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Abstract

We propose a textual dialogue speaker clus-
tering model, which groups the utterances of
a multi-party dialogue without speaker anno-
tations, so that the real speakers are identical
inside each cluster. We find that, even without
knowing the speakers, the interactions between
utterances are still implied in the text. Such in-
teractions suggest the correlations of the speak-
ers. In this work, we model the semantic con-
tent of an utterance with a pre-trained language
model, and the correlations of speakers with an
utterance-level pairwise matrix. The semantic
content representation can be further enhanced
by additional cross-corpus supervised dialogue
act modeling. The speaker labels are finally
generated by spectral clustering. Experiment
shows that our model outperforms the sequence
classification baseline, and benefits from the
set-specific dialogue act classification auxiliary
task. We also discuss the detail of correlation
modeling and step-wise training process.

1 Introduction

Processing dialogues is a classical linguistic task.
With the development of pre-trained language mod-
els in recent years, studies on dialogues have made
great progress (Zhang et al., 2020; Roller et al.,
2021; Adiwardana et al., 2020). In general, these
training processes, especially pre-training, need a
large amount of data. Meanwhile, most of dialogue-
oriented models are designed to input speaker infor-
mation, i.e., speaker embeddings or just assuming
the dialogue is composed of two speakers involved
turn by turn, to introduce dialogue structure in-
formation to the models. However, for common
researchers, dialogue data is hard to collect. Most
of big dialogue data used by enterprises cannot
be published due to privacy and legal issues. Al-
though there are some open dialogue data, they
are either not sufficient enough, or task-oriented,
or lack of speakers labeling, such as OpenSubti-
tles (Lison et al., 2018). Datasets like subtitles

contain a lot of dialogue data of daily communica-
tion, but due to the lack of speaker annotation, it is
difficult to be utilized in current dialogue models.
Some researches in related fields, such as multi-
modal speech processing, may also need text-based
speaker clustering techniques. So it is valuable to
develop a model to reconstruct the missing identi-
ties of speakers in such dialogue data.

In order to reconstruct the speaker labels in the
dialogue, our work is dedicated to the method of
speaker clustering. Different from previous re-
searches on speaker identification, which aim at
selecting the most similar speaker of each utter-
ance from the known candidates, the speaker clus-
tering task aims at grouping the utterances into
speaker-specific clusters without any preset candi-
dates (Lukic et al., 2016). It is more useful because
it works on open corpus where the speakers cannot
be modeled in advance.

Speaker clustering is closely related to the dia-
logue structure, because the process of turns fol-
lows certain patterns. These patterns include the
change of speakers, also known as turn-takings, and
the interactions between different speakers. Con-
versely, speaker relations will be available if we
get these patterns from textual utterances. It is in-
tuitively possible, because the turn-takings can be
detected by some methods like the language model,
and the interactions can be detected by word-level
features and utterance-level acts such as greetings,
questions, and responses. Other semantic features
like interruptions and coreferences are also helpful.

To achieve the above dialogue analysis process,
we need to analyze the roles of utterances in a
dialogue. The first role is that an utterance car-
ries semantic content with its text form. Many
conventional dialogue comprehension studies take
dialogue act (DA) classification as a target task.
We suggest that this conventional task helps the
pre-trained model to embed the semantic content
of utterances, because the most important thing in



embedding learning is to make the representation
have a good distribution which expresses the cor-
responding features of the embedded item. The
second role of the turn is that it has communica-
tive functions, which are mainly under covered by
the correlations between turns. We can explicitly
model these communicative functions by pairwise
calculation.

Every communicative function is related to a
correlation between speakers. For both bi-party
and multi-party dialogues, the correlation has only
two possible values, i.e., whether same or differ-
ent. The correlations among the whole dialogue
can form a correlation matrix, which is regarded as
the similarity graph of the ground speakers. The
graph can reconstruct the clusters of speakers with
a density-based clustering method. The most pop-
ular algorithms incorporating these paradigms are
spectral clustering (Von Luxburg, 2007) and DB-
SCAN (Hess et al., 2019). In this work, we use
spectral clustering as the implementation, because
it is less sensitive to sparse points, which follows
our task that each utterance must be in a cluster.

