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Abstract

Chinese Spelling Correction (CSC) aims to de-
tect and correct spelling errors in given sen-
tences. Recently, multi-domain CSC has grad-
ually attracted the attention of researchers be-
cause it is more practicable. In this paper, we
focus on the key flaw of the CSC model when
adapting to multi-domain scenarios: the ten-
dency to forget previously acquired knowledge
upon learning new domain-specific knowledge
(i.e., catastrophic forgetting). To address this,
we propose a novel model-agnostic Multi-stage
Knowledge Transfer (MKT) framework, which
utilizes a continuously evolving teacher model
for knowledge transfer in each domain, rather
than focusing solely on new domain knowl-
edge. It deserves to be mentioned that we are
the first to apply continual learning methods
to the multi-domain CSC task. Experiments '
prove the effectiveness of our proposed method,
and further analyses demonstrate the impor-
tance of overcoming catastrophic forgetting for
improving the model performance.

1 Introduction

Chinese Spelling Correction (CSC) plays a crit-
ical role in detecting and correcting spelling er-
rors in Chinese text (Li et al., 2022; Ma et al.,
2022), enhancing the accuracy of technologies like
Optical Character Recognition (OCR) and Auto-
matic Speech Recognition (ASR) (Aflietal., 2016;
Wang et al., 2018). In search engines, for example,
CSC reduces human error, ensuring that users find
the information they seek accurately.

In practical applications, the input text may from
various domains, demanding that the model con-
tains different domain-specific knowledge. As il-
lustrated in Table 1, the word “j8 % (Strong Foun-
dation)” is evidently common in Chinese Educa-
tion domain. Accurately correcting “FK(open)” to
“5H (Strong)” requires the model to have specific

'Our codes and data will be public after peer review.

{035 T 3K (zhang) 4 -
He passed the Open Foundation plan.

ftbdE s T 5 (qiang) FE A -

He passed the Strong Foundation plan.
f3@ L T 2 (qidng) Eit %) -

He passed the Hydroxyl project.

fbiE I T 55 (qidng)FE TR -

He passed the Strong Foundation plan.

Input

+EDU

+CHEM

Target

Table 1: Case of catastrophic forgetting in CSC.

knowledge about the Chinese Education domain.
Therefore, some related works begin to focus on
the impact of multi-domain knowledge on the per-
formance of CSC models (Wu et al., 2023).

Previous works place greater emphasis on a
model’s ability to generalize to unseen domains,
known as zero-shot performance, leveraging shared
knowledge across different domains for generaliza-
tion (Liu et al., 2023). However, this paradigm
falls short of enabling models to retain domain-
specific knowledge, which is necessary for nuanced
understanding and application. Human learning
processes can continuously acquire new domain-
specific knowledge without losing their learned old
knowledge. Therefore, in this paper, we first in-
vestigate continual learning, which aligns perfectly
with the human learning process, into CSC models
for addressing this issue.

The core challenge of the continual learning set-
ting is to minimize catastrophic forgetting of pre-
viously acquired knowledge while learning in new
domains (Wang et al., 2024). As demonstrated in
Table 1, when a CSC model learns the educational-
specific word “7##&(Strong Foundation)”, it ac-
curately corrects errors. However, after it con-
tinues to learn knowledge from the chemistry do-
main, it would learn the new knowledge of “¥%
%:(hydroxyl)”, but forget the education word “j#
#(Strong Foundation)”. However, in the previ-
ous works of multi-domain CSC, this catastrophic



forgetting challenge remains unexplored.

To mitigate catastrophic forgetting in multi-
domain CSC, we devise a multi-stage knowledge
transfer framework based on continual learning,
which employs a dynamically evolving teacher
model that at each stage imparts all its previ-
ously accumulated knowledge to the current student
model. Finally, through extensive experiments and
analysis, we demonstrate the effectiveness of our
proposed method. Our contributions are summa-
rized as follows:

1. We are the first to pay attention to the
catastrophic forgetting phenomenon of multi-
domain CSC, which is the key challenge that
must be overcome for the CSC model to truly
adapt to real multi-domain scenarios.

2. We present a model-agnostic MKT framework
that leverages the idea of continual learning to
significantly suppress catastrophic forgetting.

3. We conduct extensive experiments and solid
analyses to verify the effectiveness and com-
petitiveness of our proposed methods.

2  Our Approach

Our approach is a special form of knowledge dis-
tillation that takes into account scenarios involv-
ing multiple stages of training. We leverage the
knowledge acquired from these stages. This strat-
egy of multi-stage knowledge transfer provides an
effective solution to the challenges encountered in
continual learning.

