
CERBERUS: MINIMALISTIC MULTI-SHARD BYZANTINE-RESILIENT TRANSACTION

PROCESSING

JELLE HELLINGS

Department of Computing and Software
McMaster University

jhellings@mcmaster.ca

DANIEL P. HUGHES

RDX Works Ltd
dan@rdx.works

JOSHUA PRIMERO

RDX Works Ltd
josh@rdx.works

MOHAMMAD SADOGHI

Exploratory Systems Lab
Department of Computer Science
University of California, Davis
msadoghi@ucdavis.edu

Abstract
To enable scalable resilient blockchain systems, several pow-
erful general-purpose approaches toward sharding such sys-
tems have been demonstrated. Unfortunately, these ap-
proaches all come with substantial costs for ordering and
execution of multi-shard transactions.

In this work, we ask whether one can achieve significant
cost reductions for processing multi-shard transactions by
limiting the type of workloads supported. To initiate the
study of this problem, we propose CERBERUS, a family of
minimalistic primitives for processing single-shard and multi-
shard UTXO-like transactions. The first CERBERUS variant
we propose is core-CERBERUS (CCERBERUS). CCERBERUS
uses strict UTXO-based environmental requirements to enable
powerful multi-shard transaction processing with an absolute
minimum amount of coordination between shards. In the
environment we designed CCERBERUS for, CCERBERUS
will operate perfectly with respect to all transactions proposed
and approved by well-behaved clients, but does not provide
any other guarantees.

To illustrate that CCERBERUS-like protocols can also be of
use in environments with faulty clients, we also demonstrate
two generalizations of CCERBERUS, optimistic-CERBERUS
and resilient-CERBERUS, that make different tradeoffs in com-
plexity and costs when dealing with faulty behavior and at-
tacks. Finally, we compare these three protocols and show
their potential scalability and performance benefits over state-
of-the-art general-purpose systems. These results underline
the importance of the study of specialized approaches toward
sharding in resilient systems.

1 Introduction

The advent of blockchain applications and technology has re-
juvenated interest of companies, governments, and developers
in resilient distributed fully-replicated systems and the dis-
tributed ledger technology (DLT) that powers them. Indeed,
in the last decade we have seen a surge of interest in reimag-
ining systems and build them using DLT networks. Examples
can be found in the financial and banking sector [15, 42, 57],
IoT [48], health care [29, 43], supply chain tracking, adver-
tising, and in databases [5, 23, 31, 32, 53–55]. This wide
interest is easily explained, as blokchains promise to improve
resilience against both failures and malicious behavior, while

enabling the federated management of data by many partici-
pants.

To illustrate this, we look at the financial sector. Current
traditional banking infrastructure is often rigid, slow, and
creates substantial frictional costs. It is estimated that the
yearly cost of transactional friction alone is $71 billion [8] in
the financial sector, creating a strong desire for alternatives.
This sector is a perfect match for DLT, as it enables systems
that manage digital assets and financial transactions in more
flexible, fast, and open federated infrastructures that eliminate
the friction caused by individual private databases maintained
by banks and financial services providers. Consequently, it
is expected that a large part of the financial sector will move
towards DLT [18].

At the core of DLT is the replicated state maintained by
the network in the form of a ledger of transactions. In tradi-
tional blockchains, this ledger is fully replicated among all
participants using consensus protocols [14,31,40,48,52]. For
many practical use-cases, one can choose to use either permis-
sionless consensus solutions that are operated via economic
self-incentivization through cryptocurrencies (e.g., Nakamoto
consensus [51, 62]), or permissioned consensus solutions
that require vetted participation (e.g, PBFT, POE, and HOT-
STUFF [16, 33, 64]). Unfortunately, the design of consensus
protocols are severely limited in their ability to provide the
high transaction throughput that is needed to address practical
needs, e.g., in the financial sector. Indeed, on the one hand, we
see that permissionless solutions can easily scale to thousands
of participants, but are severely limited in their transaction
processing throughput. For example, in Ethereum, a popular
public permissionless DLT platform, the rapid growth of de-
centralized finance applications [12] causes its network fees
to rise precipitously as participants bid for limited network
capacity [7], while Bitcoin can only process a few transac-
tions per second [57]. On the other hand, solutions that use
permissioned consensus protocols such as PBFT can reach
much higher throughput. Typically, these solutions are still
fully-replicated resilient systems, however. Hence, the speed
by which individual replicas can process transactions provides
an upper-bound on the performance of these solutions, ruling
out scalability. Furthermore, adding replicas will actively
decrease performance of these solutions, as full replication
among more replicas increases the cost of full replication
(e.g., via consensus). As such, these solutions lack the scala-
bility required by many modern high-throughput data-based

jhellings@mcmaster.ca
dan@rdx.works
josh@rdx.works
msadoghi@ucdavis.edu

Journal of Systems Research (JSys) 2023

A1 A2

A3 A4
PBFT

(Objects o1, . . . ,o10)

B1 B2

B3 B4
PBFT

(Objects o11, . . . ,o20)

Request on o3,o5
(via PBFT)

Request on o12,o17
(via PBFT)

CERBERUS

Request on o2,o14
(via CERBERUS)

Figure 1: A sharded design in which two resilient blockchains
each hold only a part of the data. If a transaction only affects
objects within a single resilient blockchain (cluster), then the
transaction can be processed via a local decision within that
cluster via traditional PBFT consensus, whereas multi-shard
transactions are processed via CERBERUS (proposed in this
work).

applications [31, 34, 55].
Recently, several general-purpose consensus-based sys-

tems have been proposed that use sharding to combat the
limitations of fully-replicated consensus-based systems [1, 3,
4, 17, 36, 38, 58]. In these systems, one partitions the data
among several shards that each can potentially operate mostly-
independent on their data, while only requiring inter-shard
coordination to process multi-shard transactions that affect
data on several shards (see Figure 1).

The choice of protocol for such multi-shard transaction
processing determines greatly the scalability benefits of
sharding and the overhead costs incurred by sharding, how-
ever [1, 3, 4, 17, 36, 38, 58]. In practice, existing proposals
for sharding consensus-based systems have taken a general-
purpose approach aiming at serving any workload. Unfortu-
nately, such genericity comes at a cost, and existing proposals
either have high coordination costs, incur high latencies, or
have severe bottlenecks with multi-shard workloads.

In this work, we ask whether one can improve on the state-
of-the-art proposals for sharded consensus-based resilient sys-
tems by limiting the type of workloads supported by the sys-
tems. In specific, we propose the following problem for
further study:

Problem. Can one reduce the cost of coordination
in the design of sharded consensus-based systems
by limiting the types of workloads supported?

In this paper, we give a preliminary positive answer for the
above problem. In specific, in this paper we limit the types
of workloads to UTXO-transactions and we use properties of
these UTXO-transactions to design the CERBERUS family of
minimalistic multi-shard transaction processing protocols: by
using the properties of UTXO-transactions to our advantage,
the CERBERUS family of multi-shard transaction processing
protocols are able to reduce coordination, e.g., in terms of
local consensus steps or in terms of communication between

shards, to a minimum. To be able to adapt to the needs of
specific use-cases, we propose three variants of CERBERUS:

1. In Section 4, we propose Core-CERBERUS
(CCERBERUS), a design specialized for process-
ing UTXO-like transactions. CCERBERUS uses strict
environmental assumptions on UTXO-transactions to
its advantage to yield a minimalistic design that only
requires a single local consensus step in affected shards,
an absolute minimum. Furthermore, CCERBERUS
requires only a single round of information sharing
between shards. This information sharing can be
implemented either via an all-to-all communication
step (favoring latency over bandwidth usage) or via
an all-to-one-to-all communication step (favoring
bandwidth usage over latency).

Even with this minimalistic design, CCERBERUS will op-
erate perfectly with respect to all transactions proposed
and approved by well-behaved clients: CCERBERUS
is able to correctly execute all such transactions, even
in the presence of transactions proposed by malicious
clients (CCERBERUS may fail to process transactions
originating from malicious clients, however).

To also support more general-purpose environments in which
clients are malicious or can legitimately approve conflict-
ing transactions, we propose Optimistic-CERBERUS and
Resilient-CERBERUS, two generalizations of CCERBERUS
that each deal with the strict environmental assumptions of
CCERBERUS while preserving the minimalistic design of
CCERBERUS:

2. In Section 5, we propose Optimistic-CERBERUS. In
the design of Optimistic-CERBERUS (OCERBERUS), we
assume that malicious behavior is rare and we optimize
the normal-case operations. We do so by keeping the
normal-case operations as minimalistic as possible by
utilizing a single multi-shard consensus step to execute
multi-shard transactions in the normal case.

This multi-shard consensus step combines the local con-
sensus steps of CCERBERUS and the information shar-
ing steps of CCERBERUS into a single step. As with
CCERBERUS, this step can either favor latency or band-
width. When compared to CCERBERUS, the multi-shard
consensus step does not require any additional coordina-
tion phases in the well-behaved optimistic case, while
still being able to lift the environmental assumptions of
CCERBERUS and lowering the latency of transaction pro-
cessing in most cases. In doing so, OCERBERUS does
require intricate coordination when recovering from at-
tacks, however.

3. In Section 6, we propose Resilient-CERBERUS. In the de-
sign of Resilient-CERBERUS, we assume that malicious
behavior is common and we add sufficient coordination

2

Journal of Systems Research (JSys) 2023

to the normal-case operations of CCERBERUS to enable
a simpler recovery path that can deal with malicious
replicas within a shard without interfering with the op-
erations of any other shards, allowing PCERBERUS to
operate in a general-purpose fault-tolerant environments
without significant costs to recover from attacks.

In Section 7, we show that all three variants of CERBERUS
provide strong ordering guarantees based on their usage of
UTXO-transactions. Finally, in Section 8, we compare the
three CERBERUS protocols and show their potential scala-
bility and performance benefits over state-of-the-art general-
purpose systems

2 Preliminaries

As permissioned blockchains already have much higher
throughputs than permissionless blockchains, we will focus
on permissioned blockchains in this paper.

First, we introduce the system model, the sharding model,
the data model, the transaction model, and the terminology
and notation used throughout this paper.

If S is a set of replicas, then G(S) denotes the non-faulty
good replicas in S that always operate as intended, and
F (S) = S \G(S) denotes the remaining replicas in S that
are faulty and can act Byzantine, deviate from the intended
operations, or even operate in coordinated malicious manners.
We write nS = |S|, gS = |G(S)|, and fS = |S\G(S)|= nS −gS
to denote the number of replicas in S, good replicas in S, and
faulty replicas in S, respectively.

We assume that communication between replicas is au-
thenticated: on receipt of a message m from replica R ∈R,
one can determine that R did sent m if R ∈ G(R). Hence,
faulty replicas are able to impersonate each other, but are
not able to impersonate good replicas. To provide authenti-
cated communication under practical assumptions, we can
rely on cryptographic primitives such as digital signatures
and threshold signatures [44, 59].

Let R be a set of replicas. In a sharded fault-tolerant system
over R, the replicas are partitioned into sets shards(R) =
{S0, . . . ,Sz} such that the replicas in Si, 0 ≤ i ≤ z, operate as
an independent Byzantine fault-tolerant system. As each Si
operates as an independent Byzantine fault-tolerant system,
we require nSi > 3fSi , a minimal requirement to enable Byzan-
tine fault-tolerance in an asynchronous environment [20, 21].
We assume that every shard S ∈ shards(R) has a unique
identifier id(S).
Assumption 2.1. We assume adversaries that can, at will,
choose and control any replica R ∈ S in any shard S ∈
shards(R) in the sharded fault-tolerant system as long as,
for each shard S ′ ∈ shards(R), the adversaries only control
up to fS ′ replicas in S ′.

We use the object-dataset model in which data is mod-
eled as a collection of objects. Each object o has a unique

identifier id(o) and a unique owner owner(o). In this set-
ting, the owner of an object typically is some client that can
authenticate transactions involving that object. For exam-
ple, if objects represent monetary tokens, then the owner can
approve transfers of these tokens.

In the following, we assume that all owners are clients of
the system that manages these objects. The only operations
that one can perform on an object are construction and de-
struction. An object cannot be recreated, as the attempted
recreation of an object o will result in a new object o′ with a
distinct identifier (id(o) ̸= id(o′)).

Changes to object-dataset data are made via transactions
requested by clients. We write ⟨τ⟩c to denote a transac-
tion τ requested by a client c. We assume that all transac-
tions are UTXO-like transactions: a transaction τ first pro-
duces resources by destructing a set of input objects and
then consumes these resources in the construction of a set
of output objects. We do not rely on the exact rules re-
garding the production and consumption of resources, as
they are highly application-specific. Given a transaction
τ, we write Inputs(τ) and Outputs(τ) to denote the input
objects and output objects of τ, respectively, and we write
Objects(τ) = Inputs(τ)∪Outputs(τ).

UTXO-like transactions are mainly known for their usage
in Bitcoin and other cryptocurrencies [51]. They form an
abstract model that can easily be used for many other types
of workloads. Next, we consider three types of applications
in which we can use UTXO-like transactions.

Example 2.2. The traditional example would be banking: ob-
jects representing unique tokens (e.g., coins or other unique
objects) that can be exchanged between owners. For exam-
ple, if Ana owns tokens {232,437,1211,1234} and Bo owns
tokens {11,124,423}, they can work together to send two
tokens to Eva:

τ := Inputs:{1234,423}→
Outputs:{1244 7→ Eva,9823 7→ Eva}.

Transaction τ needs to be signed by Ana and Bo to express
their approval. In this example, 1244 and 9823 are new unique
identifiers (the way in which these identifiers are generated
will depend on the specific requirements of the application.
e.g., they can be based on a digest of the transaction).

To further underline the flexibility of UTXO-transactions,
we will next consider two applications outside the traditional
banking setting.

Example 2.3. Consider a game inventory in which objects
(e.g., iron and wood) are owned by users. In this case, a
transaction can be (1) the trade of objects between users;
and (2) the construction of new objects out of their building
blocks. For example, a setting in which Ana owns objects
{Iron123, Iron125} and Bo owns {Wood15}. A trade transac-

3

Journal of Systems Research (JSys) 2023

tion would look like:

τ1 := Inputs:{Iron123,Wood15}→
Outputs:{Iron879 7→ Bo,Wood321 7→ Ana}.

Again, this transaction needs to be signed by Ana and Bo to
express their approval. After execution of this transaction,
Ana will own {Iron125,Wood321} after which she can con-
struct an axe from the building blocks she owns and gift this
axe to Eva:

τ2 := Inputs:{Iron125,Wood321}→
Outputs:{Axe91 7→ Eva}.

This transaction needs to be signed by Ana for her approval.
After execution of this transaction, Ana will not own anything,
while Eva owns {Axe91}.

Example 2.4. As a last example, we consider how a versioned
file system can be represented via UTXO-like transactions:
each object is a file (owned by some user) and transactions
represent one or more changes to a file. In this model, normal
file edits turn a file object into a new object representing
the new version of that file (typically owned by the same
user, but ownership can be transferred). In such a versioned
file system, new files can be created (transactions with only
outputs), existing files can be updated (transactions with equal
amounts of inputs and outputs) or removed (transactions with
only inputs), files can be duplicated (transactions with more
outputs than inputs), and files can be merged (transactions
with more inputs than outputs). Notice that in a versioned
file system, updating or removing a file only impacts a new
version of the file system in which the affected file is updated
or removed: these file changes do not affect the previous
versions of the file (which typically remain available via a
ledger that keeps track of all transactions executed by the
system).

Assumption 2.5. Given a transaction τ, we assume that one
can determine Inputs(τ) and Outputs(τ) a-priori.

To simplify presentation, we assume throughout this paper
that every transactions has inputs. Hence, |Inputs(τ)| ≥ 1.
Owners of objects o can express their approval for transac-
tions τ that have o as their input. To provide this functionality,
we can rely on digital signatures [44].