Based on the above theories, we build a model
that models the semantic content of utterances with
multi-task cross-corpus supervision, calculates the
communicative function between utterances with
the form of bilinear, and generates the cluster labels
with the method of spectral clustering.

Our model is fine-tuned and evaluated on the
Switchboard Dialog Act Corpus (SwDA) (Stolcke
et al., 2000), the Meeting Recorder Dialogue Act
Corpus (MRDA) (Shriberg et al., 2004), and the
Ubuntu Dialogue Corpus (Lowe et al., 2015). The
experimental result proves the significance of our
pairwise correlation design and cross-corpus dia-
logue act classification auxiliary task.

2 Related Works

Our task is related to dialogue comprehension.
Generally, we start with the dialogue structure, and
look for methods of semantic content modeling,
communicative function modeling, and speaker
clustering.

Dialogue structure: The traditional researches
in dialogue processing have noticed that the dia-
logue is made up of turns. Each turn is a combi-
nation of a speaker and an utterance. The turns
are push ahead following the semantic cue. Specif-
ically, dialogue turns have semantic content and
communicative functions, which are represented

by dialogue acts (Searle and Searle, 1969) and ad-
jacency pairs (Schegloff and Sacks, 1973) respec-
tively. Every turn has its own dialogue act. Two
turns of different speakers form a adjacency pair if
they have a behavior of interaction. Base on statis-
tical or machine learning methods, it is realizable
to predict the dialogue acts or the adjacency pairs
(Surendran and Levow, 2006; Li et al., 2019; Li and
Wu, 2016; Zhang et al., 2018a). Speaker clustering
is strongly depended on dialogue structure because
the semantic content and communicative functions
involve the correlations of speakers.

Semantic content modeling: Pre-trained lan-
guage models (Devlin et al., 2019; Lewis et al.,
2020; Brown et al., 2020) have demonstrated their
effectiveness on semantic modeling. These works
illustrate the idea of represent semantic content
with contextualized embeddings, i.e., trainable dis-
tributed vector in semantic space. However, most
of the above models output word-level embeddings
to represent the meaning of a word instead of the
meaning of a whole sentence. There are solu-
tions to convert from word-level embeddings to
utterance-level embeddings, including using the
corresponding embedding of the [CLS] token and
using some pooling strategies (Ma et al., 2019;
Xiao, 2018).

Recently there are some dialogue comprehen-
sion models based on pre-trained language models.
Most of them are trained to extract semantic rep-
resentations in a self-supervised manner (Zhang
and Zhao, 2021). The advantage is that the avail-
able data is rich and the task is adaptable. However,
there are still some data that are not large in amount,
but clearly and instructively labeled, such as dia-
logue act annotated corpus. We want to use these
annotated data, although their annotations may not
be the same annotation set, to form a cross-corpus
supervised training.

Communicative function modeling: Previous
works on communicative function are almost de-
tecting the adjacency pairs of close turns (Nakan-
ishi et al., 2019; Zhang et al., 2018b). But these
works cannot be directly used in our task, because
they depend on and aim at the annotations of adja-
cency pairs instead of speakers. We need a more
general type of relations that coordinates with the
correlation of speakers. Thus, we look for a general
form of the relationship between two embeddings.

Speaker clustering: As far as we know, there
are few works directly on speaker clustering in



textual dialogues. However, there is a previous
work on speaker clustering through pairwise rela-
tionships based on speech signals (Lin et al., 2019).
This work uses spectral clustering as the top-level
structure. It provides an idea for our structural de-
sign, but its basic input data is voice rather than
text.

Other models related to speakers in dialogue:
There are some researches more related to the
speaker labeling task in textual dialogues (Ek et al.,
2018; Serban and Pineau, 2015; Ma et al., 2017),
but they are not speaker clustering models directly.
Most of them depend on the assumption that each
speaker has its own speaking characteristic, e.g.
the proportion of stop words, short words, adverbs
in its utterances. Turn-taking detection is another
type of speakers labeling (Liang and Zhou, 2020;
Aldeneh et al., 2018). It refers to identifying the
positions where the speakers change during the di-
alogue. This kind of works has strengthened the
feature extraction between turns and raised the per-
formance to a high level. Although the result of
turn-taking detection can be used to do speaker
clustering in dialogues with only two speakers, it
cannot be directly used in dialogues with more
than three speakers (multi-party dialogues). The
reason is that it only focuses on the relationships be-
tween two adjacent utterances. It would be useful
in multi-party dialogues if extended to the relation-
ships between utterances that are not necessarily
adjacent.