2.1 Problem Formulation

The CSC task is to detect and correct spelling er-
rors in Chinese texts. Given a misspelled sen-
tence X = {z1, x9,..., ©,} with n characters,
a CSC model takes X as input, detects possible
spelling errors at character level, and outputs a cor-
responding correct sentence Y = {y1, ¥2, ..., Yn}
of equal length. This task can be viewed as a con-
ditional sequence generation problem that mod-
els the probability of p(Y'|X). In multi-domain
CSC tasks, assuming that there are n domains
D ={D;, Ds,..., D,}, these domains are trained
sequentially, where each domain Dy, is trained
without access to the data from previous domains,
from D; to Dy_;. Furthermore, after training do-
main Dy, we should consider the performance of
all domains from Dy to D;..

Train

w
=
Distillation Loss l

Distillation Loss
® o »
=

& N 6 6

Teacher Model  Student Model Parameters Fixed Parameters Updated

Figure 1: Overview of MKT framework.

2.2 Structure of MKT framework

To tackle catastrophic forgetting, an intuitive so-
lution is to transfer the knowledge previously ac-
quired to the most recent model. The foundational
idea revolves around transferring previously ac-
quired knowledge to the latest model iteration.
However, maintaining a distinct model for each
stage quickly becomes untenable due to escalating
storage and computational requirements with the
addition of each stage.

To address this challenge, our framework em-
ploys a dynamic teacher model strategy. As il-
lustrated in Figure 1, this teacher model acts as a
comprehensive knowledge repository, effectively
serving as a backup of the student model from
the previous stage to calculate the distillation loss
for the current stage’s student model. It encapsu-
lates all the domain-specific knowledge accumu-
lated to date, providing crucial guidance for the
model training in the current phase.

2.3 MKT framework for Multi-domain CSC

We consider the scenario where the training is com-
prised of m stages, denoted by k = 1,2...,m. At
k-th stage, a subset of data {x,(;), y,(;)}iTﬁl are fed
to the model, where T}, refers to the number of
samples at k-th stage, a:,(;) refers to i-th sample at
k-th stage.

Assume that u () is an unknown target function

that maps each mg) to y,(f) at stage k, i.e., y,(:) =

uk(:c,(;)) Under the continual learning setting, our
goal is to train a CSC model g(- ; w) parameterized



by w, such that g(- ; w) not only fits well to wu(-),
but also fits ug_1(-) ,ug—2(+), - - -, ui(-) in early
stages to alleviate catastrophic forgetting.

We need to minimize the loss function to opti-
mize the model weights:

LW = AL® + (1 — NP, (1)

In the equation, ) is a hyper-parameter that ranges
from [0, 1]. L) is the knowledge distillation loss,
calculating cross entropy between the output prob-
abilities of teacher model g(- ; wi_1) and student
model g(- ; wg):

Lgk) _ (4) )

k .
—29(95;(;); wi—1) X log g(x},”; wr).
i=1
2)
Lgf) is the cross-entropy loss between the output
of student model g(- ; wy) and ground truth yy:

L(k Z y

xlogg(z’; wr).  (3)

Algorithm 1 MKT Framework

Input: Training set Dy, Student model Sk_1
Output: Student model Sy,

1: Copy Sk—1 as the teacher model T},

2: Freeze the parameters of T}

3: Sy forward propagation and calculates the loss guided by
T}, according to Equation 1

4: Optimize the parameters of Sk

5: Return Sy

As shown in Algorithm 1, during the training
phase of the k-th domain, we employ the model re-
fined from the preceding k£ — 1 domains, i.e, Sg_1,
as the teacher model T}, alongside the concurrently
trained student model Si. The parameters of T}, are
frozen. The final loss is a weighted summation of
the knowledge distillation loss Lgk) and the original
loss of the CSC task L\"),

3 Experiment and Result

3.1 Datasets and Metrics

Considering the multi-domain setting we focus on,
we set up four domains, namely General, Car,
Medical, and Legal domains. The reason for this
setting is that the differences in characteristics be-
tween these domains are the most obvious, which
brings the most serious catastrophic forgetting to
CSC models. For the general domain, as in previ-
ous work, we also use SIGHAN13/14/15 (Wu et al.,

2013; Yu and Li, 2014; Tseng et al., 2015) and
Wang271K (Wang et al., 2018) as training data and
SIGHANT1S test set as our test data. For other spe-
cial domains, we utilize the data resources released
by LEMON (Wu et al., 2023) and ECSpell (Lv
et al., 2023), and randomly take 500 samples from
the original data of each domain as the test set. The
dataset statistics are presented in the Appendix B.

