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Abstract

We propose a textual dialogue speaker clus-001
tering model, which groups the utterances of002
a multi-party dialogue without speaker anno-003
tations, so that the real speakers are identical004
inside each cluster. We find that, even without005
knowing the speakers, the interactions between006
utterances are still implied in the text. Such in-007
teractions suggest the correlations of the speak-008
ers. In this work, we model the semantic con-009
tent of an utterance with a pre-trained language010
model, and the correlations of speakers with an011
utterance-level pairwise matrix. The semantic012
content representation can be further enhanced013
by additional cross-corpus supervised dialogue014
act modeling. The speaker labels are finally015
generated by spectral clustering. Experiment016
shows that our model outperforms the sequence017
classification baseline, and benefits from the018
set-specific dialogue act classification auxiliary019
task. We also discuss the detail of correlation020
modeling and step-wise training process.021

1 Introduction022

Processing dialogues is a classical linguistic task.023

With the development of pre-trained language mod-024

els in recent years, studies on dialogues have made025

great progress (Zhang et al., 2020; Roller et al.,026

2021; Adiwardana et al., 2020). In general, these027

training processes, especially pre-training, need a028

large amount of data. Meanwhile, most of dialogue-029

oriented models are designed to input speaker infor-030

mation, i.e., speaker embeddings or just assuming031

the dialogue is composed of two speakers involved032

turn by turn, to introduce dialogue structure in-033

formation to the models. However, for common034

researchers, dialogue data is hard to collect. Most035

of big dialogue data used by enterprises cannot036

be published due to privacy and legal issues. Al-037

though there are some open dialogue data, they038

are either not sufficient enough, or task-oriented,039

or lack of speakers labeling, such as OpenSubti-040

tles (Lison et al., 2018). Datasets like subtitles041

contain a lot of dialogue data of daily communica- 042

tion, but due to the lack of speaker annotation, it is 043

difficult to be utilized in current dialogue models. 044

Some researches in related fields, such as multi- 045

modal speech processing, may also need text-based 046

speaker clustering techniques. So it is valuable to 047

develop a model to reconstruct the missing identi- 048

ties of speakers in such dialogue data. 049

In order to reconstruct the speaker labels in the 050

dialogue, our work is dedicated to the method of 051

speaker clustering. Different from previous re- 052

searches on speaker identification, which aim at 053

selecting the most similar speaker of each utter- 054

ance from the known candidates, the speaker clus- 055

tering task aims at grouping the utterances into 056

speaker-specific clusters without any preset candi- 057

dates (Lukic et al., 2016). It is more useful because 058

it works on open corpus where the speakers cannot 059

be modeled in advance. 060

Speaker clustering is closely related to the dia- 061

logue structure, because the process of turns fol- 062

lows certain patterns. These patterns include the 063

change of speakers, also known as turn-takings, and 064

the interactions between different speakers. Con- 065

versely, speaker relations will be available if we 066

get these patterns from textual utterances. It is in- 067

tuitively possible, because the turn-takings can be 068

detected by some methods like the language model, 069

and the interactions can be detected by word-level 070

features and utterance-level acts such as greetings, 071

questions, and responses. Other semantic features 072

like interruptions and coreferences are also helpful. 073

To achieve the above dialogue analysis process, 074

we need to analyze the roles of utterances in a 075

dialogue. The first role is that an utterance car- 076

ries semantic content with its text form. Many 077

conventional dialogue comprehension studies take 078

dialogue act (DA) classification as a target task. 079

We suggest that this conventional task helps the 080

pre-trained model to embed the semantic content 081

of utterances, because the most important thing in 082
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embedding learning is to make the representation083