3 Model

The main consideration of our model is how to get
representation of utterances, cooperate with cross-
corpus DA supervision, and calculate the correla-
tions. Therefore, the model is divided into three
parts in general: the BERT embedding part, the
set-specific dialogue act classification part, and the
correlation clustering part. Figure 1 shows the over-
all structure of our model.

We define that, during training process, each data
batch consists of B dialogues. In the i-th dialogue
of the batch, there are 7; turns. The speaker of the
j-th turn of the i-th dialogue is s; ;. The utterance
text of the j-th turn of the :-th dialogue is u; ;. The
DA set of the i-th dialogue is D;, where D; = ()
if the ¢-th dialogue does not have DA annotation.
The DA label of the j-th turn of the ¢-th dialogue
is di,j, where d@j e D,

The objective of the model tallies with multi-
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Figure 1: Model structure.

task learning framework. The loss function of each
data batch L is a combination of the binary cross
entropy loss of the pairwise matrix Ly, and the
cross entropy loss of the DA prediction Lps. We
use a hyperparameter A to moderate the association
between the two objectives. Formally,

L= Lmat + )\LDA- (1)

The objectives and structure will be described in
the following sections.

3.1 Utterance Embedding

The first step of our model is to represent the se-
mantic content of utterances as distributed vec-
tors. Following previous works on text represen-
tation and dialogue processing (Ma et al., 2019;
Gu et al., 2021), we concatenate the utterances
in the dialogue with a [CLS] token prepended at
the beginning of every utterance, and append a
[SEP] token. For a dialogue with T; utterances

U1, U2, - - -, Ui T;, the input format is

[CLS] u; 1 [CLS] w2 ... [CLS] w; T, [SEP].

Comparing to modeling each utterance in a sep-
arate pre-trained language model, this format is
more lightweight that uses only a single BERT
model, and contributes to directly modeling the
word-level relations across the utterances. But it
causes a problem if some utterances are too long.
We deal with this problem by setting a limitation
of the count of tokens for each utterance. The ut-
terances which are longer than the limitation will
be cut off. This scenario rarely happens so it will
not impact our analysis.



For each utterance, we take the output vectors
of all the tokens of it (including the [CLS] token
before), and concatenate the mean pooling and max
pooling results as the semantic representation, i.e.,
contextualized utterance embedding. Formally, the
k-th token of the utterance u; ; corresponds to the
contextualized token embedding e; ; . outputted by
BERT. We calculate the utterance embedding with

¢;,j = concat m%an(eivjvk),mlgx(eivj,k) , (2

where n is the number of tokens in this utterance,
mean and max are mean pooling and max pool-
ing functions through the stream dimension. For
a BERT model of hidden size dgggrt, the dimen-
sion of the contextualized utterance embedding is
2dBERT-

3.2 Correlation Calculation

To model the correlations between speakers, we
use the form of bilinear. Specifically, for a dia-
logue with 7} turns, the contextualized utterance
embeddings are

2d
Ci,lyCi,2y -+ - G, € RZBERT,

The correlation score of the utterances u; ,,, and
u; , 18 the sigmoid mapping of bilinear form

corr(m,n | i) = a(c;':chi,n +b), 3

where T € R2dsertx2dert and h € R are trainable
parameters.

For each pair of utterances, the correlation is a
real number between O and 1, denotes the proba-
bility that the corresponding speakers are identical.
The correlations are symmetric, so each pair of ut-
terances is just calculated once, i.e., always having
m < n in Equation 3. All correlations in the i-th
dialogue finally form a symmetric 7; x T; matrix.

The loss function of correlation matrix is calcu-
lated by the elements of the triangular. Formally,

B T;—1 T;

Ina=g 32 3

=1 m=1 n=m+1

BCE|[corr(m,n | i),y(m,n | 1)], (4)

y(m>n | Z) = ]I[Si,m = 5i,n]7 (5)

where C' = 25;1 T;(T; — 1)/2 is the number of
the utterance pairs in the batch, and I is indicator
function.