Assumption 2.6. If an owner is well-behaved, then an ex-
pression of approval cannot be forged or provided by any
other party.1 Furthermore, a well-behaved owner of o will

1Earlier, we assumed a unique owner that can approve transactions and
prove object ownership in a unique and non-ambiguous way. This does not
preclude shared ownership in which multiple participants own an object,
however. In that case, we simply require that such a group of participants can
approve transactions via their own agreement process to determine which
transactions to support (e.g., via multiple signatures, via threshold signatures,
or via other mechanisms).

only express its approval for a single transaction τ with
o ∈ Inputs(τ), as only one transaction can consume the ob-
ject o, and the owner will only do so after the construction of
o.

Let o be an object. We assume that there is a well-
defined function shard(o) that maps object o to the single
shard S ∈ shards(R) that is responsible for maintaining o.
Given a transaction τ, we write shards(τ) = {shard(o) | o ∈
Objects(τ)} to denote the shards that are affected by τ. Note
that the shards shards(τ) affected by transaction τ are all
shards that hold either input or output objects of transaction τ.
We say that τ is a single-shard transaction if |shards(τ)|= 1
and is a multi-shard transaction otherwise.

3 Multi-Shard Transaction Processing

Before we introduce CERBERUS, we put forward the cor-
rectness requirements we want to maintain in a multi-shard
transaction system in which each shard is itself a set of repli-
cas operated as a Byzantine fault-tolerant system. We say
that a shard S performs an action if every good replica in
G(S) eventually performs that action. Hence, any process-
ing decision or execution step performed by S requires the
usage of a consensus protocol [14, 16, 31, 47, 48] that coor-
dinates the operations of individual replicas in the system,
e.g., a Byzantine fault-tolerant system driven by PBFT [16],
POE [33], or HOTSTUFF [64], or a crash fault-tolerant system
driven by PAXOS [47]. As these systems are fully-replicated,
each replica will eventually execute the same sequence of
transactions and, hence, will observe the same evolution of
the data held by the system. This sequence of transactions is
often referred to as a ledger or a journal and is agreed upon
via consensus:

Definition 3.1. A consensus protocol coordinate decision
making among the replicas of a resilient cluster S by pro-
viding a reliable ordered replication of decisions (e.g., the
decision to execute a given transaction as the ρ-th transaction
processed by the replicas). To do so, consensus protocols
provide the following guarantees:

1. If good replica R ∈ S makes a ρ-th decision, then all
good replicas R′ ∈ S will make a ρ-th decision (whenever
communication becomes reliable).

2. If good replicas R,Q ∈ S make ρ-th decisions, then they
make the same decisions.

3. Whenever a good replica learns that a decision D needs
to be made, then it can force that all good replicas even-
tually decide D (even in the presence of malicious be-
havior).

After a consensus decision is made, it must be preserved by all
good replicas: consensus decisions cannot be reverted upon
due to crashes or recovery from crashes.

4

Journal of Systems Research (JSys) 2023

Many definitions of consensus include a requirement of
non-triviality instead of the last requirement in Definition 3.1.
To simplify presentation, we focus on the usage of consensus
for operating services that processes transactions requested by
clients. In such services, each consensus decision represents a
transaction requested by a client and non-triviality is provided
by assuring that any client can get their requests processed.
Next, we illustrate how.

Example 3.2. Assume that consensus is provided via a
primary-backup consensus protocol such as PBFT. These
primary-backup protocols operate in views and within a sin-
gle view a single replica, the primary, coordinates consensus
decisions among all other replicas. To deal with primary fail-
ures, these primary-backup consensus protocols perform a
view-change. During the view-change, the system moves to
the next view. This next view will be coordinated by a new
primary (typically the next replica assuming some ordering
on replicas). An important part of the view-change is that
this new primary will learn about and preserve all consensus
decisions made in preceding views.

This view-change mechanism is also used to force pri-
maries to propose specific decisions: first, clients can send
their requests D to all good replicas; next, all good replicas
can suggest D to the primary; finally, either the primary suc-
cessfully coordinates a consensus decision on D or all good
replicas eventually decide that the primary failed to do so
and initiate view-changes to replace the primary (until a view
is reached in which a good primary proposes the suggested
request D).

Let τ be a transaction processed by a sharded fault-tolerant
system. Processing of τ does not imply execution: the trans-
action could be invalid (e.g., the owners of affected objects
did not express their approval) or the transaction could have
inputs that no longer exists.

We say that the system commits to transaction τ if the sys-
tem decides to apply the modifications prescribed by τ, and
we say that the system aborts τ if it decides to not do so
(after processing it). Finally, we say that a transaction re-
ceived by the system is discarded if it will never be processed
(never results in a commit or abort). Note that only invalid
transactions (e.g., lacking approval of some of the owners of
objects affected by the transaction or requests with message
format errors) are discarded and this happens before they are
considered for execution by the system. All non-discarded
transactions will lead to either a commit or an abort decision.

Using this terminology, we put forward the following re-
quirements for any sharded fault-tolerant system:

R1 Validity. The system must only commit or abort valid
transactions and discard all invalid transactions. In spe-
cific, the system must only commit or abort transaction
τ if, for every input object o ∈ Inputs(τ) with a well-
behaved owner owner(o), the owner owner(o) approves

the transaction.2

R2 Shard-involvement. The shard S only processes transac-
tion τ if S ∈ shards(τ).

R3 Shard-applicability. Let D(S) be the set of objects main-
tained by shard S at time t. The shards shards(τ) can
only commit transaction τ at time t if τ consumes only ob-
jects that exist at time t. Hence, Inputs(τ)⊆

⋃
{D(S) |

S ∈ shards(τ)}.

R4 Cross-shard-consistency. If a good replica R partaking
in processing transaction τ concludes that transaction τ

was committed (aborted), then all good replicas in all
shards S ′ ∈ shards(τ) will eventually reach the same
conclusion as replica R.

R5 Service. If client c is well-behaved and wants to request
a valid transaction τ, then the sharded system will even-
tually process ⟨τ⟩c. If τ is shard-applicable, then the
sharded system will eventually execute ⟨τ⟩c.

R6 Confirmation. If the system processes ⟨τ⟩c and c is well-
behaved, then c will eventually learn whether τ is com-
mitted or aborted.

The validity of transactions is a local requirement: whether a
transaction τ is valid can be determined by checking whether
all owners of inputs of τ support that transaction. Typically,
ownership is expressed via digital signatures, which can be
verified deterministically by any replica in any shard indepen-
dently. Hence, all replicas in all affected shards will make
the same conclusion on whether τ is valid. Likewise, also
shard-involvement is a local requirement, as individual shards
can determine whether they need to process a given transac-
tion. In the same sense, shard-applicability and cross-shard-
consistency are global requirements, as assuring these require-
ments requires coordination between the shards affected by a
transaction.

In the above and throughout this paper, we will speak of
transaction processing whenever we look at the steps the
system takes after receiving a request (eventually leading to
discarding the request when it is invalid, a commit decision,
or an abort decision). We will speak of transaction execution
to refer to transactions that finished processing with either a
commit decision or an abort decision.

4 Core-CERBERUS:
Simple Yet Efficient Transaction Processing

The core idea of CERBERUS is to minimize the coordination
necessary for multi-shard ordering and execution of trans-
actions. To do so, CERBERUS combines the semantics of

2Determining validity of a transaction can include application-level re-
quirements that should hold in a transaction. If, for example, the objects
represent monetary balances, then transactions that produce more output than
they consume input can be considered invalid.

5

Journal of Systems Research (JSys) 2023

transactions in the object-dataset model with the minimal
coordination required to assure shard-applicability and cross-
shard consistency. This combination results in the following
high-level three-step approach towards processing any trans-
action τ:

1. Local inputs. First, every affected shard S ∈ shards(τ)
locally determines whether it has all inputs from S that
are necessary to process τ.

2. Cross-shard exchange. Then, every affected shard S
exchanges these inputs to all other shards in shards(τ),
thereby pledging to use their local inputs when executing
of τ.

3. Decide outcome. Finally, every affected shard S decides
to commit τ if all affected shards were able to provide
all local inputs necessary for execution of τ.

Next, we describe how these three high-level steps are
incorporated by CERBERUS into normal consensus steps at
each shards. Let shard S ∈ shards(R) receive client request
⟨τ⟩c. The good replicas in S will first determine whether τ is
valid and whether τ can be applicable with respect to those
inputs Inputs(τ) maintained by shard S .

If τ is not valid or S /∈ shards(τ), then the good replicas
discard τ. Otherwise, if τ is valid and S ∈ shards(τ), then the
good replicas can utilize consensus to eventually force (Def-
inition 3.1(3)) the shard S to propose a consensus decision
as the ρ-th consensus decision, for some consensus round ρ,
on the message m(S ,τ)ρ = (⟨τ⟩c, I(S ,τ),D(S ,τ)), in which
I(S ,τ) = {o ∈ Inputs(τ) | S = shard(o)} is the set of ob-
jects maintained by S that are input to τ and D(S ,τ)⊆ I(S ,τ)
is the set of currently-available inputs at S . Transaction τ

can only be applicable with respect to those inputs Inputs(τ)
maintained by shard S if I(S ,τ) = D(S ,τ). Hence, only if
I(S ,τ) = D(S ,τ) will S pledge to use the local inputs I(S ,τ)
in the execution of τ.

We use consensus during the local inputs step as it provides
an ordered agreement among sequences of transactions. This
ordered agreement is necessary to acquire a consistent results
among all replicas in a shard: all replicas of a shard need
to process all transactions they process in the same order,
as otherwise they cannot agree on which of the inputs of
a transaction τ are available to τ in the presence of other
transactions with the same inputs.

The acceptance of m(S ,τ)ρ in round ρ by all good replicas
completes the local inputs step. Next, during processing of
τ, the cross-shard exchange and decide outcome steps are
performed. First, the cross-shard exchange step. In this
step, S broadcasts m(S ,τ)ρ to all other shards in shards(τ).
To assure that the broadcast arrives, we rely on a reliable
primitive for cross-shard exchange that guarantees that only
approved-upon values can be exchanged. Recently, such
primitives have been formalized as cluster-sending [35, 37]:

c

S1

S2

S3

⟨τ⟩c

Consensus on ⟨τ⟩c

Consensus on ⟨τ⟩c

Consensus on ⟨τ⟩c

Wait for Commit/Abort

Wait for Commit/Abort

Wait for Commit/Abort

Local Inputs
(Consensus)

Cross-Shard Exchange
(Cluster-Sending)

Decide Outcome Inform

Figure 2: The message flow of CCERBERUS for a 3-shard
client request ⟨τ⟩c that is committed.

Definition 4.1. Let S1,S2 be two shards. The cluster-sending
problem is the problem of sending a value v from S1 to S2
such that:

1. all good replicas in S2 receive the value v;

2. all good replicas in S1 receive confirmation that the value
v was received by all good replicas in S2; and

3. good replicas in S2 can only receive a value v if all good
replicas in S1 agreed upon sending v.

After S broadcasts m(S ,τ)ρ to all other shards in
shards(τ), the replicas in S wait until they receive messages
m(S ′,τ)ρ′ = (⟨τ⟩c, I(S ′,τ),D(S ′,τ)) from all other shards
S ′ ∈ shards(τ).

After cross-shard exchange comes the final decide out-
come step. After S receives m(S ′,τ)ρ′ from all shards S ′ ∈
shards(τ), it decides to commit whenever I(S ′,τ) = D(S ′,τ)
for all S ′ ∈ shards(τ). Otherwise, it decides abort. If S
decides commit, then all good replicas in S destruct all ob-
jects in D(S ,τ) and construct all objects o ∈ Outputs(τ)
with S = shard(o). Finally, each good replica informs c
of the outcome of execution. If c receives, from every shard
S ′′ ∈ shards(τ), identical outcomes from gS ′′ − fS ′′ distinct
replicas in S ′′, then it considers τ to be successfully executed.
In Figure 2, we sketched the working of CCERBERUS.

The cross-shard exchange step of CCERBERUS at S in-
volves waiting for other shards S ′. Hence, there is the danger
of deadlocks if the other shards S ′ never perform their cross-
shard exchange steps. To assure that such situations do not
lead to a deadlock, we employ two techniques.

1. Internal propagation. As shard S has decided not to
discard τ, the transaction must be valid. Hence, other
shards will not discard τ whenever they receive a request
to process τ. To deal with situations in which some
shards S ′ ∈ shards(τ) did not receive ⟨τ⟩c (e.g., due
to network failure or due to a faulty client that fails to
send ⟨τ⟩c to S), we allow each shard to learn τ from any
other shard. In specific, to assure that all shards S ′ ∈
shards(τ) will receive a request to process τ, all shards
S ′ will start consensus on ⟨τ⟩c after receiving cross-shard
exchange related to ⟨τ⟩c. As S uses a resilient primitive

6

Journal of Systems Research (JSys) 2023

to provide cross-shard exchange, we can assure that all
shards S ′ ∈ shards(τ) will receive cross-shard exchange
and eventually start processing τ.

2. Concurrent resolution. To deal with concurrent trans-
actions that contend for the same objects, we allow
each shard to accept and process transactions for dif-
ferent rounds concurrently. To assure that concurrent
resolution does not lead to inconsistent state updates,
each replica implements the following first-pledge and
ordered-commit rules. Let τ be a transaction with
S ∈ shards(τ) and R ∈ S . The first-pledge rule states
that S pledges o, constructed in round ρ, to transaction
τ only if τ is the first transaction proposed after round
ρ with o ∈ Inputs(τ). The ordered-commit rule states
that S can abort τ in any order, but will only commit τ

that is accepted in round ρ after previous rounds finished
execution.

The above first-pledge and ordered-commit rules do not
need to be enforced or guaranteed, as they specify determin-
istic behavior for all good replicas. Next, we illustrate the
usage of these rules.

Example 4.2. Consider two shards S1 and S2 affected by
transactions τ1 and τ2 that each require objects o1 and o2
residing on shards S1 and S2, respectively. Now consider the
case in which shard S1 first processes τ1 and then τ2, while
shard S2 first processes τ2 and then τ1. In this case, shard S1
will pledge o1 to τ1 and shard S2 will pledge o2 to τ2. Hence,
both τ1 and τ2 miss inputs and will fail to complete execution.
As both transactions will abort, the order in which they abort
does not matter.

In this situation, which will only happen if two transactions
have the same inputs in violation of Assumption 2.6, will
result in an abort for the two transactions τ1 and τ2. Transac-
tions that have unique inputs (in line with Assumption 2.6),
will always be able to be committed.

Abort decisions at shard S on a transaction τ can often be
made without waiting for all shards S ′ ∈ shards(τ): shard
S can decide abort after it detects I(S ,τ) ̸= D(S ,τ) or af-
ter it receives the first message (⟨τ⟩c, I(S ′′,τ),D(S ′′,τ)) with
I(S ′′,τ) ̸= D(S ′′,τ), S ′′ ∈ shards(τ). For efficiency, we al-
low S to abort in these cases.

Theorem 4.3. If, for all shards S∗, gS∗ > 2fS∗ , and Assump-
tions 2.1, 2.5, and 2.6 hold, then Core-CERBERUS satisfies
Requirements R1–R6 with respect to all transactions that are
not requested by malicious clients and do not involve objects
with malicious owners.

Proof. Let τ be a transaction. As good replicas in S discard
τ if it is invalid or if S /∈ shards(τ), CCERBERUS provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard S commits or aborts transaction τ, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards S ′ ∈ shards(τ) must have exchanged
the necessary information to S . By relying on cluster-sending
for cross-shard exchange, S ′ requires cooperation of all good
replicas in S ′ to exchange the necessary information to S .
Hence, we have the guarantee that these good replicas will
also perform cross-shard exchange to any other shard S ′′ ∈
shards(τ). As such, every shard S ′′ ∈ shards(τ) will receive
the same information as S , complete cross-shard exchange,
and make the same decision during the decide outcome step,
providing cross-shard consistency.