have a good distribution which expresses the cor-084

responding features of the embedded item. The085

second role of the turn is that it has communica-086

tive functions, which are mainly under covered by087

the correlations between turns. We can explicitly088

model these communicative functions by pairwise089

calculation.090

Every communicative function is related to a091

correlation between speakers. For both bi-party092

and multi-party dialogues, the correlation has only093

two possible values, i.e., whether same or differ-094

ent. The correlations among the whole dialogue095

can form a correlation matrix, which is regarded as096

the similarity graph of the ground speakers. The097

graph can reconstruct the clusters of speakers with098

a density-based clustering method. The most pop-099

ular algorithms incorporating these paradigms are100

spectral clustering (Von Luxburg, 2007) and DB-101

SCAN (Hess et al., 2019). In this work, we use102

spectral clustering as the implementation, because103

it is less sensitive to sparse points, which follows104

our task that each utterance must be in a cluster.105

Based on the above theories, we build a model106

that models the semantic content of utterances with107

multi-task cross-corpus supervision, calculates the108

communicative function between utterances with109

the form of bilinear, and generates the cluster labels110

with the method of spectral clustering.111

Our model is fine-tuned and evaluated on the112

Switchboard Dialog Act Corpus (SwDA) (Stolcke113

et al., 2000), the Meeting Recorder Dialogue Act114

Corpus (MRDA) (Shriberg et al., 2004), and the115

Ubuntu Dialogue Corpus (Lowe et al., 2015). The116

experimental result proves the significance of our117

pairwise correlation design and cross-corpus dia-118

logue act classification auxiliary task.119

2 Related Works120

Our task is related to dialogue comprehension.121

Generally, we start with the dialogue structure, and122

look for methods of semantic content modeling,123

communicative function modeling, and speaker124

clustering.125

Dialogue structure: The traditional researches126

in dialogue processing have noticed that the dia-127

logue is made up of turns. Each turn is a combi-128

nation of a speaker and an utterance. The turns129

are push ahead following the semantic cue. Specif-130

ically, dialogue turns have semantic content and131

communicative functions, which are represented132

by dialogue acts (Searle and Searle, 1969) and ad- 133

jacency pairs (Schegloff and Sacks, 1973) respec- 134

tively. Every turn has its own dialogue act. Two 135

turns of different speakers form a adjacency pair if 136

they have a behavior of interaction. Base on statis- 137

tical or machine learning methods, it is realizable 138

to predict the dialogue acts or the adjacency pairs 139

(Surendran and Levow, 2006; Li et al., 2019; Li and 140

Wu, 2016; Zhang et al., 2018a). Speaker clustering 141

is strongly depended on dialogue structure because 142

the semantic content and communicative functions 143

involve the correlations of speakers. 144

Semantic content modeling: Pre-trained lan- 145

guage models (Devlin et al., 2019; Lewis et al., 146

2020; Brown et al., 2020) have demonstrated their 147

effectiveness on semantic modeling. These works 148

illustrate the idea of represent semantic content 149

with contextualized embeddings, i.e., trainable dis- 150

tributed vector in semantic space. However, most 151

of the above models output word-level embeddings 152

to represent the meaning of a word instead of the 153

meaning of a whole sentence. There are solu- 154

tions to convert from word-level embeddings to 155

utterance-level embeddings, including using the 156

corresponding embedding of the [CLS] token and 157

using some pooling strategies (Ma et al., 2019; 158

Xiao, 2018). 159

Recently there are some dialogue comprehen- 160

sion models based on pre-trained language models. 161

Most of them are trained to extract semantic rep- 162

resentations in a self-supervised manner (Zhang 163

and Zhao, 2021). The advantage is that the avail- 164

able data is rich and the task is adaptable. However, 165

there are still some data that are not large in amount, 166

but clearly and instructively labeled, such as dia- 167

logue act annotated corpus. We want to use these 168

annotated data, although their annotations may not 169

be the same annotation set, to form a cross-corpus 170

supervised training. 171

Communicative function modeling: Previous 172

works on communicative function are almost de- 173

tecting the adjacency pairs of close turns (Nakan- 174

ishi et al., 2019; Zhang et al., 2018b). But these 175

works cannot be directly used in our task, because 176

they depend on and aim at the annotations of adja- 177

cency pairs instead of speakers. We need a more 178

general type of relations that coordinates with the 179

correlation of speakers. Thus, we look for a general 180

form of the relationship between two embeddings. 181

Speaker clustering: As far as we know, there 182

are few works directly on speaker clustering in 183
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textual dialogues. However, there is a previous184