The reason why we can directly use boolean val-
ues as the correlation classes is that the correlation
classes are supersets of dialogue structure types.
For example, the non-identical correlation (0) is
the union of the scenarios of turn-taking, forming
an adjacency pair, and a chain of odd number of
adjacency pairs, etc. While the identical correlation
(1) is the union of the scenarios of non-turn-taking,
forming a long-distance relation of restatement,
continuous probing, and forming a chain of even
number of adjacency pairs, etc. It is possible to
detect the turn-taking states and the dialogue struc-
ture relations as many previous works have shown,
so classifying on the supersets is also possible.

It is worth noticing that no additional positional
encoding or embedding is added when calculat-
ing the correlations. We find that the positional
information taken from BERT layer is enough for
current calculation. Adding another positional en-
coding or embedding to this layer does not improve
the performance according to our preliminary ex-
periment.

3.3 Speaker Clustering

We follow the spectral clustering algorithm
(Von Luxburg, 2007; Lin et al., 2019) to cluster
the utterances into clusters that each cluster has the
same speaker and different clusters have different
speakers.

Given the symmetric correlations matrix S €
RT:*Ti ' we compute both of the two kinds of nor-
malized graph Laplacians, Lgyy and Ly, which
are the same as the definition in the review
(Von Luxburg, 2007). We use the eigenvalues of
L.y to determine the number of clusters, and the
eigenvectors of Lgymy to cluster!.

The eigenvalues of the Laplacian matrix are re-
lated to the number of clusters. If the appropriate
number of clusters is k, there will be a larger dif-
ference between the k-th smallest eigenvalue and
the (k 4 1)-th smallest eigenvalue, called the eigen-
gap. The greater the number of clusters, the less the
overall eigenvalues will be. Therefore, an appro-
priate threshold can be selected on the validation
set. If the (k + 1)-th eigenvalue is greater than the
threshold, the number of clusters is considered to
be (or less than) k. The threshold is adjusted on
the validation set to maximize the accuracy. We
report the results of both using the real number of

"Implemented by scikit-learn and called with parameter
assign_labels="discretize".



speakers as the cluster number and using the thresh-
old method to determine the cluster number in the
experiment section.

3.4 Set-specific Dialogue Act Classification

This part is designed as a auxiliary task to infuse di-
alogue act information into utterance embeddings.
We suggest that the ability of extracting semantic
content will be more strong and the calculation of
correlation will be more accurate if the model can
judge the dialogue act of the utterance correctly.

We present dialogue act classification as part of a
multi-task learning framework. For each dataset, if
there are dialogue act labels annotated, we can use
these labels to supervise the model to adjust the em-
beddings so that they express the corresponding di-
alogue acts. However, there is a problem that most
of the DA-annotated datasets are not big enough,
comparing to the speaker-annotated datasets. Al-
though the number of DA-annotated datasets is
large, these datasets are annotated with different
sets and rules, and cannot be easily mapped to each
other.

To solve this problem, we use a set-specific lin-
ear layer to adapt to the DA set of the data. For
different dialogue act annotation sets, we use dif-
ferent linear layers to predict the corresponding
number of dialogue act types. The loss function
Lpa is calculated by the multi-class cross entropy
of the output of the corresponding linear layer, and
the output of other linear layers is ignored.

This layer uses a shallow structure to classify in
order to integrate different DA labeling rules and
sets together. Ideally, this layer should be able to
become a labeling rule converter, and make the con-
textualized utterance embedding connotes a more
general dialogue act type.

4 Experiment

4.1 Datasets

Our datasets are composed of three corpus: the
SwDA Corpus, the MRDA Corpus, and the Ubuntu
Dialogue Corpus. We propose the result of the
SwDA dataset as a simple single-corpus condition
to intuitively analyze the role of correlation matrix
and auxiliary DA classification task, and the result
of simultaneously training on SWDA, MRDA, and
Ubuntu datasets as a mass cross-corpus condition.