Due to internal propagation and concurrent resolution, ev-
ery valid transaction τ will be processed by CCERBERUS
as soon as it is send to any shard S ∈ shards(τ). Hence,
every shard in shards(τ) will perform the necessary steps
to eventually inform the client. As all good replicas R ∈ S ,
S ∈ shards(τ), will inform the client of the outcome for τ,
the majority of these inform-messages come from good repli-
cas, enabling the client to reliably derive the true outcome.
Hence, CCERBERUS provides service and confirmation.

Notice that in the object-dataset model in which we oper-
ate, each object can be constructed once and destructed once.
Hence, each object o can be part of at-most two committed
transactions: the first of which will construct o as an output,
and the second of which has o as an input and will consume
and destruct o. This is independent of any other operations
on other objects. As such these two transactions cannot hap-
pen concurrently. Consequently, we only have concurrent
transactions on o if the owner owner(o) expresses approval
for several transactions that have o as an input. By Assump-
tion 2.6, the owner owner(o) must be malicious in that case.
As such, transactions of well-behaved clients and owners will
never abort.

In the design of CCERBERUS, we take full advantage of
the above observation: CCERBERUS effectively eliminates
all coordination when deciding the order in which individual
replicas and shards process both single-shard and multi-shard
transactions. Indeed, the order in which replicas will process
a multi-shard transaction is decided before any coordination
and, hence, independent of whichever order the other shards
choose to process transactions. Only the outcome of pro-
cessing transactions are influenced by cross-shard exchange
steps. Due to this, CCERBERUS allows all involved shards to
process a transaction independently with a single consensus
step: all communication between shards in CCERBERUS is
dedicated to exchange execution state after individual shards
reach consensus. We can do so as any aborts, which could
have been prevented with additional coordination, are always
due to malicious behavior by clients and owners of objects.
Due to this, CCERBERUS will not undo any pledges of ob-
jects to the execution of any transactions. This implies that
objects that are involved in malicious transactions can get

7

Journal of Systems Research (JSys) 2023

lost for future usage, while not affecting any transactions of
well-behaved clients.

Finally, we remark that CCERBERUS depends on under-
lying consensus and cluster-sending protocols. The level to
which CCERBERUS can deal with asynchronous behavior
depends on the particular choices of these protocols.

5 Optimistic-CERBERUS:
Robust Transaction Processing

In the previous section, we introduced CCERBERUS, a mini-
malistic multi-shard transaction processing protocol that relies
on properties of UTXO-like transactions to maximize perfor-
mance. Although the design of CCERBERUS is simple yet
effective, we see two shortcomings that limits its use. First,
CCERBERUS operates under Assumption 2.6, the assumption
that any issues arising from concurrent transactions is due to
malicious behavior of clients. As such, CCERBERUS chooses
to lock out objects affected by such malicious behavior for
any future usage. Second, CCERBERUS requires consecutive
consensus and cluster-sending steps, which increases its trans-
action processing latencies. Next, we investigate how to deal
with these weaknesses of CCERBERUS without giving up on
the minimalistic nature of CCERBERUS.

To do so, we propose Optimistic-CERBERUS
(OCERBERUS), which is optimized for the optimistic
case in which we have no concurrent transactions, while
providing a recovery path that can recover from concurrent
transactions without locking out objects (and without
requiring Assumption 2.6). At the core of OCERBERUS
is assuring that any issues due to malicious behavior, e.g.,
concurrent transactions, are detected in such a way that
individual replicas can recover. At the same time, we want to
minimize transaction processing latencies. To bridge between
these two objectives, we integrate detection and cross-shard
coordination within a single consensus round that runs at
each affected shard.

OCERBERUS does not rely on underlying consensus and
cluster-sending protocols. For the design of OCERBERUS,
we assume asynchronous communication: messages can get
lost, arrive with arbitrary delays, and in arbitrary order. Con-
sequently, it is impossible to distinguish between, on the one
hand, a replica that is malicious and does not send out mes-
sages, and, on the other hand, a replica that does send out
proposals that get lost in the network. It is well-known that in
such an environment, consensus cannot be provided [25, 27].
As such, OCERBERUS is designed to operate in an asyn-
chronous environment in which it will never cause data in-
consistency and only guarantees progress (service and con-
firmation) eventually when communication is reliable for a
sufficiently-long period of time. This is the same model of
partial asynchronous communication as used by PBFT.

Assume consensus decisions are made with a PBFT-like

primary-backup consensus protocol. Let ⟨τ⟩c be a multi-
shard transaction, let S ∈ shards(τ) be an affected shard with
primary P (S), and let m(S ,τ)v,ρ = (⟨τ⟩c, I(S ,τ),D(S ,τ)) be
the round-ρ proposal of P (S) of view v of S . To enable
detection of concurrent transactions, OCERBERUS modifies
the consensus-steps of the underlying consensus protocol by
applying the following high-level idea:

A replica R ∈ S , S ∈ shards(τ), only accepts pro-
posal m(S ,τ)v,ρ for transaction τ if it gets confirma-
tion that replicas in each other shard S ′ ∈ shards(τ)
are also accepting proposals for τ. Otherwise,
replica R detects failure.

To simplify presentation, we will use a traditional design
that uses all-to-all communication between all replicas in all
affected shards akin to the design of PBFT [16]. Traditionally,
PBFT has a commit phase that is distinct from the commit
decision made during multi-shard transaction processing. To
disambiguate the commit phase of PBFT and the commit deci-
sion made during multi-shard transaction processing, we have
renamed the commit phase of PBFT into the finalize phase.
To minimize inter-shard communication (at the cost of la-
tency) one can also utilize threshold signatures to implement
all-to-one-to-all communication akin to the design of HOT-
STUFF [64] to carry over local prepare and finalize certificates
between shards via a few constant-sized messages.3

Next, we illustrate how to integrate the above idea in the
three-phase design of PBFT, thereby turning PBFT into a
multi-shard aware consensus protocol:

1. Global preprepare. Primary P (S) must send m(S ,τ)v,ρ
to all replicas R′ ∈ S ′, S ′ ∈ shards(τ). Replica R ∈ S
only finishes the global preprepare phase after it re-
ceives a global preprepare certificate consisting of a
set M = {m(S ′′,τ)v′′,ρ′′ | S ′′ ∈ shards(τ)} of preprepare
messages from all primaries of shards affected by τ.

2. Global prepare. After R ∈ S , S ∈ shards(τ), finishes
the global preprepare phase, it sends prepare messages
for M to all other replicas in R′ ∈ S ′, S ′ ∈ shards(τ).
Replica R ∈ S only finishes the global prepare phase
for M after, for every shard S ′ ∈ shards(τ), it receives
a local prepare certificate consisting of a set P(S ′) of
prepare messages for M from gS ′ distinct replicas in
S ′. We call the set {P(S ′′) | S ′′ ∈ shards(τ)} a global
prepare certificate.

3Such a design will require a single replica responsible for receiving all
messages, aggregating them into a single certificate, and broadcasting this
message back. To deal with failures of this replica, we can simply choose
a primary (whose failures are already dealt with by the normal recovery
mechanisms that we shall describe). Alternatively, one can use the approach
taken by SBFT [28] and choose any other replica as the aggregator (thereby
offloading the primary), but this will require additional recovery mechanisms
to deal with failures of that replica.

8

Journal of Systems Research (JSys) 2023

c

S1

S2

S3

⟨τ⟩c

Preprepare Prepare Finalize

Local Inputs and Cross-Shard Exchange
(Global Consensus)

Decide Commit/Abort

Decide Commit/Abort

Decide Commit/Abort

Decide Outcome Inform

Figure 3: The message flow of OCERBERUS for a 3-shard
client request ⟨τ⟩c that is committed.

3. Global finalize. After replica R ∈ S , S ∈ shards(τ), fin-
ishes the global prepare phase, it sends finalize messages
for M to all other replicas in R′ ∈ S ′, S ′ ∈ shards(τ).
Replica R ∈ S only finishes the global finalize phase for
M after, for every shard S ′ ∈ shards(τ), it receives a
local finalize certificate consisting of a set C(S ′) of final-
ize messages for M from gS ′ distinct replicas in S ′. We
call the set {P(S ′′) | S ′′ ∈ shards(τ)} a global finalize
certificate.

The above three-phase global-PBFT protocol already takes
care of the local input and cross-shard exchange steps. Indeed,
a replica R ∈ S that finishes the global finalize phase has
accepted global preprepare certificate M, which contains all
information of other shards to proceed with processing. At
the same time, R also has confirmation that M is prepared by
a majority of all good replicas in each shard S ′ ∈ shards(τ)
(which will eventually be followed by execution of τ within
S ′). With these ingredients in place, only the decide outcome
step remains.

The decide outcome step at shard S is entirely de-
termined by the global preprepare certificate M. Shard
S decides to commit whenever I(S ′,τ) = D(S ′,τ) for all
(⟨τ⟩c, I(S ′,τ),D(S ′,τ)) ∈ M. Otherwise, it decides abort. If
S decides commit, then all good replicas in S destruct all
objects in D(S ,τ) and construct all objects o ∈ Outputs(τ)
with S = shard(o). Finally, each good replica informs c of
the outcome of execution. If c receives, from every shard
S ′ ∈ shards(τ), identical outcomes from gS ′ − fS ′ distinct
replicas in S ′, then it considers τ to be successfully executed.
In Figure 3, we sketched the working of OCERBERUS.

We note that the multi-shard aware consensus protocol
OCERBERUS is a multi-shard consensus protocol that aims
to make a single consensus decision among all replicas in all
shards affected by a multi-shard transaction. OCERBERUS
is not the only multi-shard consensus protocol recently pro-
posed (e.g., [3, 4]). What sets OCERBERUS apart is how it
guarantees correctness in all environments, which is deter-
mined by how OCERBERUS deals with non-optimistic cases
in which failure is detected and recovery is necessary. We
will detail recovery next. As a first step, we illustrate the ways
in which the normal-case of OCERBERUS can fail (e.g., due

to malicious behavior of clients, failing replicas, or unreliable
communication).

Example 5.1. Consider a transaction τ proposed by client c
and affecting shard S ∈ shards(τ). First, we consider the
case in which P (S) is malicious and tries to set up a coor-
dinated attack. To have maximum control over the steps of
OCERBERUS, the primary sends the message m(S ,τ)v,ρ to
only gS ′′ − fS ′′ good replicas in each shard S ′′ ∈ shards(τ).
By doing so, P (S) can coordinate the faulty replicas in each
shard to assure failure of any phase at any replica R′ ∈ S ′,
S ′ ∈ τ:

1. To prevent R′ from finishing the global preprepare phase
(and start the global prepare phase) for an M with
m(S ′,τ)v′,ρ′ ∈ M, P (S) simply does not send m(S ,τ)v,ρ
to R′.

2. To prevent R′ from finishing the global prepare phase
(and start the global finalize phase) for M, P (S) instructs
the faulty replicas in F (S) to not send prepare messages
for M to R′. Hence, R′ will receive at-most gS − fS
prepare messages for M from replicas in S , assuring that
it will not receive a local prepare certificate P(S) and
will not finish the global prepare phase for M.

3. Likewise, to prevent R′ from finishing the global finalize
phase (and start execution) for M, P (S) instructs the
faulty replicas in F (S) to not send finalize messages
to R′. Hence, R′ will receive at-most gS − fS finalize
messages for M from replicas in S , assuring that it will
not receive a local finalize certificate C(S) and will not
finish the global finalize phase for M.

None of the above attacks can be attributed to faulty behavior
of P (S) as unreliable communication can result in the same
outcomes for R′. Furthermore, even if communication is reli-
able and P (S) is good, replica R′ can see the same outcomes
due to malicious behavior of the client or of primaries of other
shards in shards(τ):

1. The client c can be malicious and not send τ to S . At
the same time, all other primaries P (S ′′) of shards S ′′ ∈
shards(τ) can be malicious and not send anything to S
either. In this case, P (S) will never be able to send any
message m(S ,τ)v,ρ to R′, as no replica in S is aware of
τ.

2. If any primary P (S ′′) of S ′′ ∈ shards(τ) is malicious,
then it can prevent some replicas in S from starting the
global prepare phase, thereby preventing these replicas
to send prepare messages to R′. If P (S ′′) prevents suffi-
cient replicas in S from starting the global prepare phase,
R′ will be unable to finish the global prepare phase.

3. Likewise, any malicious primary P (S ′′) of S ′′ ∈
shards(τ) can prevent replicas in S from starting the

9

Journal of Systems Research (JSys) 2023

global finalize phase, thereby assuring that R′ will be
unable to finish the global finalize phase.

To deal with malicious behavior, OCERBERUS needs a
robust recovery mechanism. Indeed, the main difference of
the multi-shard consensus of OCERBERUS and the single-
shard consensus PBFT is that OCERBERUS will use a single
primary per shard whereas PBFT only has a single primary.
This difference affects the capability of individual replicas
to detect the root cause of disruptions of the normal-case
operations (as several primaries could be the root cause of
such disruptions). As such, we cannot simply build the ro-
bust recovery mechanism on top of traditional view-change
approaches: these traditional view-change approaches require
that one can identify a single source of failure (when commu-
nication is reliable), namely the current primary. To remedy
this, the recovery mechanisms of OCERBERUS has compo-
nents that perform local view-change and that perform global
state recovery.

Next, we will detail the working of the recovery mecha-
nisms of OCERBERUS. To simplify presentation, we will
focus on the recovery of a single transaction. The techniques
presented are straightforward to generalize to any history of
zero-or-more transactions. The pseudo-code for the recovery
protocol can be found in Figure 4. Next, we describe the
working of this recovery protocol in detail.

Let R ∈ S be a replica that determines that it cannot finish a
round ρ of view v. First, R determines whether it already has
a guarantee on which transaction it has to process in round ρ.
This is the case when the following conditions are met: R fin-
ished the global prepare phase for M with m(S ,τ)v,ρ ∈ M and
has received a local finalize certificate C(S ′′) for M from some
shard S ′′ ∈ shards(τ). In this case, R can simply request all
missing local finalize certificates directly, as C(S ′′) can be
used to prove to any involved replica R′ ∈ S ′, S ′ ∈ shards(τ),
that R′ also needs to finalize M. To request such missing
finalize certificates of S ′, replica R sends out VCGlobalSCR
messages to all replicas in S ′ (Line 7 of Figure 4). Any
replica R′ that receives such a VCGlobalSCR message can use
the information in that message to reach the global finalize
phase for M and, hence, provide R with the requested finalize
messages (Line 11 of Figure 4).

If R does not have a guarantee itself on which transac-
tion it has to process in round ρ, then it needs to determine
whether any other replica (either in its own shard or in any
other shard) has already received and acted upon such a guar-
antee. To initiate such local and global state recovery, R
simply detects the current view as faulty. To do so, R broad-
casts a VCRecoveryRQ message to all other replicas in S that
contains all information R collected on round ρ in view v
(Line 4 of Figure 5). Other replicas Q ∈ S that already have
guarantees for round ρ can help R by providing all missing
information (Line 6 of Figure 5). On receipt of this informa-
tion, R can proceed with the round (Line 7 of Figure 5). If no
replicas can provide the missing information, then eventually

1: event R ∈ S is unable to finish round ρ of view v do
2: if R finished in round ρ the global prepare phase for M,

but is unable to finish the global finalize phase then
3: Let P be the global prepare certificate of R for M.
4: if R has a local finalize certificate C(S ′′) for M then
5: for S ′ ∈ shards(τ) do
6: if R did not yet receive a local finalize certificate C(S ′) then
7: Broadcast ⟨VCGlobalSCR : M,P,C(S ′′)⟩ to all replicas in S ′.
8: else Detect the need for local state recovery of round ρ of view v (Figure 5).
9: else Detect the need for local state recovery of round ρ of view v (Figure 5).

10: (Eventually repeat this event if R remains unable to finish round ρ.)