work on speaker clustering through pairwise rela-185

tionships based on speech signals (Lin et al., 2019).186

This work uses spectral clustering as the top-level187

structure. It provides an idea for our structural de-188

sign, but its basic input data is voice rather than189

text.190

Other models related to speakers in dialogue:191

There are some researches more related to the192

speaker labeling task in textual dialogues (Ek et al.,193

2018; Serban and Pineau, 2015; Ma et al., 2017),194

but they are not speaker clustering models directly.195

Most of them depend on the assumption that each196

speaker has its own speaking characteristic, e.g.197

the proportion of stop words, short words, adverbs198

in its utterances. Turn-taking detection is another199

type of speakers labeling (Liang and Zhou, 2020;200

Aldeneh et al., 2018). It refers to identifying the201

positions where the speakers change during the di-202

alogue. This kind of works has strengthened the203

feature extraction between turns and raised the per-204

formance to a high level. Although the result of205

turn-taking detection can be used to do speaker206

clustering in dialogues with only two speakers, it207

cannot be directly used in dialogues with more208

than three speakers (multi-party dialogues). The209

reason is that it only focuses on the relationships be-210

tween two adjacent utterances. It would be useful211

in multi-party dialogues if extended to the relation-212

ships between utterances that are not necessarily213

adjacent.214

3 Model215

The main consideration of our model is how to get216

representation of utterances, cooperate with cross-217

corpus DA supervision, and calculate the correla-218

tions. Therefore, the model is divided into three219

parts in general: the BERT embedding part, the220

set-specific dialogue act classification part, and the221

correlation clustering part. Figure 1 shows the over-222

all structure of our model.223

We define that, during training process, each data224

batch consists of B dialogues. In the i-th dialogue225

of the batch, there are Ti turns. The speaker of the226

j-th turn of the i-th dialogue is si,j . The utterance227

text of the j-th turn of the i-th dialogue is ui,j . The228

DA set of the i-th dialogue is Di, where Di = ∅229

if the i-th dialogue does not have DA annotation.230

The DA label of the j-th turn of the i-th dialogue231

is di,j , where di,j ∈ Di.232

The objective of the model tallies with multi-233
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Figure 1: Model structure.

task learning framework. The loss function of each 234

data batch L is a combination of the binary cross 235

entropy loss of the pairwise matrix Lmat and the 236

cross entropy loss of the DA prediction LDA. We 237

use a hyperparameter λ to moderate the association 238

between the two objectives. Formally, 239

L = Lmat + λLDA. (1) 240

The objectives and structure will be described in 241

the following sections. 242

3.1 Utterance Embedding 243

The first step of our model is to represent the se- 244

mantic content of utterances as distributed vec- 245

tors. Following previous works on text represen- 246

tation and dialogue processing (Ma et al., 2019; 247

Gu et al., 2021), we concatenate the utterances 248

in the dialogue with a [CLS] token prepended at 249

the beginning of every utterance, and append a 250

[SEP] token. For a dialogue with Ti utterances 251

ui,1, ui,2, . . . , ui,Ti , the input format is 252

[CLS] ui,1 [CLS] ui,2 . . . [CLS] ui,Ti [SEP]. 253

Comparing to modeling each utterance in a sep- 254

arate pre-trained language model, this format is 255

more lightweight that uses only a single BERT 256

model, and contributes to directly modeling the 257

word-level relations across the utterances. But it 258

causes a problem if some utterances are too long. 259

We deal with this problem by setting a limitation 260

of the count of tokens for each utterance. The ut- 261

terances which are longer than the limitation will 262

be cut off. This scenario rarely happens so it will 263

not impact our analysis. 264
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For each utterance, we take the output vectors265

of all the tokens of it (including the [CLS] token266

before), and concatenate the mean pooling and max267

pooling results as the semantic representation, i.e.,268

contextualized utterance embedding. Formally, the269

k-th token of the utterance ui,j corresponds to the270

contextualized token embedding ei,j,k outputted by271

BERT. We calculate the utterance embedding with272

ci,j = concat
[

mean
k

(ei,j,k),max
k

(ei,j,k)