The SWDA Corpus and the MRDA Corpus are
two common DA-annotated datasets. The SWDA
Corpus is a two-party dialogue dataset transcribed

by phone calls. There are 221616 turns in total.
The dialogue act annotations are divided into 217
small categories and 43 major categories. Two adja-
cent utterances may be from the same speaker. The
MRDA Corpus is a multi-party dialogue dataset
transcribed by conferences. There are 108202
turns in total. DA annotations are divided into
52 full categories, 12 general categories, and 5 ba-
sic categories. Two adjacent utterances may be
from the same speaker, and this situation is rela-
tively common. The Ubuntu Dialogue Corpus is
a widely used dialogue dataset collected from the
chat records on the Ubuntu IRC system, without
DA annotation.

For the SWDA Corpus, we first split the dialogue
streams into 10-turn segments, and then randomly
divide them into training, validation and test set by
the ratio of 8:1:1. For the MRDA Corpus, we use
the same set division as the original data, and then
split the dialogue streams into 10-turn segments.
For the Ubuntu Dialogue Corpus, We use the 10-
turn version released by previous works (Ouchi
and Tsuboi, 2016; Gu et al., 2021). Each dialogue
contains 10 turns, with the number of speakers
ranging from 2 to 10. Table 1 shows the basic
quantity statistics of the datasets.

Dataset Set  Dialog S/D
Train 17059 2.00

SwDA  Valid 2132 2.00
Test 2132 2.00

Train 7485 3.01

MRDA Valid 1636 291
Test 1664  2.96

Train 495226 4.08

Ubuntu Valid 30974 4.21
Test 35638 4.19

Table 1: Statistics of the datasets. “S/D” stands for
“average number of different Speakers per Dialogue”.

In our experiment, we use the 43 major cat-
egories of SWDA and 12 general categories of
MRDA as our target DA sets of the auxiliary task.

4.2 Parameters and Environment

We use the PyTorch framework (Paszke et al., 2019)
and common backpropagation for training. After
each epoch of training, we calculate the perfor-
mance indicators on the validation set and save the
model parameters that maximize the accuracy on
the validation set to avoid overfitting.



We use AdamW (Loshchilov and Hutter, 2019)
as the optimizer. By testing on the SWDA dataset,
we select the hyperparameters in Ir={1e-5, 2e-5, 3e-
5}, eps={le-4, le-5, 1le-6}, and weight_decay={0,
le-4}, to maximize the accuracy on the valida-
tion set. The final choice, Ir=2e-5, eps=1le-6,
weight_decay=0, betas=(0.9, 0.999), are used for
all datasets.

We use bert-base-uncased provided by Google
(Turc et al., 2019) as the initialization parameter of
the BERT part. All of the BERT parameters and
other linear and bilinear parameters are fine-tuned
end-to-end.

For the SWDA single-corpus experiment, we
select the association hyperparameter in A =
{0.01,0.05,0.1,0.2,0.3,0.5}. For each training
step, the data batch consists of 5 random SwDA
dialogue segments. The evaluation is executed for
every 500 steps. Every setting is trained on a single
RTX 2080Ti GPU for about 1.5 hours to select the
best one on the validation set. The final choice is
A=0.2.

For the SwWDA, MRDA, and Ubuntu cross-corpus
experiment, we select the association hyperparam-
eter in A = {0.01,0.1}. For each training step, the
data batch consists of 3 random Ubuntu dialogue
segments, 1 random SwDA dialogue segment, and
1 random MRDA dialogue segment. The evalua-
tion is executed for every 5000 steps. Every setting
is trained on a single RTX 2080Ti GPU for about
2 days to select the best one on the validation set.
The final choice is A = 0.01.

4.3 Baselines

Due to the lack of related works on text-based
speaker clustering, we cannot find an existing
model that is directly comparable. So we imple-
ment our baselines to prove the necessity of the
model design.

The first design to cover is modeling the pairwise
correlations. For comparison, we implemented a
general sequence classification model that changes
the output layer to a multi-class softmax layer. The
number of output classes is set to the maximum
number of different speakers in the dialogue. We
trained this baseline model to predict the sequential
IDs of speakers in a dialogue.

The second design to cover is the set-specific
dialogue act classification task. For comparison,
we set A = 0 as the ablation setting in this scenario,
while other parameters including the constitution

of input batches are consistent.