11: event R′ ∈ S ′ receives message ⟨VCGlobalSCR : M,P,C(S ′′)⟩ from R ∈ S do
12: if R′ did not reach the global finalize phase for M then
13: Use M, P, and C(S ′′) to reach the global finalize phase for M.
14: else Send a finalize message for M to R.

Figure 4: The view-change global short-cut recovery path
that determines whether R already has the assurance that the
current transaction will be finalized. If this is the case, then R
requests only the missing information to proceed with execu-
tion. Otherwise, R requires at-least local recovery (Figure 5).

all good replicas will detect the need for local recovery, this
either by themselves (Line 1 of Figure 5) or after receiving
VCRecoveryRQ messages of at-least fS +1 distinct replicas in
S , of which at-least a single replica must be good (Line 10 of
Figure 5).

Finally, if a replica R receives gS VCRecoveryRQ messages,
then it has the guarantee that at least gS − fS ≥ fS + 1 of
these messages come from good replicas in S . Hence, due
to Line 10 of Figure 5, all gS good replicas in S will send
VCRecoveryRQ, and, when communication is reliable, also
receive these messages. Consequently, at this point, R can
start the new view by electing a new primary and awaiting the
NewView proposal of this new primary (Line 12 of Figure 5).
If R is the new primary, then it starts the new view by propos-
ing a NewView. As other shards could have already made final
decisions depending on local prepare or finalize certificates
of S for round ρ, we need to assure that such certificates are
not invalidated. To figure out whether such final decisions
have been made, the new primary will query other shards S ′

for their state whenever the NewView message contains global
preprepare certificates for transactions τ, S ′ ∈ shards(τ), but
not a local finalize certificate to guarantee execution of τ

(Line 17 of Figure 5).
The new-view process has three stages. First, the new

primary P proposes the new-view via a NewView message
(Line 12 of Figure 5). If necessary, the new primary P also
requests the relevant global state from any relevant shard
(Line 1 of Figure 6). The replicas in other shards will respond
to this request with their local state (Line 9 of Figure 6).
The new primary collects these responses and sends them
to all replicas in S via a NewViewGlobal message. Then,
after P sends the NewView message to R ∈ S , R determines
whether the NewView message contains sufficient information
to recover round ρ (Line 15 of Figure 6), contains sufficient
information to wait for any relevant global state (Line 17 of

10

Journal of Systems Research (JSys) 2023

1: event R ∈ S detects the need for local state recovery of round ρ of view v do
2: Let M be any latest global preprepare certificate accepted for round ρ by R.
3: Let S be M and any prepare and finalize certificates for M collected by R.
4: Broadcast ⟨VCRecoveryRQ : v,ρ,S⟩.

5: event Q ∈ S receives messages ⟨VCRecoveryRQ : v,ρ,S⟩ of R ∈ S and Q has
1. started the global prepare phase for M with m(S ,τ)w,ρ ∈ M;
2. a global prepare certificate for M;
3. a local finalize certificate C(S ′′) for M

do
6: Send ⟨VCLocalSCR : M,P,C(S ′′)⟩ to R ∈ S .

7: event R ∈ S receives message ⟨VCLocalSCR : M,P,C(S ′′)⟩ from Q ∈ S do
8: if R did not reach the global finalize phase for M then
9: Use M, P, and C to reach the global finalize phase for M.

10: event R ∈ S receives messages ⟨VCRecoveryRQ : vi,ρ,Si⟩, 1 ≤ i ≤ fS +1,
from fS +1 distinct replicas in S do

11: R detects the need for local state recovery of round ρ

of view min{vi | 1 ≤ i ≤ fS +1}.

12: event R ∈ S receives messages ⟨VCRecoveryRQ : v,ρ,Si⟩, 1 ≤ i ≤ gS ,
from distinct replicas in S do

13: if id(R) ̸= (v+1) mod nS then
14: (R awaits the NewView message of the new primary, Line 14 of Figure 6.)
15: else
16: Broadcast ⟨NewView : ⟨VCRecoveryRQ : v,ρ,Si⟩ | 1 ≤ i ≤ gS ⟩ to

all replicas in S .
17: if there exists a Si that contains global preprepare certificate M,

but no S j contains a local finalize certificate for M then
18: R initiates global state recovery of round ρ (Line 1 of Figure 6).

Figure 5: The view-change local short-cut recovery path that
determines whether some Q can provide R with the assurance
that the current transaction will be finalized. If this is the case,
then R only needs this assurance, otherwise S requires a new
view (Figure 6).

Figure 6), or to determine that the new primary must propose
for round ρ (Line 19 of Figure 6). If R determines it needs
to wait for any relevant global state, then R will wait for this
state to arrive via a NewViewGlobal message. Based on the
received global state, R determines to recover round ρ (Line 21
of Figure 6), or determines that the new primary must propose
for round ρ (Line 24 of Figure 6).

Next, we will prove the correctness of the view-change
of OCERBERUS. First, using a standard quorum argument,
we prove that in a single round of a single view of S , only a
single global preprepare message affecting S can get finalized
by any other affected shards:

Lemma 5.1. Let τ1 and τ2 be transactions with S ∈
(shards(τ1)∩shards(τ2)). If gS > 2fS and there exists
shards Si ∈ shards(τi), i ∈ {1,2}, such that good replicas
Ri ∈G(Si) reached the global finalize phase for global prepre-
pare certificate Mi with m(S ,τi)v,ρ ∈ Mi, then τ1 = τ2.

Proof. We prove this property using contradiction. We as-
sume τ1 ̸= τ2. Let Pi(S) be the local prepare certificate pro-
vided by S for Mi and used by Ri to reach the global finalize
phase, let Si ⊆ S be the gS replicas in S that provided the
prepare messages in Pi(S), and let Ti = Si \F (S) be the good
replicas in Si. By construction, we have |Ti| ≥ gS − fS . As all
replicas in T1 ∪T2 are good, they will only send out a single
prepare message per round ρ of view v. Hence, if τ1 ̸= τ2,

1: event P ∈ S initiates global state recovery of round ρ using ⟨NewView : V ⟩ do
2: Let T be the transactions with global preprepare certificates for round ρ of S in

view V .
3: Let S be the shards affected by transactions in T .
4: Broadcast ⟨VCGlobalStateRQ : v,ρ,V ⟩ to all replicas in S ′ ∈ S.
5: for S ′ ∈ S do
6: Wait for VCGlobalStateRQ messages for V from gS ′ distinct replicas in S ′.
7: Let W (S ′) be the set of received VCGLOBALSTATERQ messages.
8: Broadcast ⟨NewViewGlobal : V,{W (S ′) | S ′ ∈ S}⟩

to all replicas in S .

9: event R′ ∈ S ′ receives message ⟨VCGlobalStateRQ : v,ρ,V ⟩ from P ∈ S do
10: if R′ has a global preprepare certificate M with m(S ,τ)w,ρ ∈ M

and reached the global finalize phase for M then
11: Let P be the global prepare certificate for M.
12: Send ⟨VCGlobalStateR : v,ρ,V,M,P⟩ to P.
13: else Send ⟨VCGlobalStateR : v,ρ,V ⟩ to P.

14: event R ∈ S receives valid ⟨NewView : V ⟩ message from replica P do
15: if there exists a ⟨VCRecoveryRQ : vi,ρ,Si⟩ ∈V that contains

1. a global preprepare certificate M with m(S ,τ)w,ρ ∈ M;
2. a global prepare certificate P for M; and
3. a local finalize certificate C(S ′′) for M

then
16: Use M, P, and C to reach the global finalize phase for M.
17: else if there exists a ⟨VCRecoveryRQ : vi,ρ,Si⟩ ∈V that contains

1. a global preprepare certificate M; and
2. no ⟨VCRecoveryRQ : v j ,ρ,S j⟩ ∈V contains a

local finalize certificate for M
then

18: R detects the need for global state recovery of round ρ (Line 20 of Figure 6).
19: else (P must propose for round ρ.)

20: event R ∈ S receives valid ⟨NewViewGlobal : V,W ⟩ from P ∈ S do
21: if any message in W is of the form ⟨VCGlobalStateR : v,ρ,V,M,P⟩ then
22: Select ⟨VCGlobalStateR : v,ρ,V,M,P⟩ ∈W with

latest view w, m(S ,τ)w,ρ ∈ M.
23: Use M and P to reach the global finalize phase for M.
24: else (P must propose for round ρ.)

Figure 6: The view-change new-view recovery path that re-
covers the state of the previous view based on a NewView
proposal of the new primary. As part of the new-view recov-
ery path, the new primary can construct a global new-view
that contains the necessary information from other shards to
reconstruct the local state.

then T1∩T2 = /0, and we must have 2(gS − fS)≤ |T1∪T2|. As
all replicas in T1 ∪T2 are good, we also have |T1 ∪T2| ≤ gS .
Hence, 2(gS − fS)≤ gS , which simplifies to gS ≤ 2fS , a con-
tradiction. Hence, we conclude τ1 = τ2.

Next, we use Lemma 5.1 to prove that any global prepre-
pare certificate that could have been accepted by any good
affected replica is preserved by OCERBERUS:

Proposition 5.1. Let τ be a transaction and m(S ,τ)v,ρ be a
preprepare message. If, for all shards S∗, gS∗ > 2fS∗ , and
there exists a shard S ′ ∈ shards(τ) such that gS ′ − fS ′ good
replicas in S ′ reached the global finalize phase for M with
m(S ,τ)v,ρ ∈ M, then every successful future view of S will
recover M and assure that the good replicas in S reach the
finalize phase for M.

Proof. Let v∗ ≤ v be the first view in which a global prepare
certificate M∗ with m(S ,τ∗)v∗,ρ ∈ M∗ satisfied the premise of
this proposition. Using induction on the number of views after

11

Journal of Systems Research (JSys) 2023

the first view v∗, we will prove the following two properties
on M∗:

1. every good replica that participates in view w, v∗ < w,
will recover M∗ upon entering view w and reach the
finalize phase for M∗; and

2. no replica will be able to construct a local prepare certifi-
cate of S for any global preprepare certificate M† ̸= M∗

with m(S ,τ†)w,ρ ∈ M†, v∗ < w.

The base case is view v∗+1. Let S′ ⊆G(S ′) be the set of gS ′−
fS ′ good replicas in S ′ that reached the global finalize phase
for M∗. Each replica R′ ∈ S′ has a local prepare certificate
P(S) consisting of gS prepare messages for M∗ provided
by replicas in S . We write S(R′) ⊆ G(S) to denote the at-
least gS − fS good replicas in S that provided such a prepare
message to R′.

Consider any valid new-view proposal ⟨NewView : V ⟩ for
view v∗+1. If the conditions of Line 15 of Figure 6 hold for
global preprepare certificate M† with m(S ,τ‡)w,ρ ∈ M‡, then
we recover M‡. As there is a local finalize certificate for M‡ in
this case, the premise of this proposition holds on M‡. As v∗ is
the first view in which the premise of this proposition hold, we
can use Lemma 5.1 to conclude that w = v∗, M‡ = M∗, and,
hence, that the base case holds if the conditions of Line 15
of Figure 6 hold. Next, we assume that the conditions of
Line 15 of Figure 6 do not hold, in which case M∗ can only
be recovered via global state recovery. As the first step in
global state recovery is proving that the condition of Line 17
of Figure 6 holds. Let T ⊆ G(S) be the set of at-least gS − fS
good replicas in S whose VCRecoveryRQ message is in V
and let R′ ∈ S′. We have |S(R′)| ≥ gS − fS and |T | ≥ gS −
fS . Hence, by a standard quorum argument, we conclude
S(R′)∩T ̸= /0. Let Q ∈ (S(R′)∩T). As Q is good and send
prepare messages for M∗, it must have reached the global
prepare phase for M∗. Consequently, the condition of Line 17
of Figure 6 holds and to complete the proof, we only need
to prove that any well-formed NewViewGlobal message will
recover M∗.

Let ⟨NewViewGlobal : V,W ⟩ be any valid global new-view
proposal for view v∗+ 1. As Q reached the global prepare
phase for M∗, any valid global new-view proposal must in-
clude messages from S ′ ∈ shards(τ). Let U ′ ⊆ S ′ be the
replicas in S ′ of whom messages VCGlobalStateR are in-
cluded in W . Let V ′ =U ′ \F (S ′). We have |S′| ≥ gS ′ − fS ′

and |V ′| ≥ gS ′ − fS ′ . Hence, by a standard quorum argument,
we conclude S′∩V ′ ̸= /0′. Let Q′ ∈ (S′∩V ′). As Q′ reached
the global finalize phase for M∗, it will meet the conditions of
Line 23 of Figure 6 and provide both M∗ and a global prepare
certificate for M∗. Let M‡ be any other global preprepare cer-
tificate in W accompanied by a global prepare certificate. Due
to Line 22 of Figure 6, the global preprepare certificate for
the newest view of S will be recovered. As v∗ is the newest
view of S , M‡ will only prevent recovery of M∗ if it is also

a global preprepare certificate for view v∗ of S . In this case,
Lemma 5.1 guarantees that M‡ = M∗. Hence, any replica R
will recover M∗ upon receiving ⟨NewViewGlobal : V,W ⟩.

Now assume that the induction hypothesis holds for all
views j, v∗ < j ≤ i. We will prove that the induction hypothe-
sis holds for view i+1. Consider any valid new-view proposal
⟨NewView :V ⟩ for view i+1 and let M‡ with m(S ,τ‡)w,ρ ∈M‡

be any global preprepare certificate that is recovered due to the
new-view proposal ⟨NewView : V ⟩. Hence, M‡ is recovered
via either Line 16 of Figure 6 or Line 23 of Figure 6. In both
cases, there must exist a global prepare certificate P for M‡.
As ⟨NewView : V ⟩ is valid, we must have w ≤ i. Hence, we
can apply the second property of the induction hypothesis to
conclude that w ≤ v∗. If w = v∗, then we can use Lemma 5.1
to conclude that M‡ = M∗. Hence, to complete the proof,
we must show that w = v∗. First, the case in which M‡ is
recovered via Line 16 of Figure 6. Due to the existence of a
global finalize certificate C for M‡, M‡ satisfies the premise
of this proposition. By assumption, v∗ is the first view for
which the premise of this proposition holds. Hence, w ≥ v∗,
in which case we conclude M‡ = M∗. Last, the case in which
M‡ is recovered via Line 23 of Figure 6. In this case, M‡ is
recovered via some message ⟨NewViewGlobal : V,W ⟩. Anal-
ogous to the proof for the base case, V will contain a message
VCRecoveryRQ from some replica Q ∈ S(R′). Due to Line 2
of Figure 5, Q will provide information on M∗. Consequently,
a prepare certificate for M∗ will be obtained via global state
recovery, and we also conclude M‡ = M∗.

Lemma 5.1 and Proposition 5.1 assure that no transaction
that could-be-finalized by any replica will ever get lost by
the system. Next, we bootstrap these technical properties to
prove that all good replicas can always recover such could-
be-finalized transactions.

Proposition 5.2. Let τ be a transaction and m(S ,τ)v,ρ be a
preprepare message. If, for all shards S∗, gS∗ > 2fS∗ , and
there exists a shard S ′ ∈ shards(τ) such that gS ′ − fS ′ good
replicas in S ′ reached the global finalize phase for M with
m(S ,τ)v,ρ ∈ M, then every good replica in S will accept M
whenever communication becomes reliable.

Proof. Let R ∈ S be a good replica that is unable to accept
M. At some point, communication becomes reliable, after
which R will eventually trigger Line 1 of Figure 4. We have
the following cases:

1. If R meets the conditions of Line 4 of Figure 4, then R has
a local finalize certificate C(S ′′), S ′′ ∈ shards(τ). This
local finalize certificate certifies that at least gS ′′ − fS ′′

good replicas in S ′′ finished the global prepare phase for
M. Hence, the conditions for Proposition 5.1 are met
for M and, hence, any shard in shards(τ) will maintain
or recover M. Replica R can use C(S ′′) to prove this
situation to other replicas, forcing them to finalize M,

12

Journal of Systems Research (JSys) 2023

and provide any finalize messages R is missing (Line 11
of Figure 4).

