremental training, transferring insights from 454

larger to smaller models (Gou et al., 2021). Pa- 455

rameter isolation techniques, such as CL-plugin, 456

allocate unique parameters to different tasks, re- 457

ducing interference (Ke et al., 2022). Our work 458

introduces continual learning to multi-domain CSC 459

for the first time, with our MKT framework being 460

model-agnostic across various CSC models. 461

B Statistics of the datasets 462

Training Set Domain Sent Avg.Length Errors

Wang271K General 271,329 42.6 381,962
SIGHAN13 General 700 41.8 343
SIGHAN14 General 3,437 49.6 5,122
SIGHAN15 General 2,338 31.1 3,037
CAR CAR 2,744 43.4 1,628
MED MED 3,000 50.2 2,260
LAW LAW 1,960 30.7 1,681

Test Set Domain Sent Avg.Length Errors

SIGHAN15 General 1,100 30.6 703
CAR CAR 500 43.7 281
MED MED 500 49.6 356
LAW LAW 500 29.7 390

Table 5: Statistics of the datasets, including the number
of sentences, the average length of sentences in tokens,
and the number of errors in characters.
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C Implementation Details463

For the three models, we initially train them on464

the general dataset, followed by successive training465

on the CAR, MED and LAW datasets. After the466

completion of training, we test the final models’467

performance on all datasets.468

In the experiments, we train on the aforemen-469

tioned datasets for 10 epochs each, with a batch470

size of 64 and a learning rate of 5e-5. The baseline471

method simply involved sequential training on the472

same model across the mentioned datasets. Our473

approach, however, included a knowledge transfer474

process in each phase, where the λ between Lh and475

Ls was set to 0.01.476
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