4.4 Metrics

We employ two metrics in the experimental results,
the adjusted Rand index (ARI) (Hubert and Arabie,
1985)? and the accuracy (ACC). The adjusted Rand
index is a common metric for clustering, which
measures the similarity between two cluster sets.
The value ranges from -1 to 1. For a random clus-
tering, the mathematical expectation of ARI is O,
which is intuitively correct. The accuracy is calcu-
lated by transforming the clustering problem into a
classification problem. The idea is finding the best
injective mapping from the predicted clusters to the
real clusters. If the number of the predicted clus-
ters is greater than the number of the real clusters,
the exceeded predicted clusters will be mapped to
nothing. Formally, we enumerate all permutations
of the set {1,2,...,n} where n is the number of
predicted clusters, so that

T;

N [p (39) = y(j)}

where y is the labels of real clusters, g is the labels
of predicted clusters, p is a permutation of the set
{1,2,...,n}, [ is indicator function, and y) is
the element on index j in vector y.

The ACC result is turn-level average statistics,
which is the number of correctly cluster-assigned
utterances divided by the total number of turns
in the dataset. The ARI result is dialogue-level
average statistics, which is the mean ARI values
among the dialogues.

The reason for using accuracy as a metric is
that it is convenient to observe the difference be-
tween the predicted result and the real value af-
ter mapping. And it provides a comparable result
with other speaker identification models, not just
speaker clustering models.

4.5 Result

Our experimental result of the single-corpus con-
dition and the cross-corpus condition are shown in
Table 2 and Table 3 respectively.

Table 2 shows the result of SWDA dataset. Our
multi-task clustering model outperforms the se-
quence classification baseline and the ablative ex-
periment without auxiliary DA classification task
in all the tests. This result proves that our auxiliary

“Implemented by scikit-learn.



SwDA

Model Valid Test
ACC ARI ACC ARI
Baseline 0.760 0.486 0.748 0.463
Clustering 0.868 0.596 0.860 0.575
-w/o DA Task 0.865 0.585 0.856 0.566

Table 2: Result of SWDA dataset.

task improves the semantic content representation
and correlation calculation if the training data and
evaluating data have the same semantic feature and
distribution.

Table 3 shows the result of training on all of the
three datasets, and evaluating on the three datasets
or just on the Ubuntu datasets. Because MRDA
and Ubuntu datasets are multi-party dialogues and
we may not know the number of speakers in a di-
alogue in advance, we provide the result of both
using the ground-truth speaker count as the num-
ber of clusters, and using the eigengap method to
detect the number of clusters for spectral cluster-
ing. Our model still outperforms the baseline in
all the tests, and the ablative experiment in almost
all the tests in the scenario of given the ground-
truth speaker count. Even the Ubuntu only result
is promoted by our set-specific dialogue act classi-
fication task. This suggests that cross-corpus and
cross-domain supervised training is possible if we
design the model with reasonable structure and ob-
jective. The result of using the eigengap method to
detect the number of clusters shows that our model
still outperforms the baseline in all the tests, which
suggests that the clustering method is still better
than the sequence classification method even with-
out prior knowledge of the real number of clusters.

An interesting phenomenon is that, without spec-
ifying the real number of speakers, the ACC met-
rics and ARI metrics of whether applying auxiliary
tasks or not have different trends. Actually, the
ARI metrics is more concerned with whether the
dividing points of the clusters are correct, while the
ACC metrics is the result after mapping. So the
ARI metrics more directly reflects whether the key
transformation relationships are correctly found.

5 Discussion

5.1 Correlation Modeling

The essential of speaker clustering task is modeling
the dialogue structure, especially the interactions
among the speakers. We have described the steps

of speaker clustering are:
1. Observe the sequential utterance stream.
2. Extract the semantic content.

3. Infer the communicative functions (interac-
tions and correlations).

4. Infer the identities of the speakers.

The third step is necessary and hard to be implic-
itly learnt by the sequential model. Pairwise corre-
lations are suitable and sufficient to cover all the
communicative functions in most cases, because a
turn of the dialogue is an interaction between two
speakers in most of time.