2. If R does not meet the conditions of Line 4 of Figure 4,
but some other good replica Q ∈ S does, then Q can
provide all missing information to R (Line 6 of Figure 5).
Next, R uses this information (Line 7 of Figure 5), after
which it meets the conditions of Line 4 of Figure 4.

3. Otherwise, if the above two cases do not hold, then all gS
good replicas in S are unable to finish the finalize phase.
Hence, they perform a view-change. Due to Proposi-
tion 5.1, this view-change will succeed and put every
replica in S into the finalize phase for M. As all good
replicas in S are in the finalize phase, each good replica
in S will be able to make a local finalize certificate C(S)
for M, after which they meet the conditions of Line 4 of
Figure 4.

Finally, we use Proposition 5.2 to prove cross-shard-
consistency.

Theorem 5.2. Optimistic-CERBERUS maintains cross-shard
consistency.

Proof. Assume a single good replica R ∈ S executes a trans-
action τ (by committing or aborting). Hence, it accepted some
global preprepare certificate M with m(S ,τ)v,ρ ∈ M. Conse-
quently, R has local finalize certificates C(S ′) for M of every
S ′ ∈ shards(τ). Hence, at least gS ′ − fS ′ good replicas in S ′

reached the global finalize phase for M, and we can apply
Proposition 5.2 to conclude that any good replica R′′ ∈ S ′′,
S ′′ ∈ shards(τ) will accept M. As R′′ bases its execution
decision for τ on the same global prepare certificate M as
R, they will both make the same decision, completing the
proof.

Due to the similarity between OCERBERUS and CCER-
BERUS, one can use the details of Theorem 4.3 to prove
that OCERBERUS provides validity, shard-involvement, and
shard-applicability. Via Theorem 5.2, we proved cross-shard-
consistency. We cannot prove service and confirmation, how-
ever. The reason for this is simple: even though OCERBERUS
can detect and recover from accidental faulty behavior and
accidental concurrent transactions, OCERBERUS is not de-
signed to gracefully handle targeted attacks: OCERBERUS is
optimistic in the sense that it is optimized for the situation
in which faulty behavior (including concurrent transactions
that contend for the same objects) is rare. Still, in all cases,
OCERBERUS maintains cross-shard consistency, however.
Moreover, in the optimistic case, progress is guaranteed:

Proposition 5.3. If, for all shards S∗, gS∗ > 2fS∗ , and As-
sumptions 2.1, 2.5, and 2.6 hold, then Optimistic-CERBERUS
satisfies Requirements R1–R6 in the optimistic case (when-
ever communication is reliable, shards have good primaries,
and no concurrent transactions exist).

OCERBERUS cannot defend against denial-of-service at-
tacks targeted at blocking individual replicas and shards from
participating. Unfortunately, no existing consensus proto-
col is able to deal with such attacks. Furthermore, as is the
case for other multi-shard consensus protocols, coordinated
attempts can prevent OCERBERUS from making progress in
periods when the optimistic assumption does not hold. At
the core of such attacks is the ability for malicious clients
and malicious primaries to corrupt the operations of shards
coordinated by good primaries, as already shown in Exam-
ple 5.1. Due to Theorem 5.2, such attacks will never affect
consistency in OCERBERUS, however.

To further reduce the impact of targeted attacks, one can
make primary election non-deterministic, e.g., by using shard-
specific distributed coins to elect new primaries in individ-
ual shards [11, 13]. Finally, we remark that we have pre-
sented OCERBERUS with a per-round checkpoint and recov-
ery method. In this simplified design, the recovery path only
has to recover at-most a single round. Our approach can eas-
ily be generalized to a more typical multi-round checkpoint
and recovery method, however. Furthermore, we believe that
the way in which OCERBERUS extends PBFT can easily be
generalized to other consensus protocols, e.g., POE [33] and
HOTSTUFF [64].

6 Resilient-CERBERUS:
Transaction Processing Under Attack

In the previous section, we introduced OCERBERUS, a
general-purpose minimalistic and efficient multi-shard trans-
action processing protocol. OCERBERUS is designed with the
assumption that malicious behavior is rare, due to which it
can minimize coordination in the normal-case while requiring
intricate coordination when recovering from attacks. As an
alternative to the optimistic approach of OCERBERUS, we can
apply a pessimistic approach to CCERBERUS to gracefully
recover from concurrent transactions that is geared towards
minimizing the influence of malicious behavior altogether
(without requiring Assumption 2.6). Next, we explore such a
pessimistic design via resilient-CERBERUS (PCERBERUS).

The design of PCERBERUS builds upon the design of
CCERBERUS by adding additional coordination to the cross-
shard exchange and decide outcome steps. As in CCER-
BERUS, the acceptance of m(S ,τ)ρ in round ρ by all good
replicas completes the local inputs step. Before cross-shard
exchange, the replicas in S destruct the objects in D(S ,τ),
thereby fully pledging these objects to τ until the commit or
abort decision. Then, S performs cross-shard exchange by
broadcasting m(S ,τ)ρ to all other shards in shards(τ), while
the replicas in S wait until they receive messages m(S ′,τ)ρ′

from all other shards S ′ ∈ shards(τ).
After cross-shard exchange comes the final decide out-

come step. After S receives m(S ′,τ)ρ′ from all shards S ′ ∈

13

Journal of Systems Research (JSys) 2023

c

S1

S2

S3

⟨τ⟩c

Consensus on ⟨τ⟩c

Consensus on ⟨τ⟩c

Consensus on ⟨τ⟩c

Commit/Abort?

Commit/Abort?

Commit/Abort?

Local Inputs
(Consensus)

Cross-Shard Exchange
(Cluster-Sending)

Decide Outcome
(Consensus)

Inform

destruction construction or rollback

Figure 7: The message flow of PCERBERUS for a 3-shard
client request ⟨τ⟩c that is committed.

shards(τ), the replicas force a second consensus step that de-
termines the round ρ∗ at which S decides commit (whenever
I(S ′,τ) = D(S ′,τ) for all S ′ ∈ shards(τ)) or abort. Note that
the second consensus step in a shard S starts after all good
replicas in S have received all required information to decide
either commit or abort. Hence, the second consensus step
is only used to order the commit or abort decision among
all other decisions made in that shard. If S uses a primary-
backup consensus protocol, then this second consensus step
can be initiated by the primary without further input. If the pri-
mary is malicious, the good replicas need to force the second
consensus step, however (e.g., by replacing the primary).

If S decides commit, then, in round ρ∗, all good replicas in
S construct all objects o ∈ Outputs(τ) with S = shard(o).
If S decides abort, then, in round ρ∗, all good replicas in S
reconstruct all objects in D(S ,τ) (rollback). Finally, each
good replica informs c of the outcome of execution. If c re-
ceives, from every shard S ′ ∈ shards(τ), identical outcomes
from gS ′ − fS ′ distinct replicas in S ′, then it considers τ to be
successfully executed. In Figure 7, we sketched the working
of PCERBERUS.

We notice that processing a multi-shard transaction via
PCERBERUS requires two consensus steps per shard. In some
cases, we can eliminate the second step, however. First, if τ is
a multi-shard transaction with S ∈ shards(τ) and the repli-
cas in S accept (⟨τ⟩c, I(S ,τ),D(S ,τ)) with I(S ,τ) ̸= D(S ,τ),
then the replicas can immediately abort whenever they ac-
cept (⟨τ⟩c, I(S ,τ),D(S ,τ)). Second, if τ is a single-shard
transaction with shards(τ) = {S}, then the replicas in S can
immediately decide commit or abort whenever they accept
(⟨τ⟩c, I(S ,τ),D(S ,τ)). Hence, in both cases, processing of
τ at S only requires a single consensus step at S . Next, we
prove the correctness of PCERBERUS:

Theorem 6.1. If, for all shards S∗, gS∗ > 2fS∗ , and Assump-
tions 2.1, 2.5, and 2.6 hold, then Resilient-CERBERUS satis-
fies Requirements R1–R6.

Proof. Let τ be a transaction. As good replicas in S discard
τ if it is invalid or if S /∈ shards(τ), PCERBERUS provides
validity and shard-involvement. Next, shard-applicability
follow directly from the decide outcome step.

If a shard S commits or aborts transaction τ, then it must
have completed the decide outcome and cross-shard exchange
steps. Hence, all shards S ′ ∈ shards(τ) must have exchanged
the necessary information to S . By relying on cluster-sending
for cross-shard exchange, S ′ requires cooperation of all good
replicas in S ′ to exchange the necessary information to
S . Hence, we have the guarantee that these good replicas
will also perform cross-shard exchange to any other shard
S ′′ ∈ shards(τ). Consequently, every shard S ′′ ∈ shards(τ)
will receive the same information as S , complete cross-shard
exchange, and make the same decision during the decide
outcome step, providing cross-shard consistency.

A client can force service on a transaction τ by choosing
a shard S ∈ shards(τ) and sending τ to all good replicas in
G(S). By doing so, the normal mechanisms of consensus can
be used by the good replicas in G(S) to force acceptance on
τ in S and, hence, bootstrapping acceptance on τ in all shards
S ′ ∈ shards(τ). Due to cross-shard consistency, every shard
in shards(τ) will perform the necessary steps to eventually
inform the client. As all good replicas R ∈ S , S ∈ shards(τ),
will inform the client of the outcome for τ, the majority of
these inform-messages come from good replicas, enabling
the client to reliably derive the true outcome. Hence, PCER-
BERUS provides service and confirmation.

As with CCERBERUS, PCERBERUS depends on underly-
ing consensus and cluster-sending protocols and the level
to which PCERBERUS can deal with asynchronous behavior
depends on the particular choices of these protocols.

The step from PCERBERUS to general-purpose workloads
is small: one can replace the data model used by PCER-
BERUS by a general-purpose data model using two-phase
locking instead of object construction and destruction to guar-
antee isolated execution. To guarantee the same level of
isolation for transaction execution as PCERBERUS guarantees
without using the UTXO-like transactions (see Section 7),
such an approach will require a costly locking scheme for all
pieces of data affected by a transaction (including any objects
that would be considered outputs by PCERBERUS). Such a
two-phase locking design will end up very similar to that of
CHAINSPACE or BYSHARD.

7 The Ordering of Transactions in CERBERUS

Having introduced the three variants of CERBERUS in Sec-
tions 4, 5, and 6, we will now analyze the ordering guarantees
provided by CERBERUS. We further refer to Section 8 for
a detailed comparison of the three variants of CERBERUS.
Here, we will show that CERBERUS provides serializable
execution [6, 9].

The data model utilized by CCERBERUS, OCERBERUS,
and PCERBERUS guarantees that any object o can only be
involved in at-most two committed transactions: one that

14

Journal of Systems Research (JSys) 2023

constructs o and another one that destructs o. Assume the ex-
istence of such transactions τ1 and τ2 with o ∈ Outputs(τ1)
and o ∈ Inputs(τ2). Due to cross-shard-consistency (Re-
quirement R4), the shard shard(o) will have to execute both
τ1 and τ2. From these observations, we can derive a serializ-
able order on all committed transactions:

Theorem 7.1. A sharded fault-tolerant system that uses the
object-dataset data model, processes UTXO-like transactions,
and satisfies Requirements R1-R5 commits transactions in a
serializable order.

Proof. Assume the existence of transactions τ1 and τ2
with o ∈ Outputs(τ1) and o ∈ Inputs(τ2). Due to shard-
applicability (Requirement R3), shard shard(o) will execute
τ1 strictly before τ2. Now consider the relation

≺ := {(τ,τ′) | (the system committed to τ and τ
′)∧

(Outputs(τ)∩Inputs(τ′) ̸= /0)}.

Obviously, we have ≺(τ1,τ2). To prove that all committed
transactions are executed in a serializable ordering, we first
prove the following:

If we interpret transactions as nodes and ≺ as an
edge relation, then the resulting graph is acyclic.

The proof is by contradiction. Let G be the graph-
interpretation of ≺. We assume that graph G is cyclic. Hence,
there exists transactions τ0, . . . ,τm−1 such that ≺(τi,τi+1),
0 ≤ i < m−1, and ≺(τm−1,τ0). By the definition of ≺, we
can choose objects oi, 0 ≤ i < m, with oi ∈ (Outputs(τi)∩
Inputs(τ(i+1) mod m)). Due to cross-shard-consistency (Re-
quirement R4), the shard shard(oi), 0 ≤ i < m, executed
transactions τi and τ(i+1) mod m. Consider oi, 0 ≤ i < m, and
let ti be the time at which shard shard(oi) executed τi and con-
structed oi. Due to shard-applicability (Requirement R3), we
know that shard shard(oi) executed τ(i+1) mod m strictly after
ti. Moreover, also shard shard(o(i+1) mod m) must have exe-
cuted τ(i+1) mod m strictly after ti and we derive ti < t(i+1) mod m.
Hence, we must have t0 < t1 < · · ·< tm−1 < t0, a contradiction.
Consequently, G must be acyclic.

To derive a serializable execution order for all committed
transactions, we simply construct a directed acyclic graph in
which transactions are nodes and ≺ is the edge relation. Next,
we topologically sort the graph to derive the searched-for
ordering.

We notice that CERBERUS only provides serializability for
committed transactions: concurrent transactions that contend
for the same objects will always be aborted and, hence, will
not be executed and will not affect the serializable order of
execution of transactions. This flexibility is crucial in the
design of CCERBERUS: as a consequence of the minimal
coordination in CCERBERUS, the order in which individual

replicas make abort decisions is not coordinated. Conse-
quently, replicas can end up processing abort decisions in
distinct non-serializable orders, this even for replicas within
a singular shard. It is this flexibility in dealing with aborted
transactions that allows CCERBERUS to operate with mini-
mal coordination while still providing strong isolation for all
committed transactions. Both OCERBERUS and PCERBERUS
incorporate stronger coordination, due to which all commit
and abort decisions within a shard are made in a consistent or-
der among all replicas in that shard. Still, both OCERBERUS
and PCERBERUS do not enforce a particular order in which
abort decisions are processed across distinct shards, as such
enforcement would incur additional coordination costs.

8 Analysis of the Three CERBERUS Variants

In the previous sections, we proposed three variants of CER-
BERUS and showed their correctness. Next, we analyze the
benefits and costs of the three CERBERUS multi-shard transac-
tion processing protocols, compare them with state-of-the-art
multi-shard transaction processing protocols, and evaluate the
impact of malicious behavior on CERBERUS. A summary of
this analysis can be found in Figure 8.

We did not detail the exact message complexity of the three
CERBERUS protocols. For CCERBERUS and PCERBERUS
we measure the complexity in the number of consensus steps
and cluster-sending steps they require. Implementation-wise,
one can choose to either implement these steps with all-to-all
communication (as in PBFT) or with all-to-one-to-all commu-
nication (as in HOTSTUFF) to optimize for either low latency
or low bandwidth usage. Similarly, we can implement also
OCERBERUS with all-to-one-to-all communication instead
of all-to-all communication.

Remark 8.1. A common technique to improve the transaction
throughput of consensus-based systems is by processing a
batch holding many transactions per consensus decision. To
simplify presentation, we have chosen to present the three
CERBERUS protocols without such batching. Both CCER-
BERUS and PCERBERUS can easily be generalized to pro-
cess transactions in batches: at a per-shard level, they use
standard consensus protocols that operate independently of
other shards. Hence, instead of one transaction per consensus
decision, both can include a batch of transactions in their con-
sensus decisions (after which they perform the steps related
to the transactions in that batch in order).