]
, (2)273

where n is the number of tokens in this utterance,274

mean and max are mean pooling and max pool-275

ing functions through the stream dimension. For276

a BERT model of hidden size dBERT, the dimen-277

sion of the contextualized utterance embedding is278

2dBERT.279

3.2 Correlation Calculation280

To model the correlations between speakers, we281

use the form of bilinear. Specifically, for a dia-282

logue with Ti turns, the contextualized utterance283

embeddings are284

ci,1, ci,2, . . . , ci,Ti ∈ R2dBERT .285

The correlation score of the utterances ui,m and286

ui,n is the sigmoid mapping of bilinear form287

corr(m,n | i) = σ(cTi,mWci,n + b), (3)288

where W ∈ R2dBERT×2dBERT and b ∈ R are trainable289

parameters.290

For each pair of utterances, the correlation is a291

real number between 0 and 1, denotes the proba-292

bility that the corresponding speakers are identical.293

The correlations are symmetric, so each pair of ut-294

terances is just calculated once, i.e., always having295

m < n in Equation 3. All correlations in the i-th296

dialogue finally form a symmetric Ti × Ti matrix.297

The loss function of correlation matrix is calcu-298

lated by the elements of the triangular. Formally,299

Lmat =
1

C

B∑
i=1

Ti−1∑
m=1

Ti∑
n=m+1

300

BCE[corr(m,n | i), y(m,n | i)], (4)301

302

y(m,n | i) = I[si,m = si,n], (5)303

where C =
∑B

i=1 Ti(Ti − 1)/2 is the number of304

the utterance pairs in the batch, and I is indicator305

function.306

The reason why we can directly use boolean val- 307

ues as the correlation classes is that the correlation 308

classes are supersets of dialogue structure types. 309

For example, the non-identical correlation (0) is 310

the union of the scenarios of turn-taking, forming 311

an adjacency pair, and a chain of odd number of 312

adjacency pairs, etc. While the identical correlation 313

(1) is the union of the scenarios of non-turn-taking, 314

forming a long-distance relation of restatement, 315

continuous probing, and forming a chain of even 316

number of adjacency pairs, etc. It is possible to 317

detect the turn-taking states and the dialogue struc- 318

ture relations as many previous works have shown, 319

so classifying on the supersets is also possible. 320

It is worth noticing that no additional positional 321

encoding or embedding is added when calculat- 322

ing the correlations. We find that the positional 323

information taken from BERT layer is enough for 324

current calculation. Adding another positional en- 325

coding or embedding to this layer does not improve 326

the performance according to our preliminary ex- 327

periment. 328

3.3 Speaker Clustering 329

We follow the spectral clustering algorithm 330

(Von Luxburg, 2007; Lin et al., 2019) to cluster 331

the utterances into clusters that each cluster has the 332

same speaker and different clusters have different 333

speakers. 334

Given the symmetric correlations matrix S ∈ 335

RTi×Ti , we compute both of the two kinds of nor- 336

malized graph Laplacians, Lsym and Lrw, which 337

are the same as the definition in the review 338

(Von Luxburg, 2007). We use the eigenvalues of 339

Lrw to determine the number of clusters, and the 340

eigenvectors of Lsym to cluster1. 341

The eigenvalues of the Laplacian matrix are re- 342

lated to the number of clusters. If the appropriate 343

number of clusters is k, there will be a larger dif- 344

ference between the k-th smallest eigenvalue and 345

the (k+1)-th smallest eigenvalue, called the eigen- 346

gap. The greater the number of clusters, the less the 347

overall eigenvalues will be. Therefore, an appro- 348

priate threshold can be selected on the validation 349

set. If the (k + 1)-th eigenvalue is greater than the 350

threshold, the number of clusters is considered to 351

be (or less than) k. The threshold is adjusted on 352

the validation set to maximize the accuracy. We 353

report the results of both using the real number of 354

1Implemented by scikit-learn and called with parameter
assign_labels="discretize".
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speakers as the cluster number and using the thresh-355