Our evaluation predominantly relies on the
sentence-level F1 score, a widely acknowledged
metric. This criterion is notably stringent, adjudg-
ing a sentence as accurate solely when every error
within is precisely identified and rectified, thereby
providing a more rigorous evaluation compared to
character-level metrics.

3.2 Baseline Methods

We select three widely used CSC baselines that em-
body varying integration of sensory inputs, to as-
sess the efficacy of our method in diverse structural
contexts: BERT (Devlin et al., 2019) is to directly
fine-tune the chinese-roberta-wwm-ext model with
the training data. Soft-Masked BERT (Zhang et al.,
2020) incorporates a soft masking process after the
detection phase, where it calculates the weighted
sum of the input and [MASK] embeddings. RE-
ALISE (Xu et al., 2021) models semantic, phonetic
and visual information of input characters, and se-
lectively mixes information in these modalities to
predict final corrections. Other implementation
details are shown in the Appendix C.

3.3 Results and Analyses

Main Results From Table 2, we see that after
the optimization of our MKT, whether it is BERT,
Soft-Masked BERT specially designed for CSC, or
REALISE that integrates multi-modal information,
performance improvements have been achieved in
all domains. This reflects the effectiveness and
the model-agnostic characteristic of our proposed
MKT framework.

Parameter Study To explore the impact of the
key parameter A, we conduct experiments on
BERT+MKT using varying A values. As Table 3
indicates, settings A between 0.005 and 0.02 stably
bring improvements over the baseline. Particularly,
setting A at 0.01 performs best in all domains. We
think that the main reason for this phenomenon is
that the amount of training data in each special do-
main accounts for approximately 1% of the amount
of general training data (as shown in Appendix B).



Backbone Model General CAR MED LAW Avg
BERT Baseline 67.41 33.50 42.86 62.35 51.53
+MKT(Ours) 67.90" 35.86" 43.46" 62.88" 52.53"
Soft-Masked BERT Baseline 54.22 30.73 43.88 68.54 49.34
+MKT(Ours) 60.98" 35.117 51.27" 70.68" 54517
REALISE Baseline 70.78 27.48 53.33 70.59 55.55
+MKT(Ours) 72747 29.25" 55.28" 70.85" 57.03"

Table 2: Performance on the test set of each domain after training on all datasets.

A | General CAR MED LAW  Avg

0 67.41 3350  42.86 6235 5153
0.001 6542 34007 43.13" 6207 51.16
0.005 | 6592 34807 43.197 6222 51.53"
0.01 67.90" 35867 43.46"7 62.887 52537
0.015 66.73  36.107  44.29" 6197 52277
0.02 66.48 37477 42927 62637 5238"
0.05 67.41 3232 4198  61.66 50.84
0.1 68.18T  31.02  41.09 60.62 5023
0.2 67747 2755 3831 5696 47.64
0.5 66.47 2353 27.09 4444 4038
0.8 60.64 1235 1515 2622 2859

Table 3: Performance of BERT+MKT on each domain
after training across all domains with different \.

—e— REALISE
+MKT

Fl-score

General +CAR +MED +LAW
Training Stage

Figure 2: The phenomenon of model forgetting general-
domain knowledge during incremental domain training.

Therefore, intuitively for MKT, an appropriate A
can be selected based on the ratio of general train-
ing data to training data in other domains to obtain
optimal performance.

Catastrophic Forgetting As shown in Figure 2,
we select the best-performing model (i.e., RE-
ALISE) in Table 2 to observe its performance loss
(i.e. catastrophic forgetting) in the general domain
after being incrementally trained with other domain
data. Obviously, we see that after the optimiza-
tion of MKT, the performance loss of REALISE
is much smoother, which shows that catastrophic
forgetting is well alleviated by our proposed MKT.

3.4 Case Study

Circumventing Catastrophic Forgetting

Input FERAHBRITESUV
+CARREALISE) F ARRENITRSUV
+CAR(+MKT) FE2 AR ERITRSUV
+MED(REALISE) F2 AT ERITKESUV
+MED(+MKT) FE2 AR ERITRSUV
Target FER AR ERIURSUV

Table 4: Cases from the CAR test set to show MKT
mitigates over-correction and catastrophic forgetting.