For OCERBERUS, blocks of transactions are more challeng-
ing as OCERBERUS uses a single multi-shard consensus step
that includes all replicas of all shards affected by a transaction.
Still, OCERBERUS can be generalized to process batches of
transactions that affect the same set of shards. Such a general-
ization requires additional machinery, however: multi-shard
batches can lead to several shards proposing distinct batches
that include the same transaction, however. It is possible to

15

Journal of Systems Research (JSys) 2023

deal with such issues with existing techniques (e.g., by assign-
ing each transaction to a single batch-proposal shard based
on the digest of that transaction) [31].

8.1 A Comparison of CERBERUS Variants

First, Figure 8 provides a high-level comparison of the costs
of each of the three CERBERUS protocols to process a sin-
gle transaction τ that affects s = |shards(τ)| distinct shards.
For the normal-case behavior, we compare the complexity in
the number of sequential communication phases (which, in
the idle case, are the main determinant for client latencies),
the number of consensus steps per shard and cross-shard
exchange steps between shards (which together determine
the bandwidth costs and put an upper bound on throughput).
As one can see, all three protocols have a low number of
phases, due to which all three can provide low latencies to-
ward clients. On the one hand, we see that OCERBERUS only
performs a PBFT-like multi-shard consensus, which takes
three consecutive phases of communication. On the other
hand, CCERBERUS performs both a local consensus step and
a cross-shard exchange step. Assuming the local consensus
step is performed via PBFT, this results in four consecutive
phases of communication (three local communication phases
for PBFT, one for the cross-shard exchange step). Hence, in
environments in which cross-shard communication has low
latency, OCERBERUS will be able to provide lower latencies
than both CCERBERUS and PCERBERUS, as its optimistic
design eliminates one phase of communication (at the cost of
requiring cross-shard communication in every phase).

Next, we compare how the three protocols deal with mali-
cious behavior by clients and by replicas. If no clients behave
malicious, then all transactions will commit. In all three pro-
tocols, malicious behavior by clients can lead to the existence
of concurrent transactions that affect the same object. Upon
detection of such concurrent transactions, all three protocols
will abort. The consequences of such an abort are different in
the three protocols.

In CCERBERUS, objects affected by aborted transactions
remain pledged and cannot be reused. In practice, this loss
of objects can provide an incentive for clients to not behave
malicious, but does limit the usability of CCERBERUS in non-
incentivized environments. Both OCERBERUS and PCER-
BERUS deal with concurrent transactions by aborting them via
the normal-case of the protocol. The three CERBERUS proto-
cols are resilient against malicious replicas: only malicious
primaries can affect the normal-case operations of these proto-
cols. If the behavior of a primary is disrupting the normal-case
operations, then in CCERBERUS and PCERBERUS such be-
havior is dealt with by the recovery mechanisms of the under-
lying consensus protocol (e.g., in PBFT such disruptions will
eventually lead to a view-change whenever communication is
reliable), whereas OCERBERUS will utilize the view-change
recovery mechanisms outlined in Section 5. In both CCER-

BERUS and PCERBERUS, dealing with a malicious primary in
a shard can be done completely in isolation of all other shards.
In OCERBERUS, which is optimized with the assumption that
failures are rare, the failure of a primary while processing a
transaction τ can lead to view-changes in all shards affected
by τ.

In conclusion, we see that the three CERBERUS variants
each make their own tradeoff between normal-case costs and
ability to deal with faulty behavior (by both clients and other
replicas), with PCERBERUS being robust against any attack at
the cost of 2 consensus decisions per transaction per involved
shard.

8.2 Comparison With the State-of-the-Art
Several recent papers have proposed specialized systems that
combine sharding with consensus-based resilient systems. Ex-
amples include systems such as AHL [17], BYSHARD [36,
38], CAPER [3], CHAINSPACE [1], RINGBFT [58], and
SHARPER [4], which all use sharding for data management
and transaction processing. Next, we compare the design
of CERBERUS in detail with AHL [17], CHAINSPACE [1],
RINGBFT [58], and SHARPER [4], and briefly look at
BYSHARD [36, 38] and CAPER [3].

AHL [17]. AHL uses a centralized commit protocol to
order all multi-shard transactions. In specific, AHL [17] uses
a reference committee that leads a centralized two-phase com-
mit protocol (Centralized 2PC) [30, 56] that is implemented
via consensus steps and cluster-sending. Typically, the ref-
erence committee is responsible for coordinating all multi-
shard transactions. Furthermore, AHL uses non-blocking
locks to provide transaction isolation due to which valid trans-
actions can be aborted, whereas in CERBERUS only faulty
transactions (e.g., by malicious clients) are aborted. By using
Centralized 2PC, AHL eliminates any all-to-all communi-
cation between shards affected by a transaction in favor of
one-to-all communication between the reference committee
and the affected shards. Due to this, AHL takes five con-
secutive consensus rounds, more than twice the number of
rounds required by the costliest CERBERUS variants. As re-
ported in the original evaluation of AHL [17, Section 7.3],
the central role of the reference committee in coordinating
all multi-shard transactions will quickly become a bottle-
neck for performance when processing workloads heavy in
multi-shard transactions (even if none of these transactions
are concurrent), while AHL shows excellent performance
when processing single-shard transactions [36, 38].

CHAINSPACE [1]. CHAINSPACE uses a distributed two-
phase commit protocol (Distributed 2PC) [30, 56], that is
implemented via consensus steps and cluster-sending, to or-
der all multi-shard transactions. Furthermore, similar to AHL,
CHAINSPACE uses non-blocking locks to provide transaction

16

Journal of Systems Research (JSys) 2023

Phasesa Consensus Steps. Cross-Shard Transaction Transaction Failure Recovery
Protocol Principle Technique (Cross-Shard) Total Sequential Typeb Communicationc Abort Causes Concurrency and Ordering (method and when)

CCERBERUS
Independent Consensus

UTXO Data Model
4 (1) s 1 LC 1 (CS, A2A) Faulty Only

Data Model
Pledges (Incentived)

Local Recovery
Local Primary Failure

OCERBERUS
Multi-Shard Consensus

UTXO Data Model
3 (3) s 1 MS 3 (MS, A2A) Faulty Only

Data Model
Aborts

Local and Global Recovery
Any Primary Failure

PCERBERUS
Distributed Commit
UTXO Data Model

7 (1) 2s 2 LC 1 (CS, A2A) Faulty Only
Data Model

Aborts
Local Recovery

Local Primary Failure

AHL [17]
Reference Committee
Non-Blocking Locks

19 (4) 2s+2 5 LC 4 (CS, O2A) Failed Locks
Reference Committee

Locks & Aborts
Local Recovery

Local Primary Failure

CHAINSPACE [1]
Distributed Commit

locking Locks
11 (2) 2s 3 LC 2 (CS, A2A) Failed Locks

Distributed Commit
Locks & Aborts

Local Recovery
Local Primary Failure

RINGBFT [58]
Linear Commit
Blocking Locks

8s−5 (2s−2) 2s−1 2s−1 LC 2s−2 (CS, O2O) Invalid Only
Linear Commit
Blocking Locks

Local Recovery
Local Primary Failure

SHARPER [4]
Multi-Shard Consensus

Shard-Wide Blocking Locks
3 (3) s 1 MS 3 (MS, A2A)

Failed Locks
(Shard-Wide)

Multi-Shard Consensus
Shard-Wide Locks & Aborts

Global Recovery
Any Primary Failure, Concurrency

aTotal number of consecutive communication phases. For protocols that use a local consensus protocol, we count three consecutive phases per consensus step
(e.g., using PBFT), and we count a single phase per cluster-sending step.

bWe write LC to local per-shard consensus steps that do not involve cross-shard communication and we use MS to indicate multi-shard consensus steps that
require cross-shard communication for each phase of communication performed by the multi-shard consensus protocol.

cWe write CS to indicate cluster-sending and MS to indicate multi-shard consensus; and we write A2A to denote all-to-all communication, O2A to denote
one-to-all or all-to-one communication, and O2O to denote one-to-one communication between involved shards.

dIn CCERBERUS, objects affected by aborted transactions remain pledged and cannot be reused. In practice, this loss of objects can provide an incentive for
clients to not behave malicious.

Figure 8: Comparison of the three CERBERUS protocols for processing a transaction that affects s shards. We compare the
normal-case complexity. the mechanism used to deal with concurrent transactions (due to malicious clients), and the mechanisms
used to provide failure recovery.

isolation due to which valid transactions can be aborted. The
operations of this commit protocol are similar to the design
of PCERBERUS, except that CHAINSPACE does not take ad-
vantage of any specific properties of the data model (e.g.,
to provide isolation). A further minor difference between
CHAINSPACE and PCERBERUS is that CHAINSPACE distin-
guishes between shards that are used as inputs and shards
that are used as outputs and only informs output shards after
the input shards finish processing a transaction, due to which
transaction processing in CHAINSPACE takes one more round
as in PCERBERUS.

RINGBFT [58]. RINGBFT uses a linear two-phase com-
mit protocol (Linear 2PC) [30, 56], that is implemented via
consensus steps and cluster-sending, to order all multi-shard
transactions. Due to the usage of Linear 2PC, RINGBFT
is able to utilize blocking locks in a deadlock-free manner
to provide transaction isolation. Due to this usage of locks,
RINGBFT is the only protocol besides CERBERUS that is
able to always process valid transactions without spurious
aborts. Furthermore, the usage of Linear 2PC minimizes
cross-shard communication costs, as all communication is be-
tween pairs-of-affected-shards (no all-to-all, one-to-all, or all-
to-one communication). The benefits of RINGBFT come at a
cost, however, as the linear design imposes a linear amount of
consecutive consensus and cross-shard communication steps
in terms of the shards affected by the transaction, whereas
all other proposals require a constant number of consecutive

steps.

SHARPER [4]. SHARPER uses a multi-shard consensus pro-
tocol to order all multi-shard transactions. The operations of
this multi-shard consensus protocol are conceptually similar
to the design of OCERBERUS, except that SHARPER does not
take advantage of any specific properties of the data model
(e.g., to provide isolation or to simplify recovery). Further-
more, SHARPER requires that affected shards process their
multi-shard transactions in a common processing order, In ef-
fect, this imposes a per-shard lock on multi-shard transaction
processing, due to which each shard in SHARPER can only
engage in at most a single multi-shard transaction at a time,
limiting concurrent execution even in the absence of transac-
tions that contend for the same data objects. This is in sharp
contrast to the original design of PBFT on which both OCER-
BERUS and SHARPER are based: the design of PBFT enables
implementations with an out-of-order design that allows for
the processing of multiple consensus rounds at once, thereby
enabling primaries to use all their available bandwidth to con-
tinuously propose transactions for future consensus rounds
without waiting for previous consensus rounds to finish. This
out-of-order design of PBFT enables it to process thousands
of consensus rounds per second, even in real-world networks
with high message delays [16, 31]. OCERBERUS does allow
for out-of-order processing, however, as the correctness of
OCERBERUS does not fundamentally depend on the order in
which transactions that affect distinct objects are processed.

17

Journal of Systems Research (JSys) 2023

Finally, the philosophy of SHARPER is to serve as a single
unified protocol that can support both PAXOS-style crash fault-
tolerance and malicious behavior, and it remains an important
research question as to whether SHARPER can be extended
to the general-purpose unreliable communication and attack
models supported by OCERBERUS. In specific, we believe
OCERBERUS improves on the resilience of SHARPER by pro-
viding a robust local and global view-change mechanism that
can deal with per-shard replica failures, per-shard primary
failures, and coordinated attacks by replicas and clients to
disrupt global consensus steps.

BYSHARD [36, 38] and CAPER [3]. BYSHARD [36, 38]
proposes a framework in which one can evaluate many dis-
tinct protocols based on the application of two-phase com-
mit and two-phase locking in a consensus-based environ-
ment. Specific instances of BYSHARD correspond with the
approaches taken by CHAINSPACE and RINGBFT, while
AHL can be seen as a restricted case of the BYSHARD pro-
tocols that utilize distributed orchestration. The differences
between, on the one hand, CERBERUS and, on the other
hand, AHL, CHAINSPACE, and RINGBFT, extend to the
BYSHARD framework. The design of CAPER [3] shares simi-
larities with the design of SHARPER.

8.3 The Performance Potential of CERBERUS

Next, we modelled the performance benefits of CERBERUS.
To do so, we have modeled the maximum throughput of each
of these protocols in an environment where each replica has
a bandwidth of 1Gbit/s and the message delay is 15ms.4

Furthermore, we test with either seven (of which two can be
faulty) or sixty-one replicas (of which twenty can be faulty).
We have chosen to optimize CCERBERUS, OCERBERUS, and
PCERBERUS to minimize processing latencies over minimiz-
ing bandwidth usage, as reducing processing latencies is the
goal of the design of CERBERUS. In specific, we do not use
request batching and we do not use threshold signatures. To
further minimize latencies, we use a primary-initiated one-
phase broadcast-based cross-shard exchange step that will
succeed in a single communication phase whenever the send-
ing primary is non-faulty and communication is reliable [32].
Although this cross-shard exchange step has low latency and
can deal with failures, it does impose a high cost at the pri-
mary in the sending shard. In cases when one does not want to
optimize for processing latencies and individual replicas have
spare computational power, then one can utilize threshold
signatures to further boost throughput by a constant factor (at
the cost of the per-transaction processing latency).

4We have chosen for a bandwidth of 1Gbit/s and a message delay of
15ms as this message delay is multiple orders of magnitudes larger than
the time it takes to send all bytes of any individual message. Hence, if the
protocol has bottlenecks based on message delay, then these bottlenecks will
clearly show with the parameters chosen.

In Figure 9, we have visualized the maximum attainable
throughput (the number of transactions processed per second
while processing a workload of 32M transactions) for each of
the protocols as a function of the number of shards and as a
function of the number of objects affected by each transaction
when processing a workload in which 50% of the transactions
are single-shard and the remaining transactions affect objects
chosen fully-at-random. Hence, when multiple shards are
present in the system, the remaining transactions are likely
to be multi-shard transactions. As a baseline for comparison,
we have also included CHAINSPACE [1] and AHL [17]. For
AHL, we used an additional shard as a reference committee
(hence, if we use n shards in the experiment, then AHL can
use n+1).

In general, we see that CCERBERUS has higher throughput
than OCERBERUS and OCERBERUS has higher throughput
than PCERBERUS. These results are easily explained: all
protocols are bottlenecked by the communication at the pri-
maries of shards (as these primaries broadcast proposal mes-
sages, which are much larger than any other messages), and
in general the shards perform the least amount of work per
transaction in CCERBERUS and the most amount of work per
transaction under PCERBERUS.

For example, when comparing CCERBERUS with OCER-
BERUS, we see that the multi-shard consensus of OCER-
BERUS makes a trade-off in favor of latency at the expense of
higher communication costs at the primaries of shards than
the higher-latency combination of local consensus and cross-
shard exchange used by CCERBERUS. This is not always true,
however. To minimize latencies for CCERBERUS and PCER-
BERUS, we used a primary-initiated one-phase broadcast-
based cross-shard exchange step that imposes a high cost at
the primary in the sending shard. As a consequence, we see
that multi-shard transactions that only affect a few shards
(e.g., very few shards or very small transactions), result in
less communication at the primaries under the multi-shard
consensus performed by OCERBERUS than the combined
cost of a local consensus and cross-shard exchange step per-
formed by PCERBERUS. Consequently, we see slightly higher
throughput for OCERBERUS than for CCERBERUS in these
settings.