old method to determine the cluster number in the356

experiment section.357

3.4 Set-specific Dialogue Act Classification358

This part is designed as a auxiliary task to infuse di-359

alogue act information into utterance embeddings.360

We suggest that the ability of extracting semantic361

content will be more strong and the calculation of362

correlation will be more accurate if the model can363

judge the dialogue act of the utterance correctly.364

We present dialogue act classification as part of a365

multi-task learning framework. For each dataset, if366

there are dialogue act labels annotated, we can use367

these labels to supervise the model to adjust the em-368

beddings so that they express the corresponding di-369

alogue acts. However, there is a problem that most370

of the DA-annotated datasets are not big enough,371

comparing to the speaker-annotated datasets. Al-372

though the number of DA-annotated datasets is373

large, these datasets are annotated with different374

sets and rules, and cannot be easily mapped to each375

other.376

To solve this problem, we use a set-specific lin-377

ear layer to adapt to the DA set of the data. For378

different dialogue act annotation sets, we use dif-379

ferent linear layers to predict the corresponding380

number of dialogue act types. The loss function381

LDA is calculated by the multi-class cross entropy382

of the output of the corresponding linear layer, and383

the output of other linear layers is ignored.384

This layer uses a shallow structure to classify in385

order to integrate different DA labeling rules and386

sets together. Ideally, this layer should be able to387

become a labeling rule converter, and make the con-388

textualized utterance embedding connotes a more389

general dialogue act type.390

4 Experiment391

4.1 Datasets392

Our datasets are composed of three corpus: the393

SwDA Corpus, the MRDA Corpus, and the Ubuntu394

Dialogue Corpus. We propose the result of the395

SwDA dataset as a simple single-corpus condition396

to intuitively analyze the role of correlation matrix397

and auxiliary DA classification task, and the result398

of simultaneously training on SwDA, MRDA, and399

Ubuntu datasets as a mass cross-corpus condition.400

The SwDA Corpus and the MRDA Corpus are401

two common DA-annotated datasets. The SwDA402

Corpus is a two-party dialogue dataset transcribed403

by phone calls. There are 221616 turns in total. 404

The dialogue act annotations are divided into 217 405

small categories and 43 major categories. Two adja- 406

cent utterances may be from the same speaker. The 407

MRDA Corpus is a multi-party dialogue dataset 408

transcribed by conferences. There are 108202 409

turns in total. DA annotations are divided into 410

52 full categories, 12 general categories, and 5 ba- 411

sic categories. Two adjacent utterances may be 412

from the same speaker, and this situation is rela- 413

tively common. The Ubuntu Dialogue Corpus is 414

a widely used dialogue dataset collected from the 415

chat records on the Ubuntu IRC system, without 416

DA annotation. 417

For the SwDA Corpus, we first split the dialogue 418

streams into 10-turn segments, and then randomly 419

divide them into training, validation and test set by 420

the ratio of 8:1:1. For the MRDA Corpus, we use 421

the same set division as the original data, and then 422

split the dialogue streams into 10-turn segments. 423

For the Ubuntu Dialogue Corpus, We use the 10- 424

turn version released by previous works (Ouchi 425

and Tsuboi, 2016; Gu et al., 2021). Each dialogue 426

contains 10 turns, with the number of speakers 427

ranging from 2 to 10. Table 1 shows the basic 428

quantity statistics of the datasets. 429

Dataset Set Dialog S/D

SwDA
Train 17059 2.00
Valid 2132 2.00
Test 2132 2.00

MRDA
Train 7485 3.01
Valid 1636 2.91
Test 1664 2.96

Ubuntu
Train 495226 4.08
Valid 30974 4.21
Test 35638 4.19

Table 1: Statistics of the datasets. “S/D” stands for
“average number of different Speakers per Dialogue”.