The sample output of the sequence classification
model shows the necessity of modeling the pair-
wise correlations. We find that the results of the
sequence classification models have a typical kind
of error. It is that the model sometimes generates
roughly segmented results, i.e., the first few utter-
ances are predicted to be Speaker 0, the next few
utterances are predicted to be Speaker 1, and the
next few utterances are predicted to be Speaker 2,
and so on. We have also tried some other sequence
classification models and the results are similar.
This shows that the model is in a state of under-
fitting, and the prediction results only satisfy the
statistical characteristics along the stream dimen-
sion, but not the turn-taking characteristics along
the semantic dimension.

One of the biggest difference between the
speaker clustering task and other classification
problems is that there is no direct statistical re-
lationship between the input feature and the output
classification. The speaker label of a turn is 0, 1,
or 2, not because the turn itself has the feature of
class 0, 1, or 2, but mainly because of its position
in the dialogue. Therefore, the ordinary sequence
classification model is more likely to learn the dis-
tribution of labels in the time dimension, but it is
difficult to find the relationship between the same
label or the relationship between different labels.
The correlation based model avoids such problem.

We investigate the internal layer results of the
pairwise correlation by aggregating the position-
level error of correlation matrix, as shown in Fig-
ure 2. The item in ¢-th row and j-th column indi-
cates the mean error of the correlation score of the
i-th turn and j-th turn. Formally,

err(m,n) = |corr(m, n) — y(m,n)|.  (6)



S+M+U S+M+U (Ubuntu Only)
Model Valid Test Valid Test

ACC ARI ACC ARI ACC ARI ACC ARI
Baseline 0.530 0.249 0.531 0.247 0513 0.234 0.516 0.235
Clustering 0.697 0.297 0.695 0.294 0.684 0.276 0.685 0.278
- w/o DA Task 0.696 0.297 0.694 0.292 0.684 0.277 0.684 0.277
Clustering without Speaker Count 0.629 0.285 0.629 0.283 0.615 0.265 0.617 0.267
- w/o DA Task 0.633 0.283 0.632 0.281 0.618 0.264 0.619 0.265

Table 3: Result of training on SWDA, MRDA, and Ubuntu datasets, and evaluating on the three datasets (left) or

only the Ubuntu dataset (right).

We take the result of correlation matrix of the
Ubuntu test set, and plot the heatmaps of mean er-
ror. The figure shows that the model successfully
models the correlations between utterances, espe-
cially the adjacent ones. For longer-distance pairs,
it is constitutionally more difficult to be modeled,
but our model is still effective with a mean error
less than 0.5.
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Figure 2: Error heatmaps of correlation matrix on the
Ubuntu test set with (left) and without (right) auxiliary
DA classification task. Darker color means more accu-
rate, and lighter color means more erring.

5.2 Step-wise Training Process

In order to observe the stability of performance,
we provide the step-wise validating result. Fig-
ure 3 shows the training process of SWDA dataset.
Intuitively, our multi-task model (blue line) outper-
forms than others at almost every step after 20000.

We take the best 20 values from the result of
our multi-task (DA enhanced) training process and
the ablative (no DA enhancement) training process,
and make a significance test by Student’s ¢-test.
It comes to a result of p = 7.18 x 10719, which
suggests significant stable improvement of the su-
pervision of our DA classification task comparing
to the ablation setting.

In our experiment of cross-corpus condition, we
find that if )\ is set to a greater value, the accuracy
will converge faster, but it does not work much
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Figure 3: The ACC result of the SWDA validation set
for every 500 training step.

at the highest point, which is mainly because the
model is overfit on the auxiliary task. If X is set to
a suitable value, the regularization of cross-corpus
multitasking will be more evident.

6 Conclusion and Future Work

We propose a text-based dialogue speaker cluster-
ing model. Based on the theory of the dialogue
structure, the model takes the advantage of the se-
mantic content and the communicative functions
explicitly with the design of the BERT layer and
the correlation matrix respectively. The model is
also enhanced by the idea of cross-corpus super-
vision with the set-specific dialogue act classifica-
tion auxiliary task design. It finally generates the
cluster labels of speakers with spectral clustering.
Our model outperforms the sequence classification
baseline on every test, and outperforms the non-DA
ablation on almost every test.

We have noticed that further pre-training the
model on dialogue data may be helpful to extract
better semantic embeddings, which we will exam-
ine in the future. The method of modeling the
correlation of long-distance utterances also needs
to be explored.
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