For RINGBFT, we notice that it is optimized for a com-
pletely different design goal: RINGBFT is optimized to min-
imize communication costs and maximize throughput (by
inducing very high latencies for multi-shard transactions),
whereas the three CERBERUS protocols aim to maximize
throughput while also minimizing latency. To further under-
line this, we measured the minimal latency of processing a
multi-shard transaction as a function of the number of affected
shards for the three CERBERUS protocols and for RINGBFT,
CHAINSPACE, and AHL. We refer to Figure 10 for the results.
As is clear from the results, only the latency of RINGBFT
is strongly determined by the number of shards. This is not
a surprise, as the three CERBERUS protocols, CHAINSPACE,

18

Journal of Systems Research (JSys) 2023

CCERBERUS OCERBERUS PCERBERUS CHAINSPACE AHL

(7 replicas per shard) (61 replicas per shard)

20 22 24 26 28 210
104

105

106

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(2 obj/txn)

20 22 24 26 28 210

104

105

106

Shards

(4 obj/txn)

20 22 24 26 28 210
103

104

105

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(8 obj/txn)

20 22 24 26 28 210

103

104

Shards

(16 obj/txn)

20 22 24 26 28 210

102

103

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(32 obj/txn)

20 22 24 26 28 210

102

103

Shards

(64 obj/txn)

20 22 24 26 28 210
103

104

105

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(2 obj/txn)

20 22 24 26 28 210

103

104

105

Shards

(4 obj/txn)

20 22 24 26 28 210
102

103

104

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(8 obj/txn)

20 22 24 26 28 210

102

103

Shards

(16 obj/txn)

20 22 24 26 28 210

101

102

Shards

T
hr

ou
gh

pu
t(

tx
n/

s)

(32 obj/txn)

20 22 24 26 28 210

101

102

Shards

(64 obj/txn)

Figure 9: Throughput of the three CERBERUS protocols as a function of the number of shards when processing a workload in
which 50% of the transactions are single-shard transactions and all remaining transactions affect objects chosen fully-at-random
and, hence, are likely to be multi-shard transactions.

and AHL all operate in a fixed number of consecutive steps,
whereas in RINGBFT the number of consecutive steps is a
function of the number of affected shards. In specific, CCER-
BERUS has two consecutive steps (a consensus and a cross-
shard exchange step); OCERBERUS has a single step (a multi-
shard consensus step); PCERBERUS has three consecutive
steps (two consensus steps and a cross-shard exchange step);
CHAINSPACE has five consecutive steps (three consensus
steps and two cross-shard exchange steps); and AHL has nine
consecutive steps (five consensus steps and four cross-shard
exchange steps). With regards to behavior, CHAINSPACE is
similar to PCERBERUS, except that the construction of out-
puts is a separate step that happens after inputs are destructed.
The high number of consecutive steps in AHL is a design

choice aimed at reducing overall inter-shard communication
at the cost of latency by not using all-to-all broadcasts be-
tween affected shards, but instead steering all communication
between shards via an all-to-reference committee-to-all com-
munication pattern, which introduces additional consensus
steps.

In our workloads, the ratio of multi-shard transactions is
high: we want to study how the multi-shard transaction pro-
cessing protocols we compare differ in their operations and
we are especially interested in the performance of the sys-
tem when dealing with multi-shard transactions that require
substantial coordination to deal with contention. Indeed, in
workloads that mainly consist of single-shard transactions,
each of the multi-shard transaction protocols we look at will

19

Journal of Systems Research (JSys) 2023

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0.1

0.2

0.3

0.4

0.5

Shards

L
at

en
cy

(s
)

CCERBERUS
OCERBERUS
PCERBERUS
CHAINSPACE
AHL
RINGBFT

Figure 10: Latency of processing a transaction during multi-
shard transaction processing as a function of the number
of affected shards, assuming that the transaction affects 64
objects, the network has a bandwidth of 1Gbit/s, the message
delay is 15ms, and each shard has 7 replicas.

2 obj/txn 4 obj/txn 8 obj/txn
16 obj/txn 32 obj/txn 64 obj/txn

20 22 24 26 28 210
0.0

0.2

0.4

0.6

0.8

1.0

·109

Shards

St
ep

s

Total Steps

20 22 24 26 28 210
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

·107

Shards

Steps per Shard

Figure 11: Cumulative number of shards affected by a work-
load of 32M transactions as a function of the size of transac-
tions and the number of shards. On the left, the total number
of steps. On the right, the average number of steps per shard.
For CCERBERUS and OCERBERUS, the number of steps is
equivalent to the number of per-shard consensus steps, for
PCERBERUS the number of steps is half the number of per-
shard consensus steps.

fall back to the same underlying single-shard consensus pro-
tocol to efficiently process such single-shard transactions.

Finally, we note that the results in Figure 9 show a V-shape:
when moving from an unsharded system to a sharded system
with few shards, the throughput decreases, whereas moving
to many shards will yield a sharp increase in throughput.
This shape is a consequence of the very high ratio of multi-
shard transactions in our workload: when going from an
unsharded system to a sharded system with a few shards, a
huge fraction of transactions affects most (or even all) shards:
all these transactions enforce extra coordination costs, with
no scaling benefit. As each transaction only affects i objects,
i ∈ {2, ...,64}, each transaction can affect at-most i shards.
As such, scaling beyond i shards will always show scaling
benefits.

In Figure 11, we have visualized the number of per-shard
steps performed by the system (for CCERBERUS and OCER-
BERUS, this is equivalent to the number of per-shard consen-
sus steps, for PCERBERUS this is half the number of per-shard
consensus steps). In general, we see that an increase in shards
has two effects:

1. Simple single-shard transactions can be dispersed over
more shards. Hence, increasing the number of shards
will reduce the average number of shard steps each
shard has to process with respect to single-shard transac-
tions. Furthermore, significantly increasing the number
of shards will distribute the multi-shard transactions
over these shards, reducing the cost of these transactions
per shard. Both effects will result in drastically improved
performance when scaling to many shards.

2. Large transactions can become more complex when in-
creasing the number of shards, as more shards can hold
objects relevant of large transactions. For example, a
transaction that affects 16 objects in an environment with
four shards can affect at-most four shards, while in an en-
vironment with 16 shards it can affect at-most 16 shards).
Hence, for large transactions, we only see reductions in
the per-shard cost to process these transactions when
scaling beyond the number of shards large transactions
can affect.

In a general-purpose sharded system without any specific bot-
tlenecks, the above will result in great scalability as soon as
the number of shards far outgrows the size of transactions.
This behavior is clearly observable for all three CERBERUS
protocols. Indeed, all three CERBERUS protocols have ex-
cellent scalability: increasing the number of shards will in-
crease the overall throughput of the system. Sharding does
come with clear overheads, however, increasing the number
of shards also increases the number of shards affected by each
transaction, thereby increasing the overall number of consen-
sus steps. This is especially true for very large transactions
that affect many objects (that can affect many distinct shards).
Hence, as one can see from the results, the benefits of shard-
ing are the strongest when processing mainly single-shard
transactions or when scaling beyond the size of individual
transactions.

In the comparison between OCERBERUS and PCERBERUS,
we see that OCERBERUS (implemented with all-to-all commu-
nication) will outperform PCERBERUS whenever transactions
involve few shards (due to them involving few objects). In
this case, the communication cost of the three cross-shard
communication steps that are part of the multi-shard con-
sensus of OCERBERUS is lower than the cost of the second
local consensus round in PCERBERUS. When transactions
affect many shards, PCERBERUS outperforms OCERBERUS,
as PCERBERUS only has a single cross-shard communication
step per transaction (and all other communication is local

20

Journal of Systems Research (JSys) 2023

within a shard). In all cases, CCERBERUS will outperform
the other protocols with respect to transaction throughput.
Furthermore, by design CCERBERUS will always have lower
latencies than PCERBERUS (due to the fewer consensus and
cluster-sending steps CCERBERUS performs). In environ-
ments in which inter-shard and intra-shard communication
have similar (high) message delays, OCERBERUS will typi-
cally have lower latencies than CCERBERUS due to the large
impact message delays have on the latency of consensus and
cluster-sending steps, this even when CCERBERUS has higher
throughput than OCERBERUS.

In comparison with CHAINSPACE, we see that this protocol
behaves both in theory and in practice similar to PCERBERUS:
the main difference being that CHAINSPACE commits in two
steps (first, changes to the inputs are committed, then, in a
consecutive consensus step, the changes to the outputs are
committed). Due to this, CHAINSPACE has slightly higher
costs associated with processing multi-shard transactions than
PCERBERUS.

In comparison with AHL, we see a large improvement in
performance. Due to the high ratio of multi-shard transac-
tions, the performance of AHL for processing multi-shard
transactions is bottlenecked by the throughput of the refer-
ence committee used by AHL to coordinate processing of all
multi-shard transactions. These findings are in line with the
original evaluation of AHL [17, Section 7.3]. The usage of a
reference committee is contrasted by the design of the CER-
BERUS protocols: the CERBERUS protocols do not depend on
an external coordinator to process multi-shard transactions.
Instead, in the CERBERUS protocols, processing a multi-shard
transaction τ is coordinated only by the shards affected by
τ, due to which the CERBERUS protocol can concurrently
process multi-shard transactions that affect distinct sets of
shards without introducing bottlenecks. A closer look at the
data does reveal excellent scalability of AHL with regards to
single-shard transactions: although the reference committee
has a full load while processing all multi-shard transactions,
all shards except the reference committee show a very low
load (that can be used to process many more single-shard
transactions during the experiment).

8.4 CERBERUS and Malicious Behavior

Finally, we have modeled the maximum throughput of each
of the three CERBERUS protocols in an environment in which
some shards are impacted by malicious replicas. Unless stated
otherwise, we use the same setting as in Section 8.3. We have
used 64 shards and four objects per shard and we measure
the performance of the three CERBERUS protocols as a func-
tion of the number of shards that are affected by malicious
behavior.

Within a shard, only malicious primaries have a strong im-
pact on the performance of that shard. Furthermore, malicious
primaries that completely disrupt normal-case operations will

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
0.0

0.5

1.0

1.5

2.0

2.5
·103

Malicious Shards

T
hr

ou
gh

pu
t(

tx
n/

s) CCERBERUS
OCERBERUS
PCERBERUS

Figure 12: Throughput of the three CERBERUS protocols
as a function of the number of shards that are affected by
malicious behavior, as measured by the transaction cost at
each shard. We have 16 obj/txn for all transactions. In this
case, the shards affected by malicious behavior are controlled
by malicious primaries that throttle the throughput of that
shard to half the maximum attainable throughput.

be replaced. Hence, to maximize the malicious impact, we
have chosen for malicious primaries that try to throttle the
performance of the system by slowing down their own opera-
tions. In the experiment, we have chosen that these primaries
do so by halving the speed by which their shards operate.

In Figure 12, we have visualized the average attainable
throughput for shards processing workloads in which 50% of
the transactions are multi-shard as a function of the number
of shards that are affected by malicious behavior (and can
affect the speed by which some of the multi-shard transactions
processed are processed) for each of the CERBERUS protocols.
The shards affected by malicious behavior are set up with
malicious primaries that purposely throttle the throughput
of the system by slowing down their operations to half the
speed they could attain. We see that each shard affected by
malicious behavior will slow down each CERBERUS protocol
with respect to those transactions that are affected by these
shards. At the same time, transactions not handled by shards
affected by malicious behavior shards are unaffected and will
be processed at normal speed due to which the impact of a
few affected shards is minimal.

9 Related Work

Distributed systems are typically employed to either increase
reliability (e.g., via consensus-based fault-tolerance) or to in-
crease performance (e.g., via sharding). Consequently, there
is abundant literature on such distributed systems, distributed
databases, and sharding (e.g., [56, 60, 61]) and on consensus-
based fault-tolerant systems (e.g., [10,14,19,31,60]). Further-
more, in Section 8.2, we reviewed related work on multi-shard
permissioned consensus-based systems. Next, we focus on
other works that deal with sharding in fault-tolerant systems.

In Section 8.2, we have only compared with other sharded

21

Journal of Systems Research (JSys) 2023

resilient systems with similar environmental assumptions. Be-
sides these sharded systems, several other resilient systems
such as OMNILEDGER [45] and RAPIDCHAIN [66] have been
proposed. These systems make very different environmental
assumptions (e.g., different threat and communication mod-
els) due to which these systems are incomparable to the CER-
BERUS protocols and the systems considered in Section 8.2.

A few fully-replicated consensus-based systems utilize
sharding at the level of consensus decision making, this to
improve consensus throughput without adopting a multi-shard
design [2, 22, 26, 32]. In these systems, only a small subset
of all replicas, those in a single shard, participate in the con-
sensus on any given transaction, thereby reducing the costs
to replicate this transaction without improving storage and
processing scalability.

Recently, there has also been promising work on shard-
ing and techniques supporting sharding for permission-
less blockchains. Examples include techniques to enable
sidechains, blockchain relays, and atomic swaps [23, 24, 39,
41,46,63,65], which each enable various forms of cooperation
between blockchains (including simple cross-chain commu-
nication and cross-chain transaction coordination). Unfortu-
nately, these permissionless techniques are several orders of
magnitudes slower than comparable techniques for traditional
fault-tolerant systems, making them incomparable with the
design of CERBERUS discussed in this work.

10 Conclusion

In this paper, we took a new look at the problem of multi-
shard transaction processing in consensus-based systems. In
specific, we proposed the study of sharded consensus-based
systems that use restrictions on the workloads supported to
improve performance over general-purpose methods.

To initiate this study, we introduced Core-CERBERUS,
Optimistic-CERBERUS, and Resilient-CERBERUS, three fully
distributed approaches towards multi-shard fault-tolerant
transaction processing. The design of these approaches is
geared towards processing UTXO-like transactions in sharded
distributed ledger networks. Due to the usage of UTXO-like
transactions, the three CERBERUS variants can minimize cost
to an absolute minimum, while maximizing performance,
thereby showing the potential of restricting the types of sup-
ported workloads. This potential is further underlined by our
comparison with the state-of-the-art protocols, in which we
see that the three CERBERUS variants both have lower costs
and complexity.

Although the workloads supported by CERBERUS are min-
imalistic, we believe that our results can be generalized to
more-general settings. In specific, we believe that the combi-
nation of sharding and Conflict-free Replicated Data Types
(CRDTs) [49] has great potential to provide high performance
in a consensus-based environment. Another intriguing direc-
tion is the investigation of resilient systems that not only limit

the types of workloads supported, but also reduce the resilient
guarantees provided by the system, this to further maximize
throughput and minimize latency. For example, by no longer
using a consensus-based design but instead using small quo-
rum systems [50].

References

[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano,
Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform, 2017. URL: http:
//arxiv.org/abs/1708.03778.

[2] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan
Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,
and David Zage. Steward: Scaling byzantine fault-
tolerant replication to wide area networks. IEEE Trans-
actions on Dependable and Secure Computing, 7(1):80–
93, 2010. doi:10.1109/TDSC.2008.53.

[3] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. CAPER: A cross-application permis-
sioned blockchain. Proc. VLDB Endow., 12(11):1385–
1398, 2019. doi:10.14778/3342263.3342275.

[4] Mohammad Javad Amiri, Divyakant Agrawal, and
Amr El Abbadi. SharPer: Sharding permissioned
blockchains over network clusters. In Proceedings
of the 2021 International Conference on Management
of Data, page 76–88. ACM, 2021. doi:10.1145/
3448016.3452807.

[5] Elli Androulaki, Artem Barger, Vita Bortnikov, Chris-
tian Cachin, Konstantinos Christidis, Angelo De Caro,
David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith
Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolić, Sharon Weed Cocco, and Jason Yellick.
Hyperledger Fabric: A distributed operating system for
permissioned blockchains. In Proceedings of the Thir-
teenth EuroSys Conference, pages 30:1–30:15. ACM,
2018. doi:10.1145/3190508.3190538.

[6] Vijayalakshmi Atluri, Elisa Bertino, and Sushil Jajodia.
A theoretical formulation for degrees of isolation in
databases. Inform. Software Tech., 39(1):47–53, 1997.
doi:10.1016/0950-5849(96)01109-3.

[7] Paddy Baker and Omkar Godbole. Ethereum fees
soaring to 2-year high: Coin metrics. CoinDesk, 2020.
URL: https://www.coindesk.com/defi-hype-
has-sent-ethereum-fees-soaring-to-2-year-
high-coin-metrics.