In our experiment, we use the 43 major cat- 430

egories of SwDA and 12 general categories of 431

MRDA as our target DA sets of the auxiliary task. 432

4.2 Parameters and Environment 433

We use the PyTorch framework (Paszke et al., 2019) 434

and common backpropagation for training. After 435

each epoch of training, we calculate the perfor- 436

mance indicators on the validation set and save the 437

model parameters that maximize the accuracy on 438

the validation set to avoid overfitting. 439
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We use AdamW (Loshchilov and Hutter, 2019)440

as the optimizer. By testing on the SwDA dataset,441

we select the hyperparameters in lr={1e-5, 2e-5, 3e-442

5}, eps={1e-4, 1e-5, 1e-6}, and weight_decay={0,443

1e-4}, to maximize the accuracy on the valida-444

tion set. The final choice, lr=2e-5, eps=1e-6,445

weight_decay=0, betas=(0.9, 0.999), are used for446

all datasets.447

We use bert-base-uncased provided by Google448

(Turc et al., 2019) as the initialization parameter of449

the BERT part. All of the BERT parameters and450

other linear and bilinear parameters are fine-tuned451

end-to-end.452

For the SwDA single-corpus experiment, we453

select the association hyperparameter in λ =454

{0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. For each training455

step, the data batch consists of 5 random SwDA456

dialogue segments. The evaluation is executed for457

every 500 steps. Every setting is trained on a single458

RTX 2080Ti GPU for about 1.5 hours to select the459

best one on the validation set. The final choice is460

λ = 0.2.461

For the SwDA, MRDA, and Ubuntu cross-corpus462

experiment, we select the association hyperparam-463

eter in λ = {0.01, 0.1}. For each training step, the464

data batch consists of 3 random Ubuntu dialogue465

segments, 1 random SwDA dialogue segment, and466

1 random MRDA dialogue segment. The evalua-467

tion is executed for every 5000 steps. Every setting468

is trained on a single RTX 2080Ti GPU for about469

2 days to select the best one on the validation set.470

The final choice is λ = 0.01.471

4.3 Baselines472

Due to the lack of related works on text-based473

speaker clustering, we cannot find an existing474

model that is directly comparable. So we imple-475

ment our baselines to prove the necessity of the476

model design.477

The first design to cover is modeling the pairwise478

correlations. For comparison, we implemented a479

general sequence classification model that changes480

the output layer to a multi-class softmax layer. The481

number of output classes is set to the maximum482

number of different speakers in the dialogue. We483

trained this baseline model to predict the sequential484

IDs of speakers in a dialogue.485

The second design to cover is the set-specific486

dialogue act classification task. For comparison,487

we set λ = 0 as the ablation setting in this scenario,488

while other parameters including the constitution489

of input batches are consistent. 490

4.4 Metrics 491

We employ two metrics in the experimental results, 492

the adjusted Rand index (ARI) (Hubert and Arabie, 493

1985)2 and the accuracy (ACC). The adjusted Rand 494

index is a common metric for clustering, which 495

measures the similarity between two cluster sets. 496

The value ranges from -1 to 1. For a random clus- 497

tering, the mathematical expectation of ARI is 0, 498

which is intuitively correct. The accuracy is calcu- 499

lated by transforming the clustering problem into a 500

classification problem. The idea is finding the best 501

injective mapping from the predicted clusters to the 502

real clusters. If the number of the predicted clus- 503

ters is greater than the number of the real clusters, 504

the exceeded predicted clusters will be mapped to 505

nothing. Formally, we enumerate all permutations 506

of the set {1, 2, . . . , n} where n is the number of 507

predicted clusters, so that 508

acc (y, ŷ) = max
p∈P

1

Ti

Ti∑
j=1

I
[
p
(
ŷ(j)

)
= y(j)