To further verify the effectiveness of our MKT in
mitigating catastrophic forgetting in multi-domain
CSC, we present some cases in Table 4. As shown
in table 4, for the test sentence in the CAR domain,
when REALISE has just been trained on the CAR
domain, it can accurately correct errors. How-
ever, when REALISE is then trained on the MED
domain, it can no longer correct successfully and
instead predicts “&\(cyanide)” related to the medi-
cal domain. This is a typical catastrophic forgetting
case where old domain knowledge is washed away
by new domain knowledge. It can be seen that with
the optimization of MKT, REALISE effectively
avoids the occurrence of catastrophic forgetting.

4 Conclusion

This paper demonstrates through experimentation
that existing CSC models, when adapting to multi-
domain scenarios, tend to forget previously ac-
quired knowledge while learning new domain-
specific information, a phenomenon known as
catastrophic forgetting. Consequently, we pro-
pose an effective, model-agnostic framework for
multi-stage knowledge transfer to mitigate catas-
trophic forgetting. Extensive experiments and
detailed analyses demonstrate the importance of
catastrophic forgetting we focus on and the effec-
tiveness of our proposed method.



Limitations

We do not compare our proposed method against
commonly used Large Language Models (LLMs)
in our experiments. The primary reason is that in
the CSC task, representative LLMs still lag behind
traditional fine-tuned smaller models, which has
been proved by many related works. In addition,
our approach specifically focuses on the Chinese
scenarios. However, other languages, such as En-
glish, could also benefit from our methodology. We
will conduct related studies on English scenarios
in the future.
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A Related Work

This section comprehensively reviews CSC re-
search, structured according to the data flow within
correction models, and also delves into three prin-
cipal methods in continual learning.

A.1 Chinese Spelling Correction

In CSC, we witness significant advancements in
various model architectures and modules.Early
models like Confusionset-guided Pointer Networks
optimize at the dataset level, leveraging confu-
sion sets for character generation to enhance accu-
racy through commonly confused characters (Wang
et al., 2019). Innovations in embeddings, such as
REALISE, improve model inputs by integrating
semantic, phonetic, and visual information into
character embeddings (Xu et al., 2021). Encoder

improvements are highlighted by Soft-Masked
BERT, which employs Soft MASK techniques post-
detection to blend input with [MASK] embed-
dings for effective error prediction (Zhang et al.,
2020). SpellGCN innovatively constructs a charac-
ter graph, mapping it to interdependent detection
classifiers based on BERT-extracted representa-
tions (Cheng et al., 2020). While previous multi-
domain CSC research emphasizes shared knowl-
edge and generalization across domains, this paper
pioneers in addressing the catastrophic forgetting
of domain-specific knowledge.

A.2 Continual Learning

In continual learning, replay, regularization, and
parameter isolation stand as core strategies (Wang
et al., 2023). Replay methods like GEM and
MER retain training samples, using constraints or
meta-learning to align gradients (Lopez-Paz and
Ranzato, 2017; Riemer et al., 2018). Regulariza-
tion, exemplified by Elastic Weight Consolidation
(EWC), focuses on preserving task-specific knowl-
edge by prioritizing parameter importance (Kirk-
patrick et al., 2017). Knowledge distillation aims
at incremental training, transferring insights from
larger to smaller models (Gou et al., 2021). Pa-
rameter isolation techniques, such as CL-plugin,
allocate unique parameters to different tasks, re-
ducing interference (Ke et al., 2022). Our work
introduces continual learning to multi-domain CSC
for the first time, with our MKT framework being
model-agnostic across various CSC models.

B Statistics of the datasets

Training Set  Domain Sent  Avg.Length Errors
Wang271K General 271,329 42.6 381,962
SIGHAN13  General 700 41.8 343
SIGHAN14  General 3,437 49.6 5,122
SIGHAN15  General 2,338 31.1 3,037
CAR CAR 2,744 434 1,628
MED MED 3,000 50.2 2,260
LAW LAW 1,960 30.7 1,681
Test Set Domain Sent  Avg.Length Errors
SIGHAN15  General 1,100 30.6 703
CAR CAR 500 43.7 281
MED MED 500 49.6 356
LAW LAW 500 29.7 390

Table 5: Statistics of the datasets, including the number
of sentences, the average length of sentences in tokens,
and the number of errors in characters.
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C Implementation Details

For the three models, we initially train them on
the general dataset, followed by successive training
on the CAR, MED and LAW datasets. After the
completion of training, we test the final models’
performance on all datasets.

In the experiments, we train on the aforemen-
tioned datasets for 10 epochs each, with a batch
size of 64 and a learning rate of 5e-5. The baseline
method simply involved sequential training on the
same model across the mentioned datasets. Our
approach, however, included a knowledge transfer
process in each phase, where the A\ between L, and
L, was set to 0.01.