22

http://arxiv.org/abs/1708.03778
http://arxiv.org/abs/1708.03778
https://doi.org/10.1109/TDSC.2008.53
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.1016/0950-5849(96)01109-3
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics
https://www.coindesk.com/defi-hype-has-sent-ethereum-fees-soaring-to-2-year-high-coin-metrics

Journal of Systems Research (JSys) 2023

[8] Guillaume Bazot. Financial intermediation cost, rents,
and productivity: An international comparison. Tech-
nical report, European Historical Economics Society,
2018.

[9] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton,
Elizabeth O’Neil, and Patrick O’Neil. A critique of
ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10,
1995. doi:10.1145/568271.223785.

[10] Christian Berger and Hans P. Reiser. Scaling byzantine
consensus: A broad analysis. In Proceedings of the 2nd
Workshop on Scalable and Resilient Infrastructures for
Distributed Ledgers, pages 13–18. ACM, 2018. doi:
10.1145/3284764.3284767.

[11] Gabi Bracha and Ophir Rachman. Randomized consen-
sus in expected O((n2 logn)) operations. In Distributed
Algorithms, pages 143–150. Springer Berlin Heidelberg,
1992. doi:10.1007/BFb0022443.

[12] Christopher Brookins. DeFi boom has saved
bitcoin from plummeting. Forbes, 2020.
URL: https://www.forbes.com/sites/
christopherbrookins/2020/07/12/defi-boom-
has-saved-bitcoin-from-plummeting/.

[13] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Advances in Cryptology — CRYPTO
2001, pages 524–541. Springer Berlin Heidelberg, 2001.
doi:10.1007/3-540-44647-8_31.

[14] Christian Cachin and Marko Vukolic. Blockchain con-
sensus protocols in the wild (keynote talk). In 31st
International Symposium on Distributed Computing,
volume 91, pages 1:1–1:16. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.
DISC.2017.1.

[15] Michael Casey, Jonah Crane, Gary Gensler, Simon John-
son, and Neha Narula. The impact of blockchain tech-
nology on finance: A catalyst for change. Technical
report, International Center for Monetary and Bank-
ing Studies, 2018. URL: https://www.cimb.ch/
uploads/1/1/5/4/115414161/geneva21_1.pdf.

[16] Miguel Castro and Barbara Liskov. Practical byzantine
fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002. doi:10.1145/
571637.571640.

[17] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin,
Ee-Chien Chang, Qian Lin, and Beng Chin Ooi. To-
wards scaling blockchain systems via sharding. In
Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.
doi:10.1145/3299869.3319889.

[18] Nikhilesh De. CFTC chair: ‘a large part’ of financial
system could end up in blockchain format. CoinDesk,
2020. URL: https://www.coindesk.com/cftc-
chair-a-large-part-of-financial-system-
could-end-up-in-blockchain-format.

[19] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang
Chen, Beng Chin Ooi, and Ji Wang. Untangling
blockchain: A data processing view of blockchain sys-
tems. IEEE Trans. Knowl. Data Eng., 30(7):1366–1385,
2018. doi:10.1109/TKDE.2017.2781227.

[20] D. Dolev. Unanimity in an unknown and unreliable
environment. In 22nd Annual Symposium on Founda-
tions of Computer Science, pages 159–168. IEEE, 1981.
doi:10.1109/SFCS.1981.53.

[21] Danny Dolev. The byzantine generals strike again. J.
Algorithms, 3(1):14–30, 1982. doi:10.1016/0196-
6774(82)90004-9.

[22] Michael Eischer and Tobias Distler. Scalable byzan-
tine fault-tolerant state-machine replication on hetero-
geneous servers. Computing, 101:97–118, 2019. doi:
10.1007/s00607-018-0652-3.

[23] Muhammad El-Hindi, Carsten Binnig, Arvind
Arasu, Donald Kossmann, and Ravi Ramamurthy.
BlockchainDB: A shared database on blockchains.
Proc. VLDB Endow., 12(11):1597–1609, 2019.
doi:10.14778/3342263.3342636.

[24] Ethereum Foundation. BTC Relay: A bridge between
the bitcoin blockchain & ethereum smart contracts,
2017. URL: http://btcrelay.org.

[25] Michael J. Fischer, Nancy A. Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.
doi:10.1145/3149.214121.

[26] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios
Vlachos, and Nickolai Zeldovich. Algorand: Scal-
ing byzantine agreements for cryptocurrencies. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP, pages 51–68. ACM, 2017.
doi:10.1145/3132747.3132757.

[27] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, 2002. doi:
10.1145/564585.564601.

[28] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu.
SBFT: A scalable and decentralized trust infrastructure.
In 49th Annual IEEE/IFIP International Conference on

23

https://doi.org/10.1145/568271.223785
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1145/3284764.3284767
https://doi.org/10.1007/BFb0022443
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://www.forbes.com/sites/christopherbrookins/2020/07/12/defi-boom-has-saved-bitcoin-from-plummeting/
https://doi.org/10.1007/3-540-44647-8_31
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://doi.org/10.4230/LIPIcs.DISC.2017.1
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/3299869.3319889
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://www.coindesk.com/cftc-chair-a-large-part-of-financial-system-could-end-up-in-blockchain-format
https://doi.org/10.1109/TKDE.2017.2781227
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.1007/s00607-018-0652-3
https://doi.org/10.14778/3342263.3342636
http://btcrelay.org
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601

Journal of Systems Research (JSys) 2023

Dependable Systems and Networks (DSN), pages 568–
580. IEEE, 2019. doi:10.1109/DSN.2019.00063.

[29] William J. Gordon and Christian Catalini. Blockchain
technology for healthcare: Facilitating the transition
to patient-driven interoperability. Computational and
Structural Biotechnology Journal, 16:224–230, 2018.
doi:10.1016/j.csbj.2018.06.003.

[30] Jim Gray. Notes on data base operating systems. In
Operating Systems, An Advanced Course, pages 393–
481. Springer-Verlag, 1978. doi:10.1007/3-540-
08755-9_9.

[31] Suyash Gupta, Jelle Hellings, and Mohammad
Sadoghi. Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool, 2021. doi:10.2200/
S01068ED1V01Y202012DTM065.

[32] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mo-
hammad Sadoghi. ResilientDB: Global scale resilient
blockchain fabric. Proc. VLDB Endow., 13(6):868–883,
2020. doi:10.14778/3380750.3380757.

[33] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and
Mohammad Sadoghi. Proof-of-Execution: Reaching
consensus through fault-tolerant speculation. In Pro-
ceedings of the 24th International Conference on Ex-
tending Database Technology (EDBT), pages 301–312.
OpenProceedings.org, 2021. doi:10.5441/002/edbt.
2021.27.

[34] Suyash Gupta, Sajjad Rahnama, and Mohammad
Sadoghi. Permissioned blockchain through the looking
glass: Architectural and implementation lessons learned.
In 40th International Conference on Distributed Com-
puting Systems. IEEE, 2020.

[35] Jelle Hellings and Mohammad Sadoghi. Brief an-
nouncement: The fault-tolerant cluster-sending prob-
lem. In 33rd International Symposium on Distributed
Computing (DISC 2019), pages 45:1–45:3. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. doi:
10.4230/LIPIcs.DISC.2019.45.

[36] Jelle Hellings and Mohammad Sadoghi. ByShard:
Sharding in a byzantine environment. Proceedings
of the VLDB Endowment, 14(11):2230–2243, 2021.
doi:10.14778/3476249.3476275.

[37] Jelle Hellings and Mohammad Sadoghi. The fault-
tolerant cluster-sending problem. In Ivan Varzinczak,
editor, Foundations of Information and Knowledge Sys-
tems, pages 168–186. Springer, 2022. doi:10.1007/
978-3-031-11321-5_10.

[38] Jelle Hellings and Mohammad Sadoghi. ByShard:
sharding in a byzantine environment. The VLDB Jour-
nal, 2023. doi:10.1007/s00778-023-00794-0.

[39] Maurice Herlihy. Atomic cross-chain swaps. In Pro-
ceedings of the 2018 ACM Symposium on Principles of
Distributed Computing, pages 245–254. ACM, 2018.
doi:10.1145/3212734.3212736.

[40] Maurice Herlihy. Blockchains from a distributed com-
puting perspective. Commun. ACM, 62(2):78–85, 2019.
doi:10.1145/3209623.

[41] Maurice Herlihy, Barbara Liskov, and Liuba Shrira.
Cross-chain deals and adversarial commerce. The VLDB
Journal, 2021. doi:10.1007/s00778-021-00686-1.

[42] Matt Higginson, Johannes-Tobias Lorenz, Björn
Münstermann, and Peter Braad Olesen. The
promise of blockchain. Technical report, McKin-
sey&Company, 2017. URL: https://www.mckinsey.
com/industries/financial-services/our-
insights/the-promise-of-blockchain.

[43] Maged N. Kamel Boulos, James T. Wilson, and
Kevin A. Clauson. Geospatial blockchain: promises,
challenges, and scenarios in health and healthcare. In-
ternational Journal of Health Geographics, 17(1):1211–
1220, 2018. doi:10.1186/s12942-018-0144-x.

[44] Jonathan Katz and Yehuda Lindell. Introduction to
Modern Cryptography. Chapman and Hall/CRC, 2nd
edition, 2014.

[45] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. Om-
niLedger: A secure, scale-out, decentralized ledger
via sharding. In 2018 IEEE Symposium on Secu-
rity and Privacy (SP), pages 583–598. IEEE, 2018.
doi:10.1109/SP.2018.000-5.

[46] Jae Kwon and Ethan Buchman. Cosmos whitepaper:
A network of distributed ledgers, 2019. URL: https:
//cosmos.network/cosmos-whitepaper.pdf.

[47] Leslie Lamport. Paxos made simple. ACM SIGACT
News, 32(4):51–58, 2001. Distributed Computing Col-
umn 5. doi:10.1145/568425.568433.

[48] Laphou Lao, Zecheng Li, Songlin Hou, Bin Xiao, Song-
tao Guo, and Yuanyuan Yang. A survey of iot applica-
tions in blockchain systems: Architecture, consensus,
and traffic modeling. ACM Comput. Surv., 53(1), 2020.
doi:10.1145/3372136.

[49] Mihai Letia, Nuno Preguiça, and Marc Shapiro. Con-
sistency without concurrency control in large, dynamic
systems. SIGOPS Oper. Syst. Rev., 44(2):29–34, 2010.
doi:10.1145/1773912.1773921.

24

https://doi.org/10.1109/DSN.2019.00063
https://doi.org/10.1016/j.csbj.2018.06.003
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.1007/3-540-08755-9_9
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.2200/S01068ED1V01Y202012DTM065
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.5441/002/edbt.2021.27
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.4230/LIPIcs.DISC.2019.45
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1007/978-3-031-11321-5_10
https://doi.org/10.1007/s00778-023-00794-0
https://doi.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1007/s00778-021-00686-1
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://www.mckinsey.com/industries/financial-services/our-insights/the-promise-of-blockchain
https://doi.org/10.1186/s12942-018-0144-x
https://doi.org/10.1109/SP.2018.000-5
https://cosmos.network/cosmos-whitepaper.pdf
https://cosmos.network/cosmos-whitepaper.pdf
https://doi.org/10.1145/568425.568433
https://doi.org/10.1145/3372136
https://doi.org/10.1145/1773912.1773921

Journal of Systems Research (JSys) 2023

[50] J.-P. Martin, L. Alvisi, and M. Dahlin. Small byzantine
quorum systems. In Proceedings International Confer-
ence on Dependable Systems and Networks, pages 374–
383. IEEE, 2002. doi:10.1109/DSN.2002.1028922.

[51] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2009. URL: https://bitcoin.org/
bitcoin.pdf.

[52] Arvind Narayanan and Jeremy Clark. Bitcoin’s aca-
demic pedigree. Commun. ACM, 60(12):36–45, 2017.
doi:10.1145/3132259.

[53] Senthil Nathan, Chander Govindarajan, Adarsh Saraf,
Manish Sethi, and Praveen Jayachandran. Blockchain
meets database: Design and implementation of a
blockchain relational database. Proc. VLDB Endow.,
12(11):1539–1552, 2019. doi:10.14778/3342263.
3342632.

[54] Faisal Nawab and Mohammad Sadoghi. Blockplane:
A global-scale byzantizing middleware. In 35th In-
ternational Conference on Data Engineering (ICDE),
pages 124–135. IEEE, 2019. doi:10.1109/ICDE.
2019.00020.

[55] Faisal Nawab and Mohammad Sadoghi. Consen-
sus in data management: From distributed commit to
blockchain. Foundations and Trends in Databases,
12(4):221–364, 2023. doi:10.1561/1900000075.

[56] M. Tamer Özsu and Patrick Valduriez. Principles of
Distributed Database Systems. Springer, 2020. doi:
10.1007/978-3-030-26253-2.

[57] Michael Pisa and Matt Juden. Blockchain and economic
development: Hype vs. reality. Technical report,
Center for Global Development, 2017. URL: https:
//www.cgdev.org/publication/blockchain-and-
economic-development-hype-vs-reality.

[58] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv
Krishnan, and Mohammad Sadoghi. RingBFT: Re-

silient consensus over sharded ring topology. In Pro-
ceedings of the 25st International Conference on Extend-
ing Database Technology, pages 298–311. OpenPro-
ceedings.org, 2022. doi:10.48786/edbt.2022.17.

[59] Victor Shoup. Practical threshold signatures. In Ad-
vances in Cryptology — EUROCRYPT 2000, pages
207–220. Springer Berlin Heidelberg, 2000. doi:
10.1007/3-540-45539-6_15.

[60] Gerard Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2nd edition, 2001.

[61] Maarten van Steen and Andrew S. Tanenbaum. Dis-
tributed Systems. Maarten van Steen, 3th edition, 2017.
URL: https://www.distributed-systems.net/.

[62] Gavin Wood. Ethereum: a secure decentralised gener-
alised transaction ledger, 2016. EIP-150 revision. URL:
https://gavwood.com/paper.pdf.

[63] Gavin Wood. Polkadot: vision for a heteroge-
neous multi-chain framework, 2016. URL: https:
//polkadot.network/PolkaDotPaper.pdf.

[64] Maofan Yin, Dahlia Malkhi, Michael K. Reiter,
Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 347–356. ACM, 2019.
doi:10.1145/3293611.3331591.

[65] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi.
Atomic commitment across blockchains. Proc. VLDB
Endow., 13(9):1319–1331, 2020. doi:10.14778/
3397230.3397231.

[66] Mahdi Zamani, Mahnush Movahedi, and Mariana
Raykova. RapidChain: Scaling blockchain via full
sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 931–948. ACM, 2018. doi:10.1145/3243734.
3243853.

25

https://doi.org/10.1109/DSN.2002.1028922
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/3132259
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.14778/3342263.3342632
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1109/ICDE.2019.00020
https://doi.org/10.1561/1900000075
https://doi.org/10.1007/978-3-030-26253-2
https://doi.org/10.1007/978-3-030-26253-2
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://www.cgdev.org/publication/blockchain-and-economic-development-hype-vs-reality
https://doi.org/10.48786/edbt.2022.17
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://www.distributed-systems.net/
https://gavwood.com/paper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://polkadot.network/PolkaDotPaper.pdf
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.14778/3397230.3397231
https://doi.org/10.1145/3243734.3243853
https://doi.org/10.1145/3243734.3243853

	Introduction
	Preliminaries
	Multi-Shard Transaction Processing
	Core-Cerberus:Simple Yet Efficient Transaction Processing
	Optimistic-Cerberus:Robust Transaction Processing
	Resilient-Cerberus:Transaction Processing Under Attack
	The Ordering of Transactions in Cerberus
	Analysis of the Three Cerberus Variants
	A Comparison of Cerberus Variants
	Comparison With the State-of-the-Art
	The Performance Potential of Cerberus
	Cerberus and Malicious Behavior

	Related Work
	Conclusion