]
, 509

where y is the labels of real clusters, ŷ is the labels 510

of predicted clusters, p is a permutation of the set 511

{1, 2, . . . , n}, I is indicator function, and y(j) is 512

the element on index j in vector y. 513

The ACC result is turn-level average statistics, 514

which is the number of correctly cluster-assigned 515

utterances divided by the total number of turns 516

in the dataset. The ARI result is dialogue-level 517

average statistics, which is the mean ARI values 518

among the dialogues. 519

The reason for using accuracy as a metric is 520

that it is convenient to observe the difference be- 521

tween the predicted result and the real value af- 522

ter mapping. And it provides a comparable result 523

with other speaker identification models, not just 524

speaker clustering models. 525

4.5 Result 526

Our experimental result of the single-corpus con- 527

dition and the cross-corpus condition are shown in 528

Table 2 and Table 3 respectively. 529

Table 2 shows the result of SwDA dataset. Our 530

multi-task clustering model outperforms the se- 531

quence classification baseline and the ablative ex- 532

periment without auxiliary DA classification task 533

in all the tests. This result proves that our auxiliary 534

2Implemented by scikit-learn.
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Model
SwDA

Valid Test
ACC ARI ACC ARI

Baseline 0.760 0.486 0.748 0.463
Clustering 0.868 0.596 0.860 0.575
- w/o DA Task 0.865 0.585 0.856 0.566

Table 2: Result of SwDA dataset.

task improves the semantic content representation535

and correlation calculation if the training data and536

evaluating data have the same semantic feature and537

distribution.538

Table 3 shows the result of training on all of the539

three datasets, and evaluating on the three datasets540

or just on the Ubuntu datasets. Because MRDA541

and Ubuntu datasets are multi-party dialogues and542

we may not know the number of speakers in a di-543

alogue in advance, we provide the result of both544

using the ground-truth speaker count as the num-545

ber of clusters, and using the eigengap method to546

detect the number of clusters for spectral cluster-547

ing. Our model still outperforms the baseline in548

all the tests, and the ablative experiment in almost549

all the tests in the scenario of given the ground-550

truth speaker count. Even the Ubuntu only result551

is promoted by our set-specific dialogue act classi-552

fication task. This suggests that cross-corpus and553

cross-domain supervised training is possible if we554

design the model with reasonable structure and ob-555

jective. The result of using the eigengap method to556

detect the number of clusters shows that our model557

still outperforms the baseline in all the tests, which558

suggests that the clustering method is still better559

than the sequence classification method even with-560

out prior knowledge of the real number of clusters.561

An interesting phenomenon is that, without spec-562

ifying the real number of speakers, the ACC met-563

rics and ARI metrics of whether applying auxiliary564

tasks or not have different trends. Actually, the565

ARI metrics is more concerned with whether the566

dividing points of the clusters are correct, while the567

ACC metrics is the result after mapping. So the568

ARI metrics more directly reflects whether the key569

transformation relationships are correctly found.570

5 Discussion571

5.1 Correlation Modeling572

The essential of speaker clustering task is modeling573

the dialogue structure, especially the interactions574

among the speakers. We have described the steps575

of speaker clustering are: 576

1. Observe the sequential utterance stream. 577

2. Extract the semantic content. 578

3. Infer the communicative functions (interac- 579

tions and correlations). 580

4. Infer the identities of the speakers. 581

The third step is necessary and hard to be implic- 582

itly learnt by the sequential model. Pairwise corre- 583

lations are suitable and sufficient to cover all the 584

communicative functions in most cases, because a 585

turn of the dialogue is an interaction between two 586

speakers in most of time. 587

The sample output of the sequence classification 588

model shows the necessity of modeling the pair- 589

wise correlations. We find that the results of the 590

sequence classification models have a typical kind 591

of error. It is that the model sometimes generates 592

roughly segmented results, i.e., the first few utter- 593

ances are predicted to be Speaker 0, the next few 594

utterances are predicted to be Speaker 1, and the 595

next few utterances are predicted to be Speaker 2, 596

and so on. We have also tried some other sequence 597

classification models and the results are similar. 598

This shows that the model is in a state of under- 599

fitting, and the prediction results only satisfy the 600

statistical characteristics along the stream dimen- 601

sion, but not the turn-taking characteristics along 602

the semantic dimension. 603

One of the biggest difference between the 604

speaker clustering task and other classification 605

problems is that there is no direct statistical re- 606

lationship between the input feature and the output 607

classification. The speaker label of a turn is 0, 1, 608

or 2, not because the turn itself has the feature of 609

class 0, 1, or 2, but mainly because of its position 610

in the dialogue. Therefore, the ordinary sequence 611

classification model is more likely to learn the dis- 612

tribution of labels in the time dimension, but it is 613

difficult to find the relationship between the same 614

label or the relationship between different labels. 615

The correlation based model avoids such problem. 616

We investigate the internal layer results of the 617

pairwise correlation by aggregating the position- 618

level error of correlation matrix, as shown in Fig- 619

ure 2. The item in i-th row and j-th column indi- 620

cates the mean error of the correlation score of the 621

i-th turn and j-th turn. Formally, 622

err(m,n) =
∣∣corr(m,n)− y(m,n)

∣∣ . (6) 623
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Model
S+M+U S+M+U (Ubuntu Only)

Valid Test Valid Test
ACC ARI ACC ARI ACC ARI ACC ARI

Baseline 0.530 0.249 0.531 0.247 0.513 0.234 0.516 0.235
Clustering 0.697 0.297 0.695 0.294 0.684 0.276 0.685 0.278
- w/o DA Task 0.696 0.297 0.694 0.292 0.684 0.277 0.684 0.277
Clustering without Speaker Count 0.629 0.285 0.629 0.283 0.615 0.265 0.617 0.267
- w/o DA Task 0.633 0.283 0.632 0.281 0.618 0.264 0.619 0.265

Table 3: Result of training on SwDA, MRDA, and Ubuntu datasets, and evaluating on the three datasets (left) or
only the Ubuntu dataset (right).

We take the result of correlation matrix of the624

Ubuntu test set, and plot the heatmaps of mean er-625

ror. The figure shows that the model successfully626

models the correlations between utterances, espe-627

cially the adjacent ones. For longer-distance pairs,628

it is constitutionally more difficult to be modeled,629

but our model is still effective with a mean error630

less than 0.5.631
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Figure 2: Error heatmaps of correlation matrix on the
Ubuntu test set with (left) and without (right) auxiliary
DA classification task. Darker color means more accu-
rate, and lighter color means more erring.

5.2 Step-wise Training Process632

In order to observe the stability of performance,633

we provide the step-wise validating result. Fig-634

ure 3 shows the training process of SwDA dataset.635

Intuitively, our multi-task model (blue line) outper-636

forms than others at almost every step after 20000.637

We take the best 20 values from the result of638

our multi-task (DA enhanced) training process and639

the ablative (no DA enhancement) training process,640

and make a significance test by Student’s t-test.641

It comes to a result of p = 7.18 × 10−10, which642

suggests significant stable improvement of the su-643

pervision of our DA classification task comparing644

to the ablation setting.645

In our experiment of cross-corpus condition, we646

find that if λ is set to a greater value, the accuracy647

will converge faster, but it does not work much648

0 5000 10000 15000 20000 25000 30000 35000
Steps

0.72
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0.78

0.80
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0.84

0.86

0.88

A
cc

ur
ac

y Clustering
Clustering without DA

Sequence Classification

Figure 3: The ACC result of the SwDA validation set
for every 500 training step.

at the highest point, which is mainly because the 649

model is overfit on the auxiliary task. If λ is set to 650

a suitable value, the regularization of cross-corpus 651

multitasking will be more evident. 652

6 Conclusion and Future Work 653

We propose a text-based dialogue speaker cluster- 654

ing model. Based on the theory of the dialogue 655

structure, the model takes the advantage of the se- 656

mantic content and the communicative functions 657

explicitly with the design of the BERT layer and 658

the correlation matrix respectively. The model is 659

also enhanced by the idea of cross-corpus super- 660

vision with the set-specific dialogue act classifica- 661

tion auxiliary task design. It finally generates the 662

cluster labels of speakers with spectral clustering. 663

Our model outperforms the sequence classification 664

baseline on every test, and outperforms the non-DA 665

ablation on almost every test. 666

We have noticed that further pre-training the 667

model on dialogue data may be helpful to extract 668

better semantic embeddings, which we will exam- 669

ine in the future. The method of modeling the 670

correlation of long-distance utterances also needs 671

to be explored. 672